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Abstract

Wireless channels bring in new challenges unforeseen in wireline environments, e.g., ISI

becomes time varying. Traditionally the equalizers (which nullify the ISI) were designed

to optimize their performance (e.g., MSE) as a standalone component (equalizers were

designed using sufficient amount of training that is transmitted prior to the actual data

transmission). This approach was well suited for time invariant wireline channels. How-

ever with time varying nature of the wireless channels, training sequence needs to be sent

frequently and the optimality of the above approach is questionable. Information theo-

retic measures are better suited to design an equalizer in such an environment. The first

goal of the thesis is to obtain the best wireless equalizer (blind/semi-blind or training),

using novel information-theoretic arguments (which study the trade-off between the BW

lost and accuracy gained) for a given wireless scenario.

Any practical communication system uses training algorithms and they are still opti-

mal, as long as one optimizes their performance as a standalone component (i.e., when

the loss in BW due to the training sequence is not considered). A training algorithm

commonly uses MMSE criterion to obtain the solutions (e.g., MMSE channel estimate,

MMSE equalizer etc). The LMS, an iterative and computationally efficient algorithm, is

often used to converge to the MMSE solution. With the advent of (time varying) wireless

communications it becomes important to understand the tracking behavior of a wireless

component (e.g., channel estimator, equalizer etc). Until now, the theoretical tracking

behavior (of a channel estimator) is obtained by modeling the wireless channel either

as a first order AR process (e.g., Random Walk model) or as a deterministic periodic

process. Block fading model is also used to study a slow fading channel. However, an

v
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AR(2) process models a fading channel better and can model most of the channel dy-

namics required for the receiver design. By modeling the underlying wireless channel as

an AR(2) process, the second part of the thesis studies the tracking behavior of an LMS

Linear/Decision Feedback Equalizer in training or decision directed (DD) mode. Along

the way, the thesis also attempts to solve some long standing issues in a fixed (also a quasi

static) channel environment like, obtaining an MMSE DFE, convergence of an LMS-DFE

and convergence of a DD-LMS-LE.
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Chapter 1

Introduction

Communication systems have seen a paradigm shift from predominantly wireline systems

to fast emerging wireless technologies. While wireless Cellular, LAN systems have already

gained popularity, emerging WiMAX and 4G systems promise to revolutionize the way

we communicate. As wireless systems emerge, they bring in new challenges unforeseen in

wireline environments, e.g., multipath fading and time varying channel characteristics.

In any communication system, the transmitted signal is distorted through a channel,

which can also introduce Inter Symbol Interference (ISI). These undesirable effects are

cancelled at the receiver by an equalizer ([21], [32], [43]). The problem is aggravated with

a time varying wireless channel, since the ISI also becomes time varying. Then one needs

a time varying equalizer in the receiver to undo the channel distortions.

The equalizers are usually linear FIR (finite impulse response) filters, which may also

use feedback. For a good performance, one needs to learn/design the optimal values of

the equalizer coefficients. There are various ways to do it. One can either directly design

an equalizer or can design it using an estimated channel model. For this purpose, often

a known training sequence is sent prior to the actual data transmission. Then the MSE

(Mean Square Error) optimal filter called Wiener Filter (WF) may be directly calculated,

or calculated via an adaptive scheme like the Least Mean Squares (LMS) algorithm ([25]).

One can also design an equalizer using a blind method, where no training sequence is used.

A blind and a training method may also be combined to obtain a semi-blind equalizer.

1



CHAPTER 1. INTRODUCTION 2

Hence a large variety of equalizers are available and one needs to make a good choice for

a given wireless scenario, i.e., one needs an optimal wireless equalizer.

When an equalizer is treated as a stand-alone component (for example when the BW

lost due to training sequence is not considered), the best criterion for optimality would

be MMSE (Maximum Likelihood/Viterbi equalizer is the optimal equalizer, but often one

cannot realize this in practical systems because of its computational complexity). However

to obtain a good MSE optimal equalizer one needs sufficient training sequence. Hence

the above notion of optimality is good only for a time invariant channel (like wireline

systems) where the training sequence is transmitted only once.

The above ’optimal’ equalizer may not be optimal for a performance measure that

pays penalty for the loss in BW. Due to time varying nature of the wireless channels,

one will need frequent transmission of the training sequence resulting in significant loss

of BW. Hence in a wireless channel, it is better to optimize a performance measure that

considers the loss in BW. In such systems, optimizing information theoretic measures

(for example Maximizing information capacity of a system with the equalizer) would be

a better criterion.

However, in general, any practical wireless system uses the first notion of optimality

to obtain a training based equalizer and hence is of practical importance. Hence, in this

thesis we will be dealing with both the notions of optimality.

1.1 The Problem

An equalizer is an important component of a receiver and its performance critically affects

the performance of the overall communication system. Therefore, extensive studies have

been made over the years in designing and determining their performance (see [1], [3],

[15], [21], [31], [32] [37], [43] and the references therein).

In this thesis we study the performance of various equalizers when used with a wireless

channel. Due to multipath fading, the characteristics of a wireless channel change with

time. This introduces new complications (compared to a wireline channel) which may

make an equalizer well suited for wireline channels to perform quite poorly in a wireless



CHAPTER 1. INTRODUCTION 3

scenario. For example, training based equalizers are extensively used in wireline systems.

They are also used in wireless systems, but unlike in wireline systems, the training se-

quence needs to be sent frequently. Therefore, a significant (∼ 18% in GSM) fraction of

the channel capacity is consumed by the training sequence. The training based (MMSE)

equalizer as a stand-alone component is still optimal (as here we are not bothered about

the loss in BW due to training), but the communication system performance with this

training based equalizer may not be the best. The usual blind equalization techniques

have also been found to be inadequate [21] due to their slow convergence and/or high

computational complexity. Because of this, the blind algorithms may not be able to track

the time variations effectively in a wireless channel. Hence, one needs to look at semi-

blind algorithms, which use some training sequence along with blind techniques (Chapter

7 of [21] and references therein), as they may provide the optimal solution.

However, Semi-blind/blind equalizers are believed to work unsatisfactorily in fading

channels as compared to training based methods. But there is no theoretical study till

today which confirms the belief. This is because, no systematic comparison of training,

blind/semi-blind algorithms seems to be available so far. We aim to fill this gap.

Any practical communication system uses training algorithms and they are still opti-

mal, as long as one optimizes their performance as a stand-alone component. With the

advent of (time varying) wireless communications it becomes important to understand

the tracking behavior of a wireless component. Thus, we next consider the tracking per-

formance of the training equalizers. As mentioned above, a training based equalizer is

most often designed based on Minimum Mean Square Error (MMSE) criterion. The MSE

optimal equalizer, also called Wiener filter is given by,

θ∗ = arg min
θ
E
[
θtX − s

]2
,

where the vector X includes the channel outputs and decisions (decisions are included

only in case of a DFE, the Decision Feedback Equalizer) while s represents the channel

input and θt is the transpose of vector θ. The Wiener filter (WF), often involves a matrix

inverse computation and hence is computationally expensive. The Least Mean Square
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(LMS) algorithm is used as an alternative. LMS is a very popular, easily implementable

and a widely used iterative algorithm ([4], [25], [43]) usually designed to converge to the

MMSE solution. It is given by,

θk+1 = θk − µkXk

(
X t

kθk − sk

)
,

where µk is a sequence of constants. However, prior to using the LMS, one needs to know

whether it really converges to the MMSE solution, the WF. In addition, the LMS usually

has the ability to track a time varying system if we keep µk ≥ µ > 0 for all k ([25], [43]).

In this thesis we will also address the corresponding issue for tracking (i.e., whether an

LMS really tracks the instantaneous WF ?) while designing an equalizer via LMS for a

wireless channel.

Equalizers are most commonly designed as linear FIR (finite impulse response) filters.

One can easily see that, for an LE (Linear Equalizer) with a fixed channel, the unique

WF is given by,

θ∗ = R−1
XXRXs,

where RXX = E
[
XX t

]
is the auto-correlation matrix of the channel outputs and RXs =

E [Xs] is the cross correlation vector. Although the training based LMS-LE has been

studied extensively with wireline (fixed) channel (convergence to the WF for a fixed

channel is shown in [4], [37]), its performance with a time varying channel is studied

only via simulations and approximations. In this thesis we address the tracking problem

theoretically.

Sometimes, an initial training based equalizer is improved upon using the decisions of

the current symbols in place of the training sequence. This mode, called a decision directed

(DD) mode, can improve the performance of the equalizer as well as the system using this

equalizer (as now one can get better performance without using extra training sequence).

Further, one can also track the channel variations via the DD mode itself (i.e., without

using an extra training sequence). In this mode, after obtaining a sufficiently ’good’
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estimate of the equalizer from the training sequence, one uses the previous decisions in

place of the training sequence to further improve the equalizer as

θk+1 = θk − µkXk

(
X t

kθk − ŝk

)
,

where ŝk is the decision of the current symbol. However, there can be decision errors, i.e.

ŝk 6= sk, which can affect the probability of error and the tracking performance of the

system. This important issue of these equalizers is not well understood. We intend to

take a close look at this problem.

Decision feedback equalizers (DFE) are nonlinear equalizers, which can provide sig-

nificantly better performance than an LE (especially when there are deep nulls in the

frequency response of the channel). A DFE feeds back the previous decisions of the trans-

mitted symbols, to nullify the ISI due to them and makes a better decision about the

current symbol. Although these equalizers have also been used for quite sometime, due

to feedback their behavior is much more complex than LEs. Hence their performance is

not well understood. Furthermore, there is no known technique to provide an optimal

MMSE DFE even for a fixed channel ([10], [32], [43]). Since the LMS is used to provide

MMSE solutions, it could possibly be used here too. It has indeed been used to obtain

a DFE solution ([43]). However, it is not known whether an LMS-DFE converges to the

WF even for a fixed channel. We will address this issue for fixed as well as time varying

channels.

To study the tracking behavior, one needs a theoretical model of the fading channel.

Auto Regressive (AR) processes have been shown to model such channels quite satis-

factorily ([2], [28], [34], [60]). Further, lower order AR processes can capture most of

the channel dynamics required for the receiver design ([28]). However, in literature till

today, the tracking behavior of a wireless component (e.g., channel estimator) has been

understood only using either a first order AR process, or a deterministic periodic process

([23], [36]) or using a block fading model (e.g., [1], [24]). Recently, it is shown in [28] that

a second order AR process many a times can capture almost all the channel dynamics

required for a receiver design, while an AR(1) process fails to do the same. Hence the
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tracking behavior may be better understood, if the underlying channel is modeled as an

AR(2) process. However the AR(2) processes depend upon 2 previous values. Hence it

would be difficult to theoretically deal with these processes (e.g., ODE approximation,

which is extensively used for studying adaptive processes ([4], [6], [29]), is obtained only

for processes that depend upon one previous value). In this thesis, we model the wireless

channel by an AR(2) process and obtain the theoretical tracking performance.

1.2 Previous Work

In this section, we survey the literature related to the problems mentioned above. Pio-

neering work towards blind algorithms for channel equalization has been done by Sato in

1975 ([44]). Since then, there has been considerable work on blind algorithms ([15], [21],

[22], [46], [57], [59]). Among these, CMA ([22]) has been one of the most studied and

used algorithms. Its convergence/ ill-convergence (see [14], [15], [21], [47], [53] and the

references therein), bounds on its MSE performance ([45]) and its distance from Wiener

receivers ([65]), have been obtained. Also, blind, semi-blind and training algorithms are

compared, for a given training length Nt, using the Cramer-Rao bounds by D-Carvalho

and Dirk Slock (see Chapter 7 of [21] and the references therein). But these analysis do

not discuss the tradeoff between accuracy in channel estimation and the bandwidth lost

(for training in training and semi-blind methods), i.e., a larger training sequence provides

a better equalizer enabling more data rate, but, reduces the time available to send the

data.

An optimum training sequence for the training based methods have been obtained in

[1] and [24]. They obtain a lower bound on the channel capacity and find the optimal

training sequence length (and also placement in case of [1]). However, they do not provide

a comparison with blind or semi-blind methods.

A recent survey on pilot assisted wireless transmissions is available in [58]. This

survey gives a exhaustive list of the current literature which provides optimum training

length, sequence and placement. Information theoretic methods (usually tight bounds on

the capacity) are used to design the optimal training sequence ([58] and the references
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therein). The authors also mention that a semi-blind method (using CMA) can improve

the performance. But this is achieved once again using Cramer-Rao bounds. As mentioned

above the Cramer-Rao bounds are not sufficient for proper comparison of a blind algorithm

with a training based method.

The convergence of the LMS-LE algorithm to the Wiener filter for a fixed channel

has been studied in ([4], [37]). Hence it is known that for a fixed channel (e.g., wired

channels), the performance of the limiting value of an LMS is not degraded much with

respect to the Wiener filter as the length of the training sequence increases.

However, the above answer is not sufficient for a wireless channel because of its time

varying nature. The tracking of a channel estimator has been extensively studied (see

e.g., the convergence analysis in [4], [29], [35], [62], measures of tracking performance in

[23], [36], [63] and variable step size algorithms in [30], [61] and the references therein).

The channel estimates can be used at any time to obtain an equalizer.

Tracking behavior of an LMS equalizer is obtained only via simulations, approxima-

tions and upper bounds on probability of error (see, e.g., [25], [28], [34], [54]). We are not

aware of any theoretical analysis except [36] which discusses the degree of non-stationarity

and optimum step-size. However, the assumptions made in this analysis are unrealistic.

They assume deterministic bounded or random IID zero mean time variations. Also they

assume that the noise sequence after the equalizer, resulting from residual ISI and the

noise passing through the equalizer, is IID.

In [37], it has been shown that the DD-LMS-LE for a fixed channel converges to the

WF almost surely, if the initializer is sufficiently close to the WF and if the noise is zero.

The authors also observe that the DD attractors are away from the WFs when the noise

is non-zero and when the equalizer length is one. However, one needs to understand the

DD algorithm under more practical scenarios. Benveniste et al. ([4]) have obtained an

ODE approximation for a fixed channel DD-LMS-LE. However they have not studied its

attractors. The existence of undesirable local minima are established in [38], [41]. In

[21] (chapter 11 and the references therein) the convergence properties (noiseless) and

initialization strategies (to ’open’ eye) are discussed.
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Performance analysis of a DFE is more complicated because of the feedback loop.

Existence of a hard decoder inside the feedback loop, makes the study all the more difficult.

A DFE mainly exploits the finite alphabet structure of the hard decoder output ([19], [32])

and hence the hard decoder cannot be ignored.

For a DFE, statistics of the previous decisions are not known. Hence the first hurdle:

there is no known technique to compute a DFE Wiener filter. One gets around this

problem by assuming perfect decisions (see, e.g., [13], [32], [56]) and design a Wiener

filter. For convenience, for the rest of the thesis, we will call it IDFE (Ideal DFE).

The IDFE often outperforms the linear Wiener filter significantly ([3], [43], [54]). But it

is generally believed that the true optimal DFE Wiener filter (considering the decision

errors) can significantly outperform even this.

Another way to obtain an optimal solution is to replace the feedback filter at the

receiver by a precoder at the transmitter ([10], [43]). This way one can indeed obtain

the optimal filter (one no longer has the problem due to the decision errors). But this

requires the knowledge of the channel at the transmitter. However for wireless channels,

which are time varying, this is often not an attractive solution ([32] [43]).

Some research has been carried out to deal with the decision errors. Either the distri-

bution of the decision errors was approximated in designing an MSE optimal filter (IDFE

being one such example) or some other appropriate criterion was used to get the optimal

filter considering the errors in decisions. For example, in [50], the authors approximated

the errors in decisions with a WGN (White Gaussian Noise) uncorrelated with the input

data and obtained the DFE Wiener filter. But as is stated in the paper this approxima-

tion is not realistic. In [19], the authors obtain an H∞ optimal DFE considering decision

errors. However it is not compared to the DFE Wiener filter.

LMS-DFE could possibly be used to obtain an optimal DFE. However, its performance

is not understood theoretically. For example, the convergence behavior of an LMS-DFE

even for a fixed channel is not understood. Trajectory of the LMS-DFE algorithm without

a hard decoder in the feedback loop has been approximated by an ODE in [29]. However

this ODE does not approximate the DFE with a hard decoder. Beneveniste et al. ([4])
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have shown the ODE approximation of an LMS-DFE with a hard decoder. But the ODE

obtained by them is not explicit enough and hence does not provide clear insight into the

behavior of the LMS-DFE algorithm. Furthermore, they do not relate the attractors of

this ODE to the DFE Wiener filter.

While understanding the tracking behavior of a channel estimator, a time varying

channel has been modeled either as a first order AR process (Random Walk model) or as

a deterministic periodic process ([23], [36]). Block fading model is also used to study a

slow fading channel ([1], [24]). However, an AR(2) process models a fading channel better

([28]). It has been used to improve channel tracking algorithms in [28], [34] and [60]. But

it has not been used to obtain better performance analysis of a wireless component.

1.3 Contributions of the thesis

We attempt to obtain an optimal wireless equalizer (either optimal in MSE sense, like

DFE-WF, LE-WF etc, or optimal in capacity sense) by theoretically analyzing various

wireless equalizers described above. In this connection, we obtain answers to the following

questions under certain conditions:

• What is the optimal length of the training sequence ?

• How does a blind/semi-blind equalizer compares itself with respect to a training

equalizer ? What is the optimal equalizer ?

• Does LMS really track the instantaneous Wiener filter ?

• When can we use the ”decisions of the current symbol” in place of the training

sequence ?

Prior to answering these questions, one needs an appropriate model for the wireless

channel. A wireless channel can be fast/slow fading and frequency selective/nonselective

([43]). We will be dealing with a slow fading, frequency selective channel in our thesis.

We model these channels either as block fading channels or as AR processes. Our AR
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processes can also model some fast fading channels. In particular we will use AR(2)

processes. We obtain the following:

• The optimum training sequence length for the training based and semi-blind algo-

rithms.

• Among the algorithms compared, semi-blind algorithms provide the best perfor-

mance.

• A training based LMS linear equalizer tracks the instantaneous WF for a sta-

ble/unstable channel.

• A decision directed LMS linear equalizer stays close to the instantaneous WF when-

ever the SNR is high and when it is properly initialized. Hence, we conclude that

a DD-LMS-LE can be used to track/obtain the WF under high SNR conditions

(without the use of training sequence). However, at low SNRs, the DD attractors

are away from the WF.

• A training based LMS decision feedback equalizer stays close to the instantaneous

WF at high SNRs. Thus, we conclude that at least under high SNR, LMS can be

used to obtain the optimal DFE. We also show that the ’Optimal’ DFE obtained

by ignoring the decision errors can perform much worse than the LMS DFE even

under high SNR (even after designing the former with perfect channel estimate).

Our general tool for analysis is the ODE (Ordinary Differential Equation) approxima-

tion often used in stochastic approximation methods ([4], [6], [29] etc).

In Chapter 2, we provide an ODE approximation for an AR(2) process. This appears

to be the first time when an ODE approximation is obtained for a recursive equation where

the current value depends upon two previous values (a second order difference equation).

Unlike previous ODE approximations available in literature ([4], [6], [29]), now depending

upon the parameters, the approximating ODE may be a first order or a second order

ODE.
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We then obtain an ODE approximation for a general system, whose components may

depends on two previous values (like in an AR(2) process) in Appendix I, provided at

the end of the thesis. Using this, we obtain the ODE approximation for an LMS-LE,

DD-LMS-LE or LMS-DFE while tracking an AR(2) process. This ODE approximation is

instrumental in obtaining the last three results.

We obtain the comparison of the training based equalizer with (semi) blind equalizers

in Chapter 3. Here, we use novel information theoretic arguments to study the trade-off

between the BW lost in sending a training sequence versus the BW gained due to better

channel estimate obtained via a longer training sequence. We use the most popular blind

algorithm, CMA, for our comparison purposes. We define a ’composite’ channel for each

equalizer, and use its capacity as a measure to obtain the optimum training sequence

length as well as to compare the three equalizers. The CMA ODE approximation of [47]

has made it possible to obtain the capacity.

An LMS-LE is studied in Chapter 4. For an LMS-LE, the error between the instanta-

neous WF and the LMS trajectory is shown to reduce polynomially/exponentially to zero

with time, using the ODEs approximating the stable/unstable channel (AR(2) process)

and the LMS-LE trajectories. This error remains bounded for a marginally stable channel

(stable, unstable and marginally stable channels are explained in Chapter 2). For stable

channels we also show that the MSE of an LMS-LE converges to the instantaneous MMSE

exponentially.

For a fixed channel, using implicit function theorem, we obtain the existence of DD-

attractors close to the WF at high SNRs. We use similar techniques to compare the

LMS-DFE attractors with that of the DFE Wiener filters.

1.4 Organization of the thesis

Chapter 2 studies the AR modeling of a Wireless channel. It also provides the conver-

gence of AR(2) processes to ODEs. The blind/semi-blind equalizers are compared with

training equalizers in Chapter 3. It also provides the optimal training sequence length.

Tracking behavior of LMS Linear equalizers is studied in Chapter 4. DD-LMS-LE is
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studied in Chapter 5. LMS DFE for a fixed channel is dealt with in Chapter 6 while

its tracking behavior is obtained in Chapter 7. Chapter 8 concludes the thesis. All ma-

jor proofs are available in appendices included at the end of the corresponding chapters.

ODE approximation of a general system (with some of its components depending on two

previous values) is obtained in Appendix I, included at the end of the thesis. References

are included at the end of the thesis.



Chapter 2

Channel models for a Wireless

Channel

A wireless channel can be fast/slow fading and frequency selective/non-selective ([43]).

We will consider a slow fading, frequency selective channel in this thesis. This model

includes a fixed frequency selective channel (i.e., a time invariant channel with ISI) as a

special case. One can model a slow fading wireless channel either as a block fading channel

or as a continuously varying channel with a slow drift. We will model the continuously

varying channel by an AR process. Our AR processes can also handle some fast fading

channels.

Auto Regressive (AR) processes have been shown to model wireless channels quite

satisfactorily ([2], [28], [34], [60]). We study these processes in detail. We will show that

the trajectory of an AR(2) process can be approximated by a system of ODEs. Using

these ODEs we show that the trajectory of an AR(2) process can be approximated by an

exponential, polynomial, cosine, hyperbolic-cosine, exponential cosine or an exponential

hyperbolic-cosine waveform, if the trajectory is suitably scaled in time and space. These

ODEs will be used to study the performance of the wireless equalizers in Chapters 4, 5

and 7.

The chapter is organized as follows. Section 2.1 describes the Block-fading model,

which will be used in Chapter 3. Section 2.2 provides the AR process model and its

13
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approximation with an ODE. In Section 2.3 we demonstrate via some examples that the

ODEs can indeed provide a good approximation. The appendices provide the proofs.

2.1 Block-fading model

In a block-fading model, the channel is approximated with a constant value over a

frame/block and is assumed to change over to an independent value in the next frame.

This is a very commonly used model for a slow fading channel ([1], [24]). For example,

this model is suitable in a TDMA wireless system like GSM. In GSM, a packet of a voice

call is transmitted in one slot in each frame (consisting of 8 slots). The fading during

a slot may be approximately constant. However, a frame later, the fading might have

changed significantly.

For this model, the training sequence is transmitted once for every frame, and an

equalizer is computed for every frame. We use this model for comparing the blind/semi-

blind equalizers with training based equalizers in Chapter 3. The channel co-efficients

across frames are assumed to be independent and Gaussian distributed.

2.2 AR process model

A slowly varying channel can sometimes be better modeled (than by block fading model)

by a continuously varying process with small variations at a time. To model such a

channel, we use an Auto Regressive processes of order p (AR(p) processes),

Zk =

p∑
l=1

dlZk−l + µW k, k ≥ 1

where {Wk} is an IID sequence independent of initial conditions Z0, Z−1, · · ·, Zp+1 and

µ and dl, l = 1, · · · , p are some constants. These processes have been shown to model the

slowly varying channels quite satisfactorily ([2], [28], [34], [60]).

Exact modeling of the wireless channel time variations using an AR process is not

possible (the autocorrelation function of an AR process is rational, while the wireless
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channel autocorrelation functions are usually not rational). Nevertheless, AR processes

especially for a large p, are shown to model a wireless channel quite accurately in [2].

However, first few correlation terms of the channel are more important for the design of

receiver algorithms ([28]) and hence low order AR models may be sufficient.

One can estimate the p + 1 parameters of the AR(p) process (the p coefficients and

the variance of the noise, µ) from the autocorrelation function of the WSSUS model of

the fading channel (given by a zero order Bessel function of the first kind, J0(2πfdTk),

with k the lag, fd the maximum Doppler frequency and 1/T the data rate) using linear

Yule-Walker equations ([2], [28], [34]).

In [28], it is shown that a second order AR process correlation matches the true

Bessel correlations accurately almost up to 20 lags while the first order AR process may

match satisfactorily only for very small lags. Hence an AR(2) process can be a much

better model than an AR(1) process. It includes the frequently used models in literature,

e.g., the Filtered Random Walk model ([34]) obtained with d1 + d2 = 1 and |d2| ≤ 1

and the Autoregressive Second Order model ([34], [28]) obtained with d1 = 2ρcosw0,

d2 = −ρ2, where ρ and w0 represent the degree of damping and the dominating frequency

respectively. Also, an AR(2) process sometimes can capture almost all of the channel

dynamics that are required for the receiver design ([28]). Hence we model the wireless

channel by an AR(2) process while studying the tracking behavior of the LMS algorithm

in Chapters 4, 5 and 7.

An ODE approximation is often used to study an adaptive process ([4], [29]). An

AR(2) process depends on two previous values and an ODE approximation for such a

process does not seem to be available in literature. In the next section, we will approximate

the trajectory of an AR(2) process by an ODE. We will show in Section 2.3 that the ODE

approximation is quite accurate for fdT upto 0.04, which can for example correspond to

a mobile speed of 150 Km/h at 2.4-GHz transmission with symbol time equal to 100µs.

We then suggest an ODE whose solution can approximate a more general AR(p) process.

The values of d1, d2 determine the stability of the channel. The channel is stable,

unstable or marginally stable respectively if its poles are inside, outside or on the unit
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circle ([25]).

We first study a general system in Appendix A (whose current value depends on two

previous values) and use this to obtain an ODE approximation for the AR(2) process.

We obtain a first order ODE whose solution approximates the general system (and hence

the AR(2) process) with d2 ∈ (−1, 1]. The AR(2) processes corresponding to this case

includes the stable channels and a class of unstable channels. However for d2 close to −1,

we show that a second order ODE better approximates the above system. Later on, we

obtain another second order ODE which approximates the process with d2 = −1. The

AR(2) process in this case will include a marginally stable channel.

2.2.1 ODE approximation of an AR(2) process

To begin with, we study a general system given by,

Zk+1 = (1− d2)Zk + d2Zk−1 + µH(Wk, Zk).

In Appendix A, we obtain a system of ODEs (2.5), (2.7), (2.9) for d2 ∈ (−1, 1], d2 = −1

and d2 close to −1 respectively, which approximate the above system under the assump-

tions:

A.1 Wk is an IID sequence.

A.2 h(Z) = E [H (Wk, Z(t))] is a C1 function.

A.3 For any compact set Q, there exists a constant C(Q), such that

E|H(Z,W )|2 ≤ C(Q) for all Z ∈ Q,

where the expectation is taken wrt W .

Using the results of Appendix A, we obtain an ODE approximation for the AR(2)

process. One can rewrite the AR(2) process as,

Zk+1 = (1− d2)Zk + d2Zk−1 + µ

(
Wk +

d1 + d2 − 1

µ
Zk

)
.
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Hence the AR(2) process is an example of the above general system. One can easily see

that the assumptions A.1–A.3 are satisfied by the process if E
[
|Wk|2

]
< ∞. We will

assume this in the thesis. Hence using the three theorems of Appendix A, an AR(2)

process {Zk} with a small µ can be approximated by the solution of the following system

of ODEs (the approximation would be good as long as d1 + d2 is close to 1),

(1 + d2)
�
Z (t) = [E(W ) + ηZ(t)] , if d2 ∈ (−1, 1],

d2Z(t)

dt2
= [E(W ) + ηZ(t)] , if d2 = −1,

d2Z(t)

dt2
+ η1

�
Z (t) = [E(W ) + ηZ(t)] , if d2 is close to − 1, (2.1)

where η
4
=d1+d2−1

µ
and η1

4
=1+d2√

µ
. Note that with d2 close to −1, two ODEs approximate

the AR(2) process (we will discuss this in detail later).
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The channel ODE (2.1) has a unique solution (which is bounded for any finite time)

given by (with a
4
=1+d2

2
√

µ
= η1

2
),

Z(t):=



C1e
η

1+d2
t − E(W )

η
, η 6= 0, d2 ∈ (−1, 1],

E(W )
1+d2

t+ C1, η = 0, d2 ∈ (−1, 1],

C1cosh(
√
η t)− E(W )

η
, η > 0, d2 = −1,

C1cos(
√
|η| t)− E(W )

η
, η < 0, d2 = −1,

E(W )
2

t2 + C1, η = 0, d2 = −1,

C1e
−2at + E(W )

2a
t, η = 0, d2 close to − 1,

C1e
−atcos(

√
|η| − a2 t)− E(W )

η
, η < −a2, d2 close to − 1,

C1e
−atcosh(

√
η + a2 t)− E(W )

η
, otherwise,

(2.2)

where the constant C1 is chosen appropriately to match the initial condition of the ap-

proximated AR(2) process (as given in the theorems of Appendix A). The approximation

of {Zk} by the solution Z(t) holds in the following sense: Given any T > 0 and δ > 0

P

 sup
0≤k≤ T

µα

|Zk − Z(kµα)| > δ

→ 0

as µ→ 0, where α = 1 if Z(t) is the solution of a first order ODE and α = 1/2 if it is the

solution of a second order ODE.

When d2 is close but not equal to −1, two ODEs approximate the same AR(2) process.

This is an important case and results when a second order AR process approximates a fad-

ing channel with a U-shaped band limited spectrum. It is obtained for small values of fdT .
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For example if fdT equals 0.04, 0.01 or 0.005 the channel is approximated by an AR(2)

process with (d1, d2, µ) equal to (1.9707,−0.9916, 0.00035), (1.9982,−0.9995, 1.38e−6) and

(1.9995,−0.9999, 8.66e−8) respectively ([2], [28])). One could approximate such an AR(2)

process with the first order ODE of (2.1). However this approximation will not be very

accurate and will require µ to be very small. In this case, the second order ODE ap-

proximates the channel trajectory better. We will plot these approximations in Section

2.3.

In the following, we summarize the above ODE approximations relating them to the

stability properties of the AR(2) process.

Stable AR process

A stable AR(2) process has all the poles inside the unit circle ([25]) and hence satisfies,

d1 + d2 < 1, d1 − d2 > −1 and |d2| < 1. In this case, η = (d1 + d2 − 1)/µ < 0 and the

solution of the first order channel ODE of (2.1) will be an exponential curve for some

constant vectors C1, C2,

Z(t) = C1e
η

1+d2
t
+ C2.

This has a unique global attractor Z∗ = C2.

As discussed in the previous section, stable channels with d2 close to −1 are better

approximated by,

C1e
−atcos(

√
|η| − a2 t) + C2.

It is easy to see that even this ODE has C2 as an unique global attractor (note that for

a stable channel a > 0).
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Unstable channels

An unstable channel has the poles outside the unit circle. The AR process in this case is

approximated by,

Z(t) = C1r(t) + C2

where with p = 1 or 2, r(t) is given by,

r(t) =

 eηt, d1 + d2 > 1,

tp, d1 + d2 = 1.

Note that the hyperbolic cosine curves are also unstable. These curves are equal to

C (ez + e−z), for some z and hence their behavior can be understood by studying the

dominating term, the raising exponential.

Marginally stable channels

It has all its poles on the unit circle. An AR process with d2 = −1, d1 < 2 results in a

marginally stable channel. The AR process in this case is approximated by,

Z(t) = C1cos(
√
η t) + C2.

AR(p) process :

Following a similar procedure, one can try to show that an AR(p) process given by (when

1 +
∑n

i=2(i− 1)di 6= 0),

Zk+1 =

p∑
i=1

diZk+1−i + µWk (2.3)

can be approximated for small values of µ, with the solution of the ODE,

�
Z (t) =

1

1 +
∑n

i=2(i− 1)di

[
E(W ) +

∑n
i=1 di − 1

µ
Z(t)

]
.
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Complex Channels

A time varying complex channel can be written in the equivalent double dimensional real

domain (a double dimensional real vector is formed from any complex vector by stacking

all the real components first followed by the complex components). The complex channel

modeled by an AR(2) process, can now be approximated by ODEs of this chapter after

converting it to the equivalent real double dimensional vector.

2.3 Examples

In this section we illustrate the theory developed so far using some examples. We consider

a three-tap channel. We assume that Wk ∼ N (Mn, 1) for different values of mean Mn.

In Figure 2.1, we plot the actual trajectory and the ODE solution of a stable AR(2)

process, with d1 = 0.6, d2 = 0.3995 and step size µ = 0.001. It is clear from the figure

that, the ODE solutions approximate the actual trajectories well.

In Figure 2.2, we plot the channel trajectories for d1 + d2 = .8, which is away from 1.

Now we have taken µ = 0.01. We can see that when 1− (d1 +d2) is large, the AR process

converges faster to the attractor and this channel will be like a channel without drift. In

this case, it is very close to an IID Gaussian random variable. This is also evident from

the theory, as, in this case |η| will be larger. Also it is evident from the figures that the

approximation is accurate even for d1 + d2 away from 1.

In Figure 2.3, we plot an unstable AR(2) process. We set d1 = 0.9, d2 = 0.1001 and

µ = 0.001. We see that the AR process is unstable, as d1 + d2 = 1.001 > 1. We observe

that the AR(2) parameters are diverging to infinity exponentially, as shown by the theory.

We can also see that the ODE approximation is very accurate even in this case.

In Figure 2.4, we consider a special case, when d2 = −1. We set d1 < 2, to get a

marginally stable AR(2) process, whose trajectory is approximated by a cosine waveform.

The channel ODE once again well approximates the actual trajectories.



CHAPTER 2. CHANNEL MODELS FOR A WIRELESS CHANNEL 22

0 0.5 1 1.5 2 2.5

x 104

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

No of Iterations

C
oe

fs

Channel Coefficients Versus Time

Actual trajectory
ODE

µ = 0.001                               
   
 d

1
 = 0.6 d

2
 = 0.3995 

Figure 2.1: Trajectories of a stable AR(2) process
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Figure 2.2: Trajectories of a stable AR(2) process with d1 + d2 = 0.8
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Figure 2.3: Trajectories of an AR(2) process when d1 + d2 > 1, i.e. unstable
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Figure 2.5: Trajectories of an AR(2) process with d2 close to−1 and d1 < 2 for fdT = 0.01.

In Figures 2.5, 2.6, we consider another special case, when d2 is close to −1. In this

case, as is shown theoretically, a better ODE approximation is obtained by a second

order ODE. We set fdT = 0.01, fdT = 0.04 (e.g., symbol time T = 100µs, at 2.4-GHz

transmission with mobile speeds 45 Km/h or 150 Km/h) respectively. We get a stable

AR(2) process, whose trajectory is approximated by an exponentially decaying cosine

waveform. The second order ODE well approximates the actual trajectories for fdT upto

0.04.

In Figure 2.7, we are plot the channel coefficients of a complex channel. We are

considering a three-tap channel. In these figures, we plot both the real and imaginary

parts of the coefficients separately. We see that the ODE approximation is very close even

for a complex channel.

Finally, we plot an AR(4) process in Figure 2.8. The parameters of the process are

provided in the figure. We see that the ODE solution once again approximates the actual
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Figure 2.8: Trajectories of an AR(4) process

trajectories well. Do note that, as in the AR(2) process case (e.g., when d2 = −1),

there will be different values of d1, d2, d3, d4 for which the exponential curve will not be

approximating the channel trajectory.

Conclusions

In this chapter we studied a wireless channel modeled by an AR(2) process. We first

obtained different ODEs for a general system whose components depend upon 2 previous

values. We then obtained a system of ODEs whose solutions approximate the trajectory

of an AR(2) process based on the value of d2. We showed that (Theorem 2.1) with

d2 ∈ (−1, 1] (all stable and a class of unstable channels), the AR(2) process can be

approximated by a first order ODE. The solutions of this ODE are either exponential or

linear curves. When d2 = −1, the AR(2) process either will have poles on the unit circle

(when d1 ≤ 2) or outside the unit circle (d1 > 2). We showed that (Theorem 2.2) a second

order ODE approximates this class of AR(2) processes. With d2 = −1, it is shown that
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the AR(2) process can be approximated by a cosine curve when d2 < 2, by a square curve

when d2 = 2 and by a hyperbolic cosine curve when d2 > 2.

We also showed that with d2 close to −1 (a very important case resulting when a

second order AR process approximates the well-known U-shaped band limited spectrum

of the received fading signal with lower Doppler rates [2]), all classes of channels, sta-

ble/unstable channels, are better approximated by a second order ODE (Theorem 2.3).

An exponentially raising/decaying, cosine/hyperbolic-cosine curve approximates this kind

of a channel.

We suggested a system of ODEs, whose solution can approximate an AR(p) process

with p > 2.

For simplicity, we have only shown the theory for the case when all the taps of the

channel are given by the same AR(2) process. But in all the examples of our simulations

we have used different AR(2) processes for different channel taps (we only varied the mean

E(W ) in our simulations, one can also use different d1, d2 for different taps). The theory

will easily go through even for the general case.

Appendix A

We study a general system given by,

Zk+1 = (1− d2)Zk + d2Zk−1 + µH(Wk, Zk). (2.4)

We will approximate it with three different ODEs depending upon the value of d2 under

the assumptions A.1-A.3. Note that under the assumption A.2, the ODE,
�
Z= h(Z(t)),

has a unique local solution for any initial condition.
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When d2 ∈ (−1, 1] :

Under this condition, we will show that the above general system (2.4) can be approxi-

mated by the solution of the ODE,

�
Z (t) =

1

1 + d2

E [H (W,Z(t))] =
1

1 + d2

h(Z(t)). (2.5)

We represent the solution of ODE (2.5) with initial condition Z(t0) = A by Z(t, t0, A) for

any t ≥ t0.

Let Q1 and Q2 be any two compact sets such that Q1 ⊂ Q2 and we choose T > 0 such

that there exists a δ0 > 0 satisfying,

d (Z(t, 0, A), Qc
2) ≥ δ0, (2.6)

for all A ∈ Q1 and for all t ≤ T . If the ODE (2.5) has a unique solution for any initial

condition and if it is bounded for all time then for any T > 0, δ0 > 0 and a compact Q1,

one can always find a compact Q2 that satisfies (2.6) for all t ≤ T and all A ∈ Q1. We

show the existence of unique bounded solutions for all the ODEs considered in this thesis

and conditions similar to (2.6) are then satisfied using this logic .

The general system {Zk} depends upon two previous values Zk−1 and Zk−2. An ODE

approximation is obtained for the first time for such an adaptive system. We use the

following small trick to achieve this. The ratio

Zk − (1− d2)Zk−1 − d2Zk−2

µ
= (1− d2)

Zk − Zk−1

µ
+ 2d2

Zk − Zk−2

2µ

is shown to converge to (1 + d2)
�
Z (t).

Theorem 2.1 With the above Assumptions A.1–A.3 and with d2 ∈ (−1, 1], for any two

compact sets Q1 ⊂ Q2, for all T > 0 satisfying condition (2.6), for all δ, with

(1− d2)Z0 + d2Z−1 = A,
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P

 sup
1≤k≤bT

µ c
|Zk − Z(kµ, 0, A)| ≥ δ

→ 0

as µ→ 0 uniformly for all A ∈ Q1.

Proof : Please refer to Appendix B.

When d2 = −1 :

With d2 = −1, we will show that the solution of the second order ODE,

d2Z(t)

dt2
= E [H(W,Z(t))] = h(Z(t)), (2.7)

approximates the general system (2.4). With the rest of the notations as above, we have

the following theorem. Do note that in this case the time scale is given by k
√
µ in place

of the usual kµ. Here we show that the ratio,

Zk − 2Zk−1 + Zk−2

µ
=

Zk−Zk−1√
µ

− Zk−1−Zk−2√
µ√

µ

converges to d2Z
dt2

(t).

Theorem 2.2 With the above Assumptions A.1–A.3, d2 = −1, for any two compact sets

Q1 ⊂ Q2, for all T > 0 satisfying condition (2.6), for all δ, with Z0 = Z−1 = A,
�
Z (0) = 0

P

 sup
1≤k≤

j
T√
µ

k |Zk − Z(k
√
µ, 0, A)| ≥ δ

→ 0

as µ→ 0 uniformly for all A ∈ Q1.

Proof : Please refer to Appendix C.
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When d2 is close to −1 :

When d2 is close but not equal to −1, we will consider the following modified general

system,

Zk = (2−√
µη1)Zk−1 − (1−√

µη1)Zk−2 + µH(Zk−1,Wk), (2.8)

where η1 is a fixed constant. By Theorem 2.3, we once again approximate the above

trajectory by the following second order ODE,

d2Z

dt2
= −η1

dZ

dt
+ h(Z(t)), (2.9)

where h(Z) = EW [H(Z,W )] as before. Do note that the time scale is once again k
√
µ.

Theorem 2.3 With the Assumptions A.1–A.3, for the system (2.8) and the ODE (2.9),

for any two compact sets Q1 ⊂ Q2, for all T > 0 satisfying condition (2.6), for all δ, with

Z0 = Z−1 = A,
�
Z (0) = 0

P

 sup
1≤k≤

j
T√
µ

k |Zk − Z(k
√
µ, 0, A)| ≥ δ

→ 0

as µ→ 0 uniformly for all A ∈ Q1.

Proof : Please refer to Appendix D.

Appendix B

Proof of Theorem 2.1: Let tn
4
=nµ. Fix A ∈ Q1 and let Z(t) represent the solution

Z(t, 0, A) of ODE (2.5). We will limit ourselves to nµ ≤ T . We prove the above theorem

in the following 3 steps.

Step 1: Approximating the solution Z(tk+1) in terms of Z(tk) and Z(tk−1).

By assumption A.2, there exist constants L1(Q2), L2(Q2) such that,

|h(Z)− h(Z1)| ≤ L1(Q2)|Z − Z1| for all Z,Z1 ∈ Q2,

|h(Z)|2 ≤ L2(Q2) for all Z ∈ Q2.
(2.10)
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For any k ≥ 1, Z(tk) can be expanded with respect to Z(tk−1) using Taylor’s series

expansion as,

Z(tk) = Z(tk−1) + µ
h(Z(tk))

1 + d2

− ᾱk, where |ᾱk| ≤ L̄µ2

for some constant L̄. Therefore, by (2.10),

|Z(tk)− Z(tk−1)| ≤ µL̃,

for some other constant L̃. For any other k > 1, Z(tk+1) can also be expanded with

respect to both Z(tk), Z(tk−1) as,

Z(tk+1) = (1− d2)Z(tk+1) + d2Z(tk+1)

= (1− d2)

[
Z(tk) + µ

h(Z(tk))

1 + d2

+ α
′

k

]
+d2

[
Z(tk−1) + 2µ

h(Z(tk−1))

1 + d2

+ α
′′

k

]
.

Therefore, for all t1 < tk < T , the solution Z(tk) satisfies,

Z(tk+1) = (1− d2)Z(tk) + d2Z(tk−1) + µh(Z(tk))− αk, (2.11)

where

|αk| =

∣∣∣∣(1− d2)α
′

k + d2α
′′

k +
2d2µ

1 + d2

[h(Z(tk−1))− h(Z(tk))]

∣∣∣∣
≤ 1

1 + d2

[
(1− d2)L2(Q2) + d2L2(Q2) + 2d2L1(Q2)L̃

]
µ2 ≤ Lµ2,

and constant L is chosen such that,

L ≥ 1

1 + d2

[L2(Q2) + 2d2L1(Q2)L̃].



CHAPTER 2. CHANNEL MODELS FOR A WIRELESS CHANNEL 32

Therefore |ᾱk| ≤ Lµ2 for all k.

Step 2: Approximating the trajectory Zk+1 in terms of Zk and Zk−1.

Define error process, εk for any k ≥ 0, by

Zk+1 = (1− d2)Zk + d2Zk−1 + µh(Zk) + εk, (2.12)

where,

εk = µ[H(Zk,Wk)− h(Zk)].

Define τ :=
{

inf1≤n≤bT
µ c : Zn ∈ Qc

2

}
. In Step 3, we will need to bound,

1{k < τ}
k−1∑
i=2

εi

(
1− [−d2]

i+1
)
.

Defining,

Kk
4
=

k−1∑
i=2

1{i < τ}εi
(
1− [−d2]

i+1
)
,

one gets,

1{k < τ}

∣∣∣∣∣
k−1∑
i=2

εi

(
1− [−d2]

i+1
)∣∣∣∣∣ ≤ |Kk|,

where {Kk} is a martingale wrt the sigma algebra Fk
4
=σ (Wi; i < k) as shown below.

Since Zk−1 is measurable Fk−1 and Wk−1 is independent of Fk−1, 1{k − 1 < τ} is

measurable Fk−1 and hence E[εk−1|Fk−1] = 0. Therefore,

E [Kk|Fk−1] =
k−2∑
i=2

1{i < τ}εi
(
1− [−d2]

i+1
)

= Kk−1.
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Thus {Kk} is a martingale. Therefore, by Doob’s martingale inequality,

E

{
sup
k≤m

|Kk|2
}
≤ 4 sup

k≤m
E|Km|2.

Thus we have,

E

sup
k≤T

µ

1{k < τ}

∣∣∣∣∣
k−1∑
i=2

εi

(
1− [−d2]

i+1
)∣∣∣∣∣


2
≤ 4 sup

k≤T
µ

E|Kk|2

a
= 4 sup

k≤T
µ

k−1∑
i=2

E
∣∣∣ 1{i < τ}εi

(
1− [−d2]

i+1
)∣∣∣2

≤ 8

bT
µ c−1∑
i=2

E| 1{i < τ}εi|2

≤ 8µT [C(Q2) + L2(Q2)],

where equality a follows because for any j < k,

E
[
1{j < τ} 1{k < τ}εTj εk

]
= E

[
E
[
1{j < τ} 1{k < τ}εTj εk|Fk

]]
= E

[
1{j < τ} 1{k < τ}εTj E [εk|Fk]

]
= 0.

Step 3: Error between the solution Z(tk) and the trajectory Zk.

The difference between the ODE solution Z(tk) and the actual system value Zk, for k = 1,

is given by,

Z1 − Z(t1) = (1− d2)Z0 + d2Z−1 + µh(Z0) + ε0 −
[
Z(0) + µ

h(Z(0))

1 + d2

− α0

]
= µh(Z0)− µ

h(Z(0))

1 + d2

+ ε0 + α0,
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because of the initial conditions given in the hypothesis of the theorem. By Assumption

A.2 and the bound on α0, we get,

|Z1 − Z(t1)| ≤ µM(1 + |H(Z0,W0)|). (2.13)

For any k > 1, the above difference is obtained by subtracting equation (2.11) from (2.12),

Zk − Z(tk) = (1− d2) (Zk−1 − Z(tk−1)) + d2 (Zk−2 − Z(tk−2)) + bk−1

= Zk−1 − Z(tk−1) + d2 (Zk−2 − Z(tk−2))

−d2 (Zk−1 − Z(tk−1)) + bk−1, (2.14)

where

bk
4
=µ [h(Zk)− h(Z(tk)] + εk + αk for all k ≥ 0, (2.15)

is a composite term consisting of all the errors. By replacing (Zk−1 − Z(tk−1)) in the

equation (2.14) with the same equation for k− 1 and continuing till k = 3, one gets after

some cancellations,

Zk − Z(tk) = d2(Z1 − Z(t1)) + (Z2 − Z(t2)) + (−d2) (Zk−1 − Z(tk−1)) +
k−1∑
i=2

bi.

Further, iteratively, from (Zk−1 − Z(tk−1)) one gets (continuing till k = 3),

Zk − Z(tk) = d2

k−3∑
j=0

[−d2]
j(Z1 − Z(t1)) +

k−2∑
j=0

[−d2]
j(Z2 − Z(t2))

+
k−3∑
i=0

bk−1−i

i∑
j=0

[−d2]
j

= d2
1− [−d2]

k−2

1 + d2

(Z1 − Z(t1)) +
1− [−d2]

k−1

1 + d2

(Z2 − Z(t2))

+
k−3∑
i=0

bk−1−i
1− [−d2]

i+1

1 + d2

.
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With d2 ∈ (−1, 1], |1− [−d2]
i| ≤ 2 for all i and hence we get,

|Zk − Z(tk)| ≤

[
2|Z1 − Z(t1)|+ 2|Z2 − Z(t2)|+

∣∣∣∑k−3
i=0 bk−1−i

(
1− [−d2]

i+1
)∣∣∣]

1 + d2

and therefore on the set {1 ≤ k < τ}, for any 2 ≤ k ≤ T
µ

from (2.15), using the bound

(2.10) and the bound on αk,

|Zk − Z(tk)| ≤ 2

1 + d2

k∑
i=2

ai|Zi−1 − Z(ti−1)|+ U +
2

1 + d2

LµT (2.16)

with

U 4
=

1

1 + d2

 sup
m≤bT

µ c
1{m < τ}

∣∣∣∣∣
m−1∑
i=2

εi(1− [−d2]
i+1)

∣∣∣∣∣
 ,

where a1 = 1, a2 = 1 + L1(Q2)µ, ai = L1(Q2)µ for all i ≥ 3.

Using the bound (2.13), from Lemma 2.1, on the set {1 ≤ k < τ}, for any 1 ≤ k ≤ T
µ

|Zk − Z(tk)| ≤
[
U +

2

1 + d2

LµT + µM(1 + |H(Z0,W0)|)
]
e

2(TL1(Q2)+a1+a2)
1+d2 .

Therefore using (
∑n

i=1 ai)
2 ≤ n

∑n
i=1 a

2
i , one gets,

sup
1≤k<τ

|Zk − Z(tk)|2 ≤
[
3U2 +

12L2µ2T 2

(1 + d2)2
+ 3µ2M2(1 + |H(Z0,W0)|)2

]
e

4(TL1(Q2)+a1+a2)
1+d2 .

Thus using Step 2 and assumption A.3,

E

[
sup

1≤k<τ
|Zk − Z(tk)|2

]
≤

[
24[L2(Q2) + C(Q2)]µT + 12L2µ2T 2

(1 + d2)2
+ 3µ2M2

1

]
e

4(TL1(Q2)+a1+a2)
1+d2 .

For any δ < δ0 (δ0 defined in (2.6)), the set {sup1≤k≤bT
µ c |Zk − Z(tk)| ≥ δ} is same
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as the set {sup1≤k<τ |Zk − Z(tk)| ≥ δ} because, when k = τ <
⌊

T
µ

⌋
, Zk ∈ Qc

2 and hence

|Zk − Z(tk)| ≥ δ0 > δ. The theorem follows by Chebyshev’s inequality. �

Lemma 2.1 If for some positive constants r1, r2, r3, ν1 ≤ r3 and νr ≤ r1
∑r

i=2 µiνi−1 + r2

for r = 2, 3, · · ·n, then with µ1
4
=0, νr ≤ (r2 + r3)e

(r1
Pr

i=1 µi) for all 1 ≤ r ≤ n.

Proof : Define ν0 = 0, µ1 = 0. The above statement becomes, ν0 = 0 and νr ≤

r1
∑r

i=1 µiνi−1 + (r2 + r3), for r = 1, · · ·n and the result follows by Lemma 8 of page 231

in [4]. �

Appendix C

Proof of Theorem 2.2: Let tn
4
=n

√
µ. Fix A ∈ Q1 and let Z(t) represent the solution

of the ODE (2.7) with Z(0) = A and
�
Z (0) = 0. We will limit ourselves to n

√
µ ≤ T . We

prove the above theorem in the following 3 steps as in Theorem 2.1.

Step 1: Approximating the solution Z(tk+1) in terms of Z(tk) and Z(tk−1).

By assumption A.2, there exist constants L1(Q2), L2(Q2) such that,

|h(Z)− h(Z1)| ≤ L1(Q2)|Z − Z1|, for all Z,Z1 ∈ Q2,

|h(Z)|2 ≤ L2(Q2), for all Z ∈ Q2.
(2.17)

For any k ≥ 1, the first derivative
�
Z (tk) can be expanded using Taylor’s series

expansion as,

�
Z (tk) =

�
Z (tk−1) +

√
µh(Z(tk−1))− ᾱk, where |ᾱk| ≤ L̄µ (2.18)

for some constant L̄. Therefore using the upper bound (2.17) and the initial condition
�
Z (0) = 0,

|
�
Z (t1)| ≤

√
µL̃
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for some other constant L̃. For any k > 1, Z(tk+1) can be expanded with respect to both

Z(tk), Z(tk−1) as,

Z(tk+1) = 2Z(tk+1)− Z(tk+1)

= 2

[
Z(tk) +

√
µ

�
Z (tk) +

µ

2
h(Z(tk)) + α

′

k

]
−
[
Z(tk−1) + 2

√
µ

�
Z (tk−1) + 4

µ

2
h(Z(tk−1)) + α

′′

k

]
= 2Z(tk)− Z(tk−1) + 2

√
µ

[
�
Z (tk)−

�
Z (tk−1)−

√
µh(Z(tk−1))

]
+µh(Z(tk)) + α

′′′

k .

Using the equation (2.18), the solution Z(tk), for all t1 < tk < T satisfies,

Z(tk+1) = 2Z(tk)− Z(tk−1) + µh(Z(tk))− αk, (2.19)

where |αk| ≤ L
√
µ3, for some constant L.

Step 2: Approximating the trajectory Zk+1 in terms of Zk and Zk−1.

Here the error process εk for any k ≥ 0 is defined as in Step 2 of Theorem 2.1. Define

τ :=

{
inf

1≤n≤
j

T√
µ

k : Zn ∈ Qc
2

}
. Following similar steps as in the Step 2 of Theorem 2.1,

we can show that,

E

 sup
m≤

j
T√
µ

k 1{m < τ}

∣∣∣∣∣
m−2∑
i=0

(i+ 1)εm−1−i

∣∣∣∣∣
2

≤ 8
√
µT 3C.

Step 3: Error between the solution Z(tk) and the trajectory Zk.

The difference between the ODE solution Z(tk) and Zk, for k = 1, is given by,

Z1 − Z(t1) = 2Z0 − Z−1 + µh(Z0) + ε0

−
[
Z(0) +

√
µ

�
Z (0) +

µ

2
h(Z(0))− α0

]
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= µh(Z0)−
µ

2
h(Z(0)) + ε0 + α0,

because of the initial conditions given in the hypothesis of the theorem. By Assumption

A.2, we get,

|Z1 − Z(t1)| ≤ µM(1 + |H(Z0,W0)|). (2.20)

For any k > 1, the above difference is obtained by subtracting equation (2.19) from (2.12),

Zk − Z(tk) = 2 (Zk−1 − Z(tk−1))− (Zk−2 − Z(tk−2)) + bk−1

= Zk−1 − Z(tk−1)− (Zk−2 − Z(tk−2))

+ (Zk−1 − Z(tk−1)) + bk−1,

where

bk
4
=µ [h(Zk)− h(Z(tk)] + εk + αk for all k ≥ 0, (2.21)

is a composite term consisting of all errors. Continuing as in Step 3 of Theorem 2.1 till

k = 2 and since Z0 = Z(0), we get,

Zk − Z(tk) = (Z1 − Z(t1)) + (Zk−1 − Z(tk−1)) +
k−1∑
i=1

bi.

Continuing further we get,

Zk − Z(tk) = k(Z1 − Z(t1)) +
k−2∑
i=0

(i+ 1)bk−1−i.

Using the upper bound (2.20),

|Zk − Z(tk)| ≤ T |Z1 − Z(t1)|√
µ

+

∣∣∣∣∣
k−2∑
i=0

(i+ 1)bk−1−i

∣∣∣∣∣
≤ TM(1 + |H(Z0,W0)|)

√
µ+

∣∣∣∣∣
k−2∑
i=0

(i+ 1)bk−1−i

∣∣∣∣∣
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and therefore on the set {1 ≤ k < τ}, for any 1 ≤ k ≤ T√
µ

from (2.21), using the bound

(2.17) and the bound on αk,

|Zk − Z(tk)| ≤ L1(Q2)
√
µT

k−1∑
i=1

|Zi − Z(ti)|+ U

+(LT 2 + TM(1 + |H(Z0,W0)|))
√
µ, (2.22)

with U 4
=

 sup
m≤

j
T√
µ

k 1{m < τ}

∣∣∣∣∣
m−2∑
i=0

(i+ 1)εm−1−i

∣∣∣∣∣
 .

From Lemma 8 in page 231 of [4], on the set {1 ≤ k < τ}, for any 1 ≤ k ≤ T√
µ

|Zk − Z(tk)| ≤
[
U + (LT 2 +MT (1 + |H(Z0,W0)|))

√
µ
]
e(T 2L1(Q2)).

Therefore using (
∑n

i=1 ai)
2 ≤ n

∑n
i=1 a

2
i , one gets,

sup
1≤k<τ

|Zk − Z(tk)|2 ≤
[
3U2 + 3L2T 4µ+ 3M2T 2(1 + |H(Z0,W0)|)2µ

]
e2T 2L1(Q2).

Thus using the Step 2 and assumption A.3,

E

[
sup

1≤k<τ
|Zk − Z(tk)|2

]
≤

[
24CT 3√µ+ 3L2T 4µ+ 3M2

1T
2µ
]
e2T 2L1(Q2).

The theorem follows by Chebyshev’s inequality. �

Appendix D

Proof of Theorem 2.3 : Let tn
4
=n

√
µ. Fix A ∈ Q1 and let Z(t) represent the solution

of the ODE (2.7) with Z(0) = A and
�
Z (0) = 0. We will limit ourselves to n

√
µ ≤ T . We

prove the above theorem in the following 3 steps just like in Theorems 2.1 and 2.2.
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Step 1: Approximating the solution Z(tk+1) in terms of Z(tk) and Z(tk−1).

By assumption A.2, there exist constants L1(Q2), L2(Q2) such that,

|h(Z)− h(Z1)| ≤ L1(Q2)|Z − Z1|, for all Z,Z1 ∈ Q2,

|h(Z)|2 ≤ L2(Q2), for all Z ∈ Q2.
(2.23)

For any k ≥ 1, the first derivative
�
Z (tk) can be expanded using Taylor’s series

expansion as,

�
Z (tk) = (1−√

µη1)
�
Z (tk−1) +

√
µh(Z(tk−1))− ᾱk, where |ᾱk| ≤ L̄µ (2.24)

for some constant L̄. Therefore using the upper bound (2.23) and the initial condition
�
Z (0) = 0,

|
�
Z (t1)| ≤

√
µL̃

for some other constant L̃. For any k > 1, Z(tk+1) can be expanded with respect to both

Z(tk), Z(tk−1) as,

Z(tk+1) = (2−√
µη1)Z(tk+1)− (1−√

µη1)Z(tk+1)

= (2−√
µη1)

[
Z(tk) +

√
µ(1−

√
µη1

2
)

�
Z (tk) +

µ

2
h(Z(tk)) + α

′

k

]
−(1−√

µη1)

[
Z(tk−1) + 2

√
µ(1−√

µη1)
�
Z (tk−1) + 4

µ

2
h(Z(tk−1)) + α

′′

k

]
= (2−√

µη1)Z(tk)− (1−√
µη1)Z(tk−1) + µh(Z(tk))

+2
√
µ(1−√

µη1)

[
�
Z (tk)− (1−√

µη1)
�
Z (tk−1)−

√
µh(Z(tk−1))

]
+ α

′′′

k ,

where

α
′′′

k = (2−√
µη1)α

′

k − (1−√
µη1)α

′′

k+
�
Z (tk)

(√
µ(
√
µη1)

2

2

)
−
µ
√
µη1

2
h(Z(tk)).
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Using the equation (2.24), the solution Z(tk), for all t1 < tk < T, satisfies,

Z(tk+1) = (2−√
µη1)Z(tk)− (1−√

µη1)Z(tk−1) + µh(Z(tk))− αk, (2.25)

where |αk| ≤ L
√
µ3, for some constant L.

Step 2: Approximating the trajectory Zk+1 in terms of Zk and Zk−1.

Here the error process εk for any k ≥ 0 is defined as in Step 2 of Theorem 2.1. Define

τ :=

{
inf

1≤n≤
j

T√
µ

k : Zn ∈ Qc
2

}
. Following similar steps as in the Step 2 of Theorem 2.1,

we can show that,

E

 sup
m≤

j
T√
µ

k 1{m < τ}

∣∣∣∣∣
m−2∑
i=0

i∑
l=0

(1−√
µη1)

lεm−1−i

∣∣∣∣∣
2

≤ 8
√
µ T 3C.

Step 3: Error between the solution Z(tk) and the trajectory Zk.

The difference between the ODE solution Z(tk) and Zk, for k = 1, is given by,

Z1 − Z(t1) = (2−√
µη1)Z0 − (1−√

µη1)Z−1 + µh(Z0) + ε0

−
[
Z(0) +

√
µ

�
Z (0) +

µ

2
(h(Z(0))− η1

�
Z (0))− α0

]
= µh(Z0)−

µ

2
h(Z(0)) + ε0 + α0,

because of the initial conditions given in the hypothesis of the theorem. By Assumption

A.2, we get,

|Z1 − Z(t1)| ≤ µM(1 + |H(Z0,W0)|). (2.26)

For any k > 1, the above difference is obtained by subtracting equation (2.25) from (2.12),

Zk − Z(tk) = (2−√
µη1) (Zk−1 − Z(tk−1))− (1−√

µη1) (Zk−2 − Z(tk−2)) + bk−1
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= (1−√
µη1) [Zk−1 − Z(tk−1)− (Zk−2 − Z(tk−2))]

+ (Zk−1 − Z(tk−1)) + bk−1,

where

bk
4
=µ [h(Zk)− h(Z(tk)] + εk + αk for all k ≥ 0, (2.27)

is a composite term consisting of all errors. Continuing as in Step 3 of Theorem 2.1 till

k = 2 and since Z0 = Z(0), we get,

Zk − Z(tk) = (1−√
µη1)

k−1(Z1 − Z(t1)) + (Zk−1 − Z(tk−1)) +
k−1∑
i=1

bi(1−
√
µη1)

k−1−i.

Continuing further we get,

Zk − Z(tk) =
k−1∑
i=0

(1−√
µη1)

i(Z1 − Z(t1)) +
k−2∑
l=0

l∑
i=0

(1−√
µη1)

ibk−1−l.

Using the upper bound (2.26),

|Zk − Z(tk)| ≤ T |Z1 − Z(t1)|√
µ

+

∣∣∣∣∣
k−2∑
l=0

l∑
i=0

(1−√
µη1)

ibk−1−l

∣∣∣∣∣
≤ TM(1 + |H(Z0,W0)|)

√
µ+

∣∣∣∣∣
k−2∑
l=0

l∑
i=0

(1−√
µη1)

ibk−1−l

∣∣∣∣∣ .
Rest of the steps follow as in Step 3 of Theorem 2.2 using the current theorem’s Step

2. �



Chapter 3

Blind/Semi-blind versus Training

Equalizers

Semiblind/blind equalizers are believed to work unsatisfactorily in fading channels com-

pared to training based methods due to slow convergence and or high computational

complexity ([14], [15], [21]). In this chapter we revisit this issue for MIMO fading chan-

nels. We compare the blind, semi-blind and training based equalizers when the blind

algorithm is CMA. We show that in Ricean (with Line of sight, LOS) environment semib-

lind/blind algorithms outperform training equalizers. We also find the optimum training

length in training and semiblind methods. Furthermore, we show that by adapting the

step size of the semiblind algorithm based on training based channel estimate, one can

outperform the training method even for Rayleigh channels.

This chapter is organized as follows. Section 3.1 describes the problems involved and

our approach to the comparison. Section 3.2 describes our model and our assumptions.

Section 3.3 considers the training based channel estimation/equalization and Section 3.4

studies the blind algorithm (CMA). Section 3.5 combines the two approaches to obtain a

semiblind algorithm. Section 3.6 compares the three algorithms using few examples and

Section 3.7 concludes the chapter. The proofs of the lemmas are available in Appendices

A and B.

43



CHAPTER 3. BLIND/SEMI-BLIND VERSUS TRAINING EQUALIZERS 44

3.1 The issues and our approach

While comparing training based methods with blind algorithms, one encounters the prob-

lem of comparing the loss in BW (Bandwidth) in training based methods (due to training

symbols) with the gain in BER (due to better channel estimation/equalization accuracy)

as compared to the blind algorithms. We overcome this problem by comparing these

methods via the channel capacity they provide. Towards this goal, we combine the chan-

nel, the equalizer and the decoder to form a composite channel (Figure 3.1). The input

to this channel will be symbols from a finite alphabet and the output of this channel will

be the decoded symbols. Hence this is a discrete channel. The capacity of this composite

channel will be a good measure for comparison. In this chapter we use a hard decoder

after the equalizer. But the analysis will go through even for a soft decoder, as long as

the output of the decoder comes from a discrete alphabet. We use hard decoder for ease

of notation.

Consider a frame involving N channel uses with Nt training symbols. In a training

based method, the channel is estimated from these symbols, an equalizer is designed

using the channel estimate and then the information symbols are decoded (hard/soft

decoder is used after the equalizer) using the equalizer. Using the probability of error

provided by this method one can compute the capacity C(Nt) of the composite channel

per frame. Optimum training sequence length, N∗
t , would be the one that corresponds to

the maximum value of C(Nt).

In a blind algorithm (say CMA) Nt = 0, but using the general statistics of the in-

put/output symbols of the channel, one estimates the channel (or may directly obtain an

equalizer). After all the N symbols of a frame arrive (for delay constrained applications

one can use only a fraction of the N symbols for blind estimation), we obtain an equal-

izer. We use this equalizer to estimate the transmitted information symbols of the frame.

The resulting probability of error can be used to obtain the capacity of the composite

channel CCMA. Comparing C(N∗
t ) with CCMA provides a reasonable comparison. One

can compare these capacities with the capacity obtained by a semi-blind method, which

is a combination of the two methods. In this thesis, training based equalizer is improved
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upon (after the training sequence) using the blind CMA to obtain a semi-blind equalizer.

Obtaining channel capacity of the composite channel, for training based methods in

our model, is not difficult. But for the blind and semiblind methods, one needs to know

the equalizer value at the end of the frame (or till the point the algorithm is updated ).

At that point the equalizer will often be away from the equilibrium point. Thus, we need

the value of the equalizer at a specific time under transience. It depends upon the initial

conditions, the value of the fading channel and the receiver noise and input realizations.

Thus, it is not practically feasible to obtain the capacity of such a composite channel. We

circumvent this problem by using the result in [47], where, given the initial conditions and

a realization of the fading channel, the equalizer value at any time (even under transience)

can be approximated by the solution of an ODE. Also, this value is independent of the

receiver noise and input realizations.

Computation of the exact capacity of the composite channels for training based meth-

ods is intensive. Thus, we will approximate it by a lower bound obtained by limiting the

input to a kth order Markov chain. This bound is tight when the equalizer compensates

the channel reasonably well or if the channel has small ISI. For high SNR regions, we ob-

tain a much simpler lower bound (obtained using uniform input distribution) on capacity.

We use the same lower bounds for semiblind as well as blind algorithms.

Notations

The following notation is used throughout the chapter. The notations in this chapter are

quite different from that in the remaining chapters as we are dealing directly with the

complex signals (in the other chapters the results are obtained for real signals and then

are extended for complex signals).

All bold capital letters represent complex matrices, capital letters represent real ma-

trices and small letters represent the complex scalars. Bold small letters with bar on top

represent complex column vectors, while the same bold small letters without bar represent

their real counter parts given by u
4
=Real(ū):=[ ū1,r ū2,r · · · ūn,r ū1,i · · · ūn,i ]T

(for an n dimensional complex vector ū). Here ūk,r+iūk,i is the kth element of ū. AH ,



CHAPTER 3. BLIND/SEMI-BLIND VERSUS TRAINING EQUALIZERS 46

AT , AHT represent Hermitian, transpose and conjugate of matrix A respectively. Special

symbol θ is used for an equalizer and has the following special notation. A complex vector

is represented by θ̄, while θ = Real(θ̄) is its real counterpart. The complex matrix in this

case is represented by θ̄, while a real matrix is represented by θ.

Two more real vectors corresponding to a complex vector are defined as, ũ=Real(ūHT )

and ǔ = Real(iūHT ). Note that θT ũ, θT ǔ are the real and imaginary parts of the

complex inner product θ̄H ȳ respectively. For any complex matrix Z, vect(Z) represents

Z in vector form by concatenating elements of all row vectors one after the other. We

will represent vect(Z) by z̄ (and z represents real counterpart as explained above). For a

family of matrices {Zl}L−1
l=0 , vect({Zl}L−1

l=0 ) denotes vect([Z0 Z1 · · ·ZL−1]). E(.) represents

expectation.

For any vector (matrix) ū (Z), ˆ̄u (Ẑ) represents its estimate, obtained either by MMSE

criterion or minimum distance criterion. Complex sequence {s̄l : n1≤l≤n2} is represented

by s̄n2
n1

. Same notation is used for a real sequence. Θl represents l length convolution

matrix of dimension lm×(l+M−1)n, formed from m×n dimensional complex matrices

{θ̄p}M−1
p=0 as given by,

Θl =


θ̄0 θ̄1 · · · θ̄M−1 0 · · · 0

0 θ̄0 · · · θ̄M−2 θ̄M−1 · · · 0

. . .

0 0 . θ̄0 θ̄1 · · · θ̄M−1

 .

Similarly, let Zl represent the convolutional matrix corresponding to the channel matrices

{Zl}L−1
l=0 . L and M denote channel and equalizer lengths respectively and ML

4
=M+L−1.

Nt is the number of training sequences. Remaining notations are introduced as and when

required.
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3.2 The Model and Our Assumptions

Consider a wireless channel with m transmit antennas and n receive antennas with m≤n

(see Fig. 3.1). The time axis is divided into frames; each frame consisting of N channel

uses. The transmitted symbols are chosen from a finite alphabet, S = {∫1, ∫2, · · · , ∫nS
}.

At time k, vector s̄(k)εSm is transmitted from the m transmit antennas. We use S(Nt)

to represent the set Sm(N−Nt). Note that information sequence s̄N
Nt+1∈Sm(N−Nt). We

represent the elements of S(Nt) by {∫̄i; 1≤i≤(nS)m(N−Nt)} i.e., each ∫̄i is a m(N−Nt) length

complex vector formed from elements of S. The channel {Zl}L−1
l=0 is assumed constant

during a frame (quasi-static channel). We assume it to vary independently from frame

to frame. We further assume that the training length Nt≥L. For the blind/semiblind

algorithm if required, we do not use the information symbols present in the first ML

symbols of the frame (Note that all the symbols in the frame are information symbols

for blind algorithms, while all the symbols after the first Nt symbols are information

symbols in the semiblind method). This assumption is required for designing an equalizer

directly as in the CMA. This will ensure that equalizer estimation is independent of

previous frame channel realization. Thus, the channel estimate and/or equalizer, for a

frame depends upon the received symbols during that frame only. Therefore, we will

consider a single frame in this chapter.

+

_ _

_

Composite Channel

s(k) u(k)

n(k)

Channel
MIMO x(k)

_

DecoderEqualizer

_̂
s(k)

Figure 3.1: Composite channel used for capacity comparison

The vectors received at the n receive antennas in any frame are,

ū(k) =
L−1∑
l=0

Zls̄(k−l)+n̄(k), for all k = 1, · · · , N
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where n̄(k) is an IID sequence of complex Gaussian vectors with mean 0 and co-variance

σ2
nI (denoted by CN (0, σ2

nI)) and z̄ ∼ CN (µz̄, Cz) (Note that z̄ = vect({Zl}L−1
l=0 )). This

is a Rayleigh/Ricean channel. At the receiver, one wants to estimate s̄(k), for all k > Nt.

One common way is to use an equalizer at the receiver to nullify the effect of {Zl}L−1
l=0 and

then use symbol by symbol detection to detect all the transmitted symbols in the frame.

We assume hard decoding here, although soft decoding with discretization can be handled

in a similar way.

We assume that the channel statistics (µz̄, Cz) is available both at the transmitter and

the receiver, but, the receiver and the transmitter do not know the actual channel state

{Zl}L−1
l=0 . The receiver tries to estimate {Zl}L−1

l=0 and then obtain an equalizer as the

channel estimate’s inverse filter, or, directly obtain an equalizer to estimate/detect the

information symbols transmitted. For this, the most common method used in wireless

channels is to send a known training sequence in the frame. This is used by the receiver

to estimate {Zl}L−1
l=0 (say via Minimum Mean Square Error (MMSE) estimator) and then

obtain an equalizer. In the rest of the frame, information symbols are transmitted and

are decoded at the receiver using the equalizer. This results in a training based equalizer.

Alternatively, one can estimate a blind equalizer, using only the statistics of the received

and transmitted signal. One can also use a combination of the blind and training based

methods to obtain a semi-blind equalizer.

The ’composite’ channel, used for comparison of various equalizers, is formed by comb-

ing the channel, equalizer (either training, blind or semi-blind) and the decoder (Fig. 3.1).

Its input is the transmitted information sequence corresponding to one complete frame

s̄N
Nt+1, while the corresponding decisions ˆ̄s

N

Nt+1form the output. Thus the composite chan-

nel is a finite input-output alphabet channel. Further it forms a time invariant channel.

This is because the channel state is not known to the transmitter and hence the transmit-

ter would experience average behavior in every frame. Using capacity of this composite

channel, we obtain the required systematic comparison of the three methods.
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3.3 Training Based Channel Equalizer

The MMSE estimator (Wiener filter) of the channel is ([27]) obtained by using mNt train-

ing symbols. A MMSE equalizer is then designed using the channel estimate. The symbols

obtained from the equalizer are decoded using minimum distance criterion (equivalent to

ML decoding in Gaussian channels) to output hard decisions.

Let ūTS
4
=ūNt

L = ATS z̄+n̄Nt
L . This represents received samples corresponding to the

last m(Nt−L+1) training symbols. Here ATS is an n(Nt−L+1)×Lnm matrix formed

appropriately using training symbols s̄Nt
1 . Note that only the last Nt−L+1 samples of the

output corresponding to training symbols can be used for channel estimation. The MMSE

channel estimator ([27]) is given by ˆ̄z = µz̄+CzA
H
TS(ATSCzA

H
TS+σ2

nI)
−1(ȳTS−ATSµz̄),

and (z̄, ˆ̄z) are jointly Gaussian with mean (µz̄, µz̄). It is interesting to note that, for

uncorrelated channels (i.e. when Cz is diagonal), the channel co-efficients corresponding

to each one of the receive antennae signals can be estimated independently to reduce

the computational complexity and the same applies for real and imaginary parts of the

channel.

The corresponding M length left MMSE equalizer (of dimension m×Mn) equals,

θ̄(ˆ̄z) =

[(
ẐM ẐH

M+σ2
nI
)−1

ẐMIMLn,m

]H

, where IMLn,m is the matrix formed by first

m columns of the identity matrix of dimension MLn×MLn, and ẐM represents the

Mn×MLm dimensional convolution matrix formed using ˆ̄z. Using z̄ and θ̄(ˆ̄z), define

convolution matrices, ZN−Nt+M−1 and ΘN−Nt , each of dimensions

(N−Nt+M−1)n×(N−Nt+ML−1)m, and (N−Nt)m×(N−Nt+M−1)n respectively. The

equalizer output corresponding to transmitted input vector s̄N
Nt+1will be,

x̄N
Nt+1 = ΘN−Nt

(
ZN−Nt+M−1s̄

N
Nt−ML+2+n̄N

Nt−M+2

)
. (3.1)

It is clear that the vector s̄Nt
Nt−ML+2, corresponding to the tail of the training sequence is

common to all the frames and is known. The output, ˆ̄s
N

Nt+1, of the decoder is obtained from

symbol by symbol decoding of x̄N
Nt+1. We compute the overall transition probabilities,

{P (ˆ̄s
N

Nt+1/s̄
N
Nt+1)}, of the composite channel by first computing transition probabilities,
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{P (ˆ̄s
N

Nt+1/s̄
N
Nt+1, z̄, ˆ̄z)}, given z̄, ˆ̄z and then averaging over all values of z̄, ˆ̄z. (z̄, ˆ̄z are

Gaussian with known joint distribution). By defining Bi as,

Bi
4
={xN

Nt+1∈R2m(N−Nt) : ‖∫̄l−x̄N
Nt+1‖2≥‖∫̄i−x̄N

Nt+1‖2 for all l 6=i}

the transition probabilities given (z̄, ˆ̄z), from (3.1), are

P (ˆ̄s
N

Nt+1 = ∫̄i/s̄N
Nt+1 = ∫̄j; z̄, ˆ̄z) = Prob(xN

Nt+1∈Bi/s̄
N
Nt+1 = ∫̄j ;z̄, ˆ̄z).

It is easy to see that the overall transition probabilities of the composite channel,

{P (ˆ̄s
N

Nt+1/s̄
N
Nt+1)}, can be computed at its receiver and transmitter once the statistics of

the original channel is known.

Hence for a given Nt, the composite channel becomes a time invariant channel with

channel state information known at the transmitter and receiver and hence its capacity

is given by ([12]),

C(Nt) = sup
P (s̄N

Nt+1)∈P(S(Nt))

I(ˆ̄s
N

Nt+1, s̄
N
Nt+1).

Here I(ˆ̄s
N

Nt+1, s̄
N
Nt+1) represents the mutual information with input pmf (probability mass

function) P (s̄N
Nt+1) and transition probabilities {P (ˆ̄s

N

Nt+1/s̄
N
Nt+1)}. P(S(Nt)) is the set of

probability mass functions on S(Nt) and is compact (Note s̄N
Nt+1∈S(Nt)). Throughout,

we consider P (s̄N
Nt+1) as an element of an Euclidean space as the set S(Nt) has finite

elements. Since P (ˆ̄s
N

Nt+1/s̄
N
Nt+1) is independent of the input pmf P (s̄N

Nt+1), the mutual

information I(ˆ̄s
N

Nt+1, s̄
N
Nt+1) is a strictly concave function of P (s̄N

Nt+1) ([12], p.31) and

hence optimization over the convex set results in a global maximum. Capacity for training

equalizer equals C(N∗
t ), where N∗

t is the optimum training length.

3.3.1 Computation of C(Nt)

As in GSM, the frame length N can be as large as 140 or even more. In such cases direct

computation of C(Nt) may be difficult. Hence we calculate a lower bound on the capacity
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by restricting the input vector s̄N
Nt+1 to be a Markov chain. Given a specific Markov chain,

I(ˆ̄s
N

Nt+1; s̄
N
Nt+1), is computed recursively (note that output ˆ̄s(i) is Hidden Markov) similar

to the way in [48]. We show below that this provides a tight lower bound.

Let βz:=[ µT
z̄ vect(Cz)

T ]T . This parametric vector specifies the distribution of the

complex Gaussian random variable z̄ completely. Let g(βz) represent the conditional

probabilities of the composite channel for a given βz and let f(P (.|.)) be a capacity

achieving input distribution for given conditional probabilities P (.|.).

Lemma 3.1 g and f are continuous functions. Hence f og is continuous in βz.

Proof : Please refer to the Appendix B.

For channels with zero ISI (say with β0
z as parametric vector), it is easy to see that

g(β0
z ) is memoryless (i.e. P (ˆ̄s

N

Nt+1/s̄
N
Nt+1) = ΠiP (ˆ̄s(i)/s̄(i))) and f og(β0

z ) will be an IID

sequence of m length vectors. By the above lemma, for channels with small ISI or for

systems with equalizers compensating the ISI to a good extent, a tight lower bound on the

capacity can be achieved by restricting the input distributions to l-step Markov chains.

Further for noiseless systems with ISI and ICI eliminated completely (with sufficient Nt),

g(β0
z ) will be an identity matrix and f og(β0

z ) will be uniform IID, i.e. an IID sequence

with each m length vector uniformly distributed. Thus under high SNR (Signal to Noise

ratio) conditions, mutual information with IID and uniform distribution will itself form a

tight lower bound. We compute this lower bound (in place of capacity) in Section 3.6. In

fact, while computing capacity for examples in Section 3.6, we noticed that the composite

channel transition matrix is nearly symmetric and that this bound is very tight even for

low SNR conditions and also for blind and semiblind algorithms.

Computing I(ˆ̄s
N

Nt+1; s̄
N
Nt+1) with Markov chain input

Given a specific Markov chain, I(ˆ̄s
N

Nt+1; s̄
N
Nt+1), is computed recursively (note that output

ˆ̄s(i) is Hidden Markov), as explained below. This algorithm is similar to the methods

used in [48]. The Markov chain can have any finite memory, i.e. we take an l-step Markov

chain with l being finite.
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Let Md
4
= max(ML−1, l) and let s̄i represent s̄i

Nt+1. We have

I
(
ˆ̄s

i
; s̄i
)

= H(s̄i)+H(ˆ̄s
i
)−H(ˆ̄s

i
, s̄i).

Here H(.) represents entropy. For a Markov chain, H(s̄i) can be calculated easily.

Next we consider H(ˆ̄s
i
). Clearly, P (ˆ̄s(i)/s̄i

i−Md
, n̄i

i−M+1), the probability of the current

output symbol given the inputs and noise symbols on which it directly depends, is inde-

pendent of step i, (for initial steps it also depends upon the tail of training sequence) and

can be computed by first conditioning on (z̄, ˆ̄z) and then averaging in a way similar to

that explained above. These conditional probabilities will be the basic elements in the

calculation of H(ˆ̄s
i
). Now,

H(ˆ̄s
N

) =
N∑

i=Nt

H(ˆ̄s(i)/ˆ̄s
i−1

) = −
N∑

i=Nt

E[log(pi)]

where pi
4
=P (ˆ̄s(i)/ˆ̄s

i−1
). At any step i, pi equals,

pi =

∫
CnM

∑
s̄i
i−Md

P (ˆ̄s(i)/s̄i
i−Md

, n̄i
i−M+1)dF (n̄i

i−M+1, s̄
i
i−Md

/ˆ̄s
i−1

).

The above step follows as the output ˆ̄s(i) is conditionally independent of ˆ̄s
i−1

given inputs

s̄i
i−Md

and noise n̄i
i−M+1 (Note that the output ˆ̄s(i) is a Hidden Markov chain depending on

the Markov chain (s̄i
i−Md

, n̄i
i−M+1)). One can easily show that the conditional distributions

F (n̄i
i−M+1, s̄

i
i−Md

/ˆ̄s
i−1

) can be computed recursively as,

F (n̄i
i−M+1, s̄

i
i−Md

/ˆ̄s
i−1

)

= Prob(s̄i
i−Md

,Ni
i−M+1≤n̄i

i−M+1/ˆ̄s
i−1

)

=
F (n̄(i))

pi−1

∑
s̄(i−Md−1)

∫
n̄(i−M)∈Cn

P (s̄(i)/s̄i−1
i−1−Md

)P (ˆ̄s(i−1)/s̄i−1
i−1−Md

, n̄i−1
i−M)

dF (n̄i−1
i−M , s̄

i−1
i−1−Md

/ˆ̄s
i−2

).

Here Ni
i−M+1 represents the noise at steps i to i−M+1 and F (.) represents the cumulative
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distribution.

H(ˆ̄s
N

Nt+1, s̄
N
Nt+1) can be computed in a similar way. Similar computations will be used

in the case of blind and semi-blind methods also.

3.4 Blind CMA Equalizer

In this section, we use the CMA algorithm to obtain the equalizer, without using any

training sequence. We first explain the algorithm and then provide the procedure we

use to obtain the capacity for this system. In fact, as mentioned before, it is practically

infeasible to obtain the exact capacity in this case. Thus, we find a lower bound on the

capacity by restricting the input distribution to be ergodic and stationary. We further

assume it to be a Markov chain and use the procedure provided at the end of last section

for computing the lower bound. The same applies to the semi-blind method.

The CMA equalizer is obtained by using the LMS algorithm ([15], [22]) to minimize

the following cost function. For a single user MIMO channel with same source alphabet

for all m transmit antennae, the CMA cost function is ([15])

Σm
l=1E

(
|θ̄H

l ūk
k−M+1|2−R2

2

)2
.

This is equivalent to minimizing m independent cost functions (since the terms in the

summation are positive),

E
(
|θ̄H

l ūk
k−M+1|2−R2

2

)2
, l = 1, 2, . . .m (3.2)

where θ̄T
l , an nM length vector, represents the lth row equalizer (to decode lth transmit

antenna symbol) and R2 = E|s̄N
N−ML+1|

4
/E|s̄N

N−ML+1|
2
.

To obtain the above optimum, the corresponding m update equations in the LMS

algorithm for a given value of z̄ are ( 1≤l≤m, ML≤k≤N),

θl(k+1) = θl(k)+µHCMA

(
θl(k), z(k),n

k
k−M+1

)
(3.3)
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where θl(k) is the lth equalizer at time k, z̄(k)
4
=ūk

k−M+1−n̄k
k−M+1 = ZM s̄k

k−ML+1 and

HCMA(θ, z,n)
4
=((θTu)2+(θT ǔ)2−R2

2)
(
(θT ũ)ũ+(θT ǔ)ǔ

)
with ū = z̄+n̄ and ũ, ǔ defined in notations.

We observe that HCMA(0, z,n) = 0 for all z,n, but 0 is not a minimizer of the cost

function in (3.2). Thus, θl(0) should not be initialized with 0 in (3.3) for any l.

A close look at (3.3) shows that all m sub cost functions are same and the differ-

ent equalizers should be initialized appropriately to extract the desired antenna’s source

symbols. In [15] a new joint CMA algorithm is proposed that ensures that the MIMO

CMA separates all the sources successfully irrespective of the initial conditions. In this

work, we choose the initial condition θ̄
∗
0 (which will be used in all frames) such that the

channel capacity is optimized, where θ̄
∗
0 is an m-row matrix with its lth row corresponding

to the optimal initial condition for lth row equalizer θl. This solves initialization problem

to a good extent (at-least for channels with good line of sight signal) in blind case with

the original CMA itself. The problem will be solved to a greater extent in the semiblind

algorithm, as here a rough estimate of the training based equalizer forms the initializer.

The equalizer adaptation (3.3) can be started only after leaving out the first ML−1

received samples. This ensures that the equalizer adaptation is independent of previous

frame symbols. Hence initializer θ̄0 actually corresponds to the m-row equalizer at step

k = ML. One may also update the equalizer tap only for a fraction of the symbols in the

frame. This reduces delay in processing.

For real constellations like BPSK, a more suitable CMA cost function would be

((θTu)2−R2
2)

2+(θT ǔ)4. All our analysis extends easily to this cost function also. This

modified cost function forces the imaginary part of the equalizer output to zero. While

computing the capacity for some examples numerically (in Section 3.6), we used this cost

function with BPSK over complex channels.

While computing the capacity of the composite channel for this system, one faces a

problem that, at the end of the frame, the CMA algorithm might not have converged (see

more detailed comments on convergence in ([47]). Thus the equalizer is random even for
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fixed h̄ and computing its distribution for a practical frame length is almost impossible.

In the next subsection, we approximate the value of the CMA equalizer at any time t

with a deterministic quantity and then proceed with obtaining the channel capacity with

that equalizer.

3.4.1 CMA Equalizer approximated by ODE

Now we assume that the input is stationary and ergodic. Each of the m update equations

in (3.3) is similar to the CMA update equation for SISO. Therefore, it is easy to see that

all the proofs in [47] for convergence of the CMA trajectory to the solution of an ODE

(Ordinary differential equation) hold. As a result, we have (for any 0 < T < ∞ and for

any 1≤l≤m),

sup
0≤t≤T

‖θl(bt/µc)− θODE(t)‖ p→ 0 as µ→ 0

where θODE(t), henceforth written as θ(t) (for notational simplicity), satisfies

θ̇l(t) = ĤCMA(θl(t))
4
=Ez[En(HCMA(θl(t), z,n))] (3.4)

where z̄
4
=ZM s̄N

N−ML+1. The initial conditions for both the ODE and the CMA are same.

Thus the update equation (3.3) for any given z̄, can be approximated by the trajectory

of the above ODE. The approximation can be made accurate with high probability by

taking step size µ small. Note that the distribution of z̄ can be defined with respect to

s̄k
k−ML+1, for any step k, as the input is assumed to have stationary distribution.

We obtain the capacity of the composite channel approximately by obtaining the

capacity of the channel using the solution of the ODE as equalizer. The actual practical

system may not use ODE. It should use (3.3). This computation is for offline comparison

of performances.

We can solve (3.4) numerically for each l and obtain the equalizer θ̄(T ) at time T =

µ(N−ML+1) (a smaller T has to be taken if the equalizer is updated only for a fraction

of the frame), which approximates the CMA equalizer at the end of the frame. This
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equalizer is used for decoding the entire frame as in previous section. It is easy to see

that, θ̄(T ) can be computed at the transmitter and the receiver (of the approximate

composite channel) once the original channel statistics are known and hence the overall

transition probabilities can be calculated as in the previous section. The only difference

being that these transition probabilities depend upon the input distribution P (s̄N
Nt+1) and

the common initial equalizer setting θ̄0. (Actually Nt = 0. But we use the same notation

to maintain uniformity).

Given a value of z̄ equation (3.4) becomes ([47]),

θ̇l(t) = Es̄N
N−ML+1

[f(z̃, θl(t)) + f(ž, θl(t))]

− Es̄N
N−ML+1

[(θT
l (t)z̃)(θT

l (t)ž)
(
z̃žT +žz̃T

)
]θl(t)

+ 2R2
2σ

2
nθl(t)− 8σ4

n‖θl(t)‖2θl(t)− 6σ4
nθl(t)

(2,1) − 6σ4
nθl(t)

(3) (3.5)

where, f(z,θ)
4
=R2

2θ
Tzz−(θTz)3z−4σ2

n((θTz)2θ+‖θ‖2θTzz). Matrix Rs̄N
N−ML+1

is the source

covariance matrix, θl(t)
(3) is the vector formed by taking cube of the individual terms and

‖.‖ represents the norm of the vector. Also, θl(t)
(2,1) is the vector formed by taking square

of the individual terms in θ̌l(t) and then multiplying term by term with vector θl(t).

It is clear that θ̄(T ) is a function of z̄, θ̄0 and P (s̄N
N−ML+1). Define Θ(T )

4
=ΘN−Nt(T ), the

N−Nt length convolution matrix constructed using θ̄(T ). Let ΘR
4
=

2
6664

Re(Θ(T )) −Im(Θ(T ))

Im(Θ(T )) Re(Θ(T ))

3
7775.

Here Re(Θ(T )) and Im(Θ(T )) represent the matrices formed by keeping only the real or

imaginary part, respectively, of each component of the matrix Θ(T ).

As in the previous section, conditioned on z̄, P (s̄N
Nt+1) and θ̄0, the transitional prob-

abilities of the approximate composite channel obtained by solving the ODE are (the

probabilities of the initial L−1 symbols will be different, but the number is very small

with respect to the frame length and hence it can be neglected),

Q(ˆ̄s
N

Nt+1 = ∫̄i/s̄N
Nt+1 = ∫̄j; z̄) = Q(ΘRuN

Nt−M+2∈Bi/s̄
N
Nt+1 = ∫̄j; z̄) (3.6)

whereQ(.)
4
=P (./θ̄0, P (s̄N

Nt+1)), represents the conditional distribution given θ̄0 and P (s̄N
Nt+1)
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and Bi is defined in the previous section. The overall transition probabilities for a given

P (s̄N
Nt+1) and θ̄0 are now obtained by averaging over z̄. The conditional mutual informa-

tion I(ˆ̄s
N

Nt+1; s̄
N
Nt+1/θ̄0, P (s̄N

Nt+1)), is a bounded function of (θ̄0, P (s̄N
Nt+1)) as the cardinality

of the input alphabet, s̄N
Nt+1and the output alphabet ˆ̄s

N

Nt+1is finite. Thus, capacity (lower

bound as input is restricted to be stationary and ergodic)

C(θ̄0)
4
= sup

P (s̄N
Nt+1)

I(ˆ̄s
N

Nt+1; s̄
N
Nt+1/θ̄0, P (s̄N

Nt+1))

of the approximate channel for a given θ̄0, is finite. Note that the approximate composite

channel for a given θ̄0, is a discrete memoryless channel as in the case of the training

based equalizer. The overall capacity of the blind algorithm CCMA ≈ supθ̄0
C(θ̄0), is also

finite.

The following lemma establishes the continuity of the mutual information with respect

to input distribution P (s̄N
Nt+1) for any given θ̄0 and hence the achievability of C(θ̄0). It

also establishes the continuity of C(θ̄0) with respect to θ̄0 and hence the achievability of

CCMA (when θ̄0 is restricted to a compact domain).

Lemma 3.2 I
(
ˆ̄s

N

Nt+1; s̄
N
Nt+1/θ̄0, P (s̄N

Nt+1)
)

is a continuous function of θ̄0 and P (s̄N
Nt+1).

Also C(θ̄0) is continuous in θ̄0.

Proof : Please refer to the Appendix A.

Limiting θ̄0 to a compact domain can be justified as follows. Since z̄ has finite variance,

for any given ε>0, by Tchebyshev’s inequality, we find an Uε<∞ such that ‖z̄−µz̄‖ < Uε

with probability greater than 1 − ε. Let θ̄
∗
(z̄) represent a CMA (also ODE) attractor

for channel realization z̄. One can show using arguments similar to Lemma 7 in [47]

that θ̄
∗
(z̄) is continuous in z̄. Thus there exists U∗

ε<∞ such that ‖θ̄∗(z̄) − θ̄
∗
(µz̄)‖ < U∗

ε

with probability greater than 1 − ε. Thus, we can limit θ̄0 to the compact disk {θ̄ :

‖θ̄ − θ̄
∗
(µz̄)‖≤U∗

ε }.

The compact domain can be located more easily (which can be used in computing

numerical examples) as follows. It is shown in [65] that CMA attractor lies close to
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MMSE equalizer (channel estimation is assumed perfect here) under reasonable condi-

tions. Hence, θ̄0 can be constrained to a compact region around θ̄0µz̄
:=θ̄(µz̄) (MMSE

equalizer for mean µz̄ of the channel, defined in a way similar to θ̄(ˆ̄z) of the previous

section) instead of θ∗(µz̄).

Thus, when the receiver and the transmitter have channel statistics, one can choose

θ̄
∗
0 and P ∗(s̄N

Nt+1), such that I(ˆ̄s
N

Nt+1; s̄
N
Nt+1/θ̄

∗
0, P

∗(s̄N
Nt+1)) is as close as possible to CCMA.

However, it may be computationally intensive. Thus, in Section 3.6 we compute a lower

bound by estimating the mutual information for IID uniform input distribution and using

θ̄
∗
0 = θ̄0µz̄

to simplify the computations. We have established the tightness of this lower

bound in case of training based methods for high SNR regions. Hence, comparing the

blind/semiblind methods with training based methods using this lower bound, establishes

that the improvement of the blind/semiblind algorithms would be better by at least that

much (even if the bound is not tight in case of blind/semiblind methods). In fact, while

computing the numerical examples of Section 3.6, we have seen that this bound is very

tight for all three; blind, semiblind and training methods, for all most all the cases we

studied.

3.5 Semi-Blind CMA Algorithm

In this section we study a semi-blind algorithm obtained by combining the previous two

algorithms. We would like to see if this can improve the overall performance of the system.

We use the MMSE equalizer of the training based channel estimator θ̄(ˆ̄z) obtained in

Section 3.3 as the initializer for the CMA algorithm. The equalizer co-efficients obtained

from the CMA at the end of the frame are used for decoding the data for the whole

frame. Once again we use the ODE approximation of the CMA trajectory in the capacity

analysis. Now T = µ(N−Nt) if Nt≥ML. Otherwise, T = µ(N−ML) and we start the

CMA adaptation only after the firstML−1 samples as in previous section. The conditional

probabilities are obtained by first conditioning on and then averaging with respect to z̄, ˆ̄z

as in Section 3.3.
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As in the previous section, given Nt, the capacity (lower bound),

CSB(Nt) = sup
P (s̄N

Nt+1)

I(ˆ̄s
N

Nt+1; s̄
N
Nt+1/P (s̄N

Nt+1))

exists and the approximate capacity CSB for the semi-blind algorithm is CSB(N∗
t ), where

N∗
t is the optimal training length. Once again, we have the following lemma, which

establishes the achievability of the capacity.

Lemma 3.3 I(ˆ̄s
N

Nt+1; s̄
N
Nt+1/P (s̄N

Nt+1)) is a continuous function of P (s̄N
Nt+1) and hence the

supremum can be achieved.

Proof : Please refer to Appendix B.

Having obtained the capacity of the channel with training based, blind and semiblind

methods, one can compare them for any MIMO wireless (block fading) channel. As

mentioned above, we use the IID uniform distribution lower bound to compare the three.

Then one can obtain the optimal scheme (say a semiblind channel with a given length

Nt of the training sequence). In the next section we carry out this comparison for a few

examples.

3.5.1 Modified Semi-blind Algorithm

We have modified the above semiblind algorithm to obtain the following improved algo-

rithm. We get an estimate of the channel realization using training sequences and then

one can estimate the channel and equalizer-initializer combined response. This indicates

how close the initializer is to the attractor. We adapted the step size of the CMA al-

gorithm based on this estimate. This modified algorithm improves the performance of

the semi blind algorithms. The improvement is significant at low K-factors with good

SNR conditions. The details of the modification and the corresponding gains for some

examples are provided at the end of the next section.
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3.6 Examples

We illustrate the theory developed with a few examples of practical interest. As a result we

also draw some interesting conclusions. The three equalizers are compared over complex

Gaussian channels with BPSK modulation. We consider 2×2 MIMO channels. The frame

length N is 64 symbols. The channel lengths are 2, 3 and 4 and the equalizers are of length

2. We set Ch = σ2
hI. The channel gain is normalized to 1, for both the receive antennas.

We follow the systematic approach explained above for calculating the capacity of the

composite channel for all the equalizers. We observed that the equalizer value at the

end of the frame was away from the equilibrium point in both the blind and semiblind

algorithms.

In Figure 3.2 we plot the capacity of the three equalizers versus transmitted power

with σ2
n = 1 and L = 4. Here, the first channel tap is Ricean, while the rest of the taps are

Rayleigh. For this figure, all the four elements of the 2× 2 mean matrix for the first tap

have equal norm. The mean matrix of channel µZ and the relative power ratios between

the channel taps is given in Figure 3.2. We varied the K-factor (ratio of power in the mean

component to that in the varying component of the first tap) of the channel during our

experiments. For K = 3, (typical to terrain with moderate tree density ([18]) and some of

the indoor channels), there is an improvement of up to 3 dB (≈ 67% improvement in TX

power) in semiblind/blind (blind being the best) algorithms at around 12dB compared

to the training method. At K = 1.5, the improvement is ≈ 20% and the semiblind is

the best. As the K-factor approaches 0 (Rayleigh channel), the improvement in semiblind

diminishes, but, the blind becomes much worse. In fact, in Rayleigh channel, the capacity

of the blind method is almost zero.

We have observed that for training and semiblind equalizers, the capacity increases

with Nt, reaches a maximum and starts decreasing. From this, one can estimate the

’optimal’ number of training symbols, N∗
t (see Table 3.1 for some examples). It is inter-

esting to note that the same procedure can also be used for choosing the optimal training

sequences (for a given Nt). This is possible mainly because the input alphabet is finite

and hence a finite number of comparisons will do the job. This might be tedious and we
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have not conducted experiments in this regard.
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Figure 3.2: Capacity vs Txd power : σ2
n = 1 L = 4 M = 2

Relative Power ratios of channel taps in dB =
[

0 −5.4 −10 −13.7
]

µZ =

√
K

1 +K

[
0.42 + j0.42 −0.42 + j0.42 0 0 0 0 0 0
−0.42 + j0.42 0.42 + j0.42 0 0 0 0 0 0

]

Table 3.1 also shows comparison of various equalizers with respect to noise variance

for two different K factors, for a fixed transmit power θA = 12dB. Here also only the first

tap is Ricean while the rest are Rayleigh. But the terms in the mean matrix of the first

tap have unequal norms, the diagonal terms having bigger norm than the off diagonal

ones. Further, the relative power ratios of the taps, given in the heading of the Table,

are better than in Figure 3.2. Also the channel length L = 3. As expected, the capacity

of the equalizers in this example is more than that in Figure 3.2. More importantly,

semiblind/blind algorithms show more improvement over training methods compared to
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the example in Figure 3.2. Here we obtain a much better improvement of 29% at K = 1.3

and 55% at K = 2 by semiblind/blind methods over the training equalizers. Match σ∗2n

in the Table, represents the noise variance σ2
n of the system for the Blind (in the fifth

column) or the Semiblind (in the last column) algorithm at which the capacity is within

0.1% of that of the training based equalizer.

As expected, the capacity of all three algorithms increases with decrease in noise

variance and for high K systems the optimal number of training symbols is smaller. For

high K systems, blind algorithm is the best at reasonable SNR’s. This is because the

other algorithms are loosing in capacity because of training symbols. But, we can see

that at very low SNR’s (near 0dB, not shown in the table, but this effect can be seen in

Figure 3.2) the blind algorithm becomes worse eventually.

As commented in Section 3.4, we observed in case of high K, the blind algorithm

was successfully separating all the sources (which also explains comparatively good per-

formance of blind algorithms at high K). But for low K, the blind algorithm was not

separating the sources resulting in bad performance (K = 1.3 case in Table 3.1). All the

above observations are mainly because of the following reason. At high K values, the

mean value of the channel is close to channel realizations with high probability. Hence

taking the common initializer (common to all realizations) θ̄0 = θ̄0µh̄
ensures that the

initializer is close to the CMA attractor (and hence to Wiener Receiver ([65])) with high

probability.

For the examples explained above, we performed optimization with respect to input

distribution (k−step Markov chains) and found that uniform IID distribution gives a

very tight lower bound even at low SNR’s. The same is true for semiblind and blind

algorithms. Similarly, for the blind algorithm, we performed optimization with respect to

θ̄0 and found that in many cases θ̄0 = θ̄0µh̄
gives a tight lower bound. These observations

can be exploited to simplify the computations considerably. For all the examples, we

used the steepest gradient method using forward differences as derivative to obtain the

optimal point. While optimizing with the input distributions, the updated value was

further projected on to the space of probability measures.
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Table 3.1: Capacity Vs Noise Variance θA = 12dB L = 3 M = 2
Relative power ratios of the channel taps in dB =

[
0 −8.9 −13.3

]
µz̄ =

√
K/(1 +K)

[
0.7+i0.525 −0.206 + i0.206 0 0 0 0

−0.206 + i0.206 0.7+i0.525 0 0 0 0

]
σ2

n K = 2 K = 1.3
Training Semi Blind Match Training Semi Blind Match
(C, N∗

t ) (C, N∗
t ) C σ∗2n (C, N∗

t ) (C, N∗
t ) C σ∗2n

1 ( 80.8, 5) ( 86.3, 5) 89.4 1.76 B (71.4, 5) (75.4, 5) 74.1 1.35 S
2 ( 70.3, 5) ( 76.7, 5) 78.4 2.78 B (62.3, 5) (65.9, 5) 64.3 2.47 S
4 (55.9, 7) (60.2, 5) 60.9 4.75 B (50.2, 7) (53.1, 7) 49.5 4.35 S
6 (46.2, 7) (48.9, 4) 49.2 6.67 B (41.2, 7) (43.6, 7) 40.8 6.50 S
8 (39.2, 7) (41.1, 7) 41.2 8.80 B (35.1, 7) (36.5, 7) 34.7 8.50 S

Modified Semi-blind Algorithm

Here we divided the channel realizations into 7 bins based on the estimate of the channel

and initializer combined response. Let s̄l represent the convolutional vector of the channel

estimate with the training equalizer (initializer) for the lth antenna. We used ‖s̄ll , r‖, the

real part of the lth term of vector s̄l, for dividing the channel realization in to 7 bins. The

step size of the bin, with ‖s̄ll , r‖ close to 1, is large. For bins with ‖s̄ll , r‖ away from 1

(either below 0.05 or above 2) the step-size is almost zero. This is equivalent to using

only the training based equalizer.

Table 3.2 gives the improvement of the modified algorithm with respect to the original

semiblind algorithm. Match σ∗2n gives the noise variance at which the modified-semiblind

/semiblind algorithm has the capacity within 0.1% of that of the training capacity at

σ2
n = 1 (similar to Table 3.1). In other words, it gives the SNR improvement of modified-

semiblind / semiblind algorithms over training based methods at transmit power (equiva-

lently SNR) equal to 12dB. From the table one can see an improvement of up-to 30−46%,

in transmit power, by the modified-semiblind algorithm over the original semiblind algo-

rithm. The modified-semiblind algorithm shows significant SNR improvement of 30%, 20%

and 8.6% at K = 0.9, 0.1 and 0 respectively over the training method. For these K-factors,
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the original semiblind is degraded compared to the training based methods as is evident

from Table 3.2. Also, note that we have not shown the blind capacity in this table, as, at

these K factors the blind performs worse than the original semiblind itself (evident also

in Table 3.1).

These are initial experiments on the modifications possible. One can try working

further in this direction and may achieve much better results. This algorithm is expected

to give improvement in high SNR regions only, as the estimate of channel will be less

noisy.

Table 3.2: Modified Semi-Blind Vs Semiblind θA = 12dB, L = 2 M = 2
Relative power ratios of the channel taps in dB =

[
0 −7.5

]
µz̄ =

√
K/(1 +K)

[
0.52+i0.39 −0.46 + i0.46 0 0
−0.46 + i0.46 0.52+i0.39 0 0

]
K Training ModSemi Semi

(C, N∗
t ) (C, N∗

t ) Match (C, N∗
t ) Match

σ2
n = 1 σ2

n = 1 σ∗2n σ2
n = 1 σ∗2n

0.9 (65.55, 8) (70.02, 6) 1.35 (65.42, 6) 0.99
0.5 (61.09, 8) (64.79, 8) 1.28 (59.00, 8) 0.83
0.1 (57.74, 8) (60.48, 8) 1.23 (54.32, 8) 0.76
0.01 (58.25, 8) (60.38, 8) 1.12 (54.53, 8) 0.68
0.0 (58.46, 8) (60.45, 8) 1.09 (55.20, 8) 0.71

3.7 Conclusions

We compared blind/semiblind equalizers with training based algorithms. The difficulty

is in comparing the loss in accuracy of the blind algorithms with that of loss in data

rate in training based methods. Information capacity is the most appropriate measure

for this comparison. We observed that the semiblind/blind methods perform superior to

training methods in LOS conditions (≈50 to 70% improvement in transmit power) even

when they have not converged to the equilibrium point. But for Rayleigh fading, the

semiblind methods are bad compared to training based and the blind methods become
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completely useless. Our approach is also used to obtain the optimum number of training

symbols.

We modified the semiblind algorithm, where the step size is adapted with respect to

the training based channel estimate ˆ̄h. Initial experiments using this approach show good

improvement over the original semi-blind algorithm. The improvement is significant for

low K-factors (including Rayleigh channels) under high SNR conditions. One may achieve

better results by further investigation.

Appendix A

In this Appendix, we provide proof of Lemma 3.2, We will need several more lemmas.

The proofs of remaining Lemmas 3.1, and 3.3 will be given in Appendix B. This is done

to avoid repetition of arguments.

Proof of Lemma 3.2: Lemma 3.4 and 3.7 provide a proof of Lemma 3.2. �

Lemma 3.4 I(ˆ̄s
N

Nt+1; s̄
N
Nt+1/θ̄0, P (s̄N

Nt+1)) is a continuous function of θ0 and P (s̄N
Nt+1).

Proof of Lemma 3.4: Let (θ̄0n
, P (s̄N

Nt+1)n
) → (θ̄0, P (s̄N

Nt+1)).

Denote ΘR(θ̄0n
, z̄, P (s̄N

Nt+1)n
) and ΘR(θ̄0, z̄, P (s̄N

Nt+1)) by θn(z̄) and θ(z̄) respectively.

By Lemma 3.5 t θn(z̄) → θ(z̄) for all z̄.

Let Xn,j(z̄) denote a random vector with the distribution equal to the conditional

distribution of θn(z̄)uN
Nt−M+2, given s̄N

Nt+1 = ∫̄j and z̄. Let u∫̄j(z̄) denote the mean of

uN
Nt−M+2with s̄N

Nt+1 = ∫̄j, for a given z̄. Then

Xn,j(z̄) ∼ N
((
θn(z̄)u∫̄j(z̄)

)
, σ2

n

(
θn(z̄)θn(z̄)T

))
.

Let Xj(z̄) be defined in a similar way for θ(z̄)uN
Nt−M+2. Then from (3.6) for all n,

Qn(ˆ̄s
N

Nt+1 = ∫̄i/s̄N
Nt+1 = ∫̄j; z̄)

4
= P (ˆ̄s

N

Nt+1 = ∫̄i/s̄N
Nt+1 = ∫̄j; θ̄0n

, P (s̄N
Nt+1)n

, z̄)

= Prob(Xn,j(z̄)∈Bi).
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where Qn(.) denotes the conditional distribution given θ̄0n
, P (s̄N

Nt+1)n
. Q(.) is defined in

a similar way for θ̄0, P (s̄N
Nt+1). The characteristic function of Xn,j(z̄) converges pointwise

to that of Xj(z̄). Thus, Xn,j(z̄)
w→ Xj(z̄) for every j and for all z̄.

Let ∂Bi represent the boundary of set Bi. For every value of z̄, ∇ĤCMA(0) (derivative

of the function ĤCMA) is a positive definite matrix as seen from equation (3.5). Hence 0

is a repeller of the ODE(3.5). Further, as mentioned earlier, 0 is not taken as an initial

condition. Therefore, none of the rows of θ(z̄) (formed from the ODE solution) equal 0.

Hence, by Lemma 3.6, Prob(Xj(z̄) ∈ ∂Bi) = 0 for all z̄, i, j. Then using Portmanteau

Theorem (Theorem 2.1, p.16 of [9])

Qn(ˆ̄s
N

Nt+1 = ∫̄i/s̄N
Nt+1 = ∫̄j, z̄) → Q(ˆ̄s

N

Nt+1 = ∫̄i/s̄N
Nt+1 = ∫̄j, z̄) for all z̄. (3.7)

Then by bounded convergence theorem,

Qn(ˆ̄s
N

Nt+1 = ∫̄i/s̄N
Nt+1 = ∫̄j) → Q(ˆ̄s

N

Nt+1 = ∫̄i/s̄N
Nt+1 = ∫̄j).

The lemma now follows by noting that mutual information is continuous in conditional

probabilities and the input distribution P (s̄N
Nt+1). �

Lemma 3.5 θ̄(T ) and thus ΘR is a continuously differentiable function of θ̄0, z̄ and

P (s̄N
N−ML+1) and hence that of P (s̄N

Nt+1).

Proof : It suffices to show the result for each individual row of θ̄(T ), which are obtained

from ODE(3.5). Since the result is independent of row number, l, we omit l for ease of

notations.

From ODE (3.5), we observe that ĤCMA(θ;P (s̄N
N−ML+1), z̄) is a continuously differen-

tiable function of θ, P (s̄N
N−ML+1), z̄. It then satisfies uniform Lipschitz condition with

respect to θ, P (s̄N
N−ML+1), z̄ in any compact domain. The required C1 property, now

follows from Theorem 7.5 of ([11], p. 30). �

Lemma 3.6 Let Y ∼ N (µ, σ2I) and XT = EY , where none of the rows of the 2p × q
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real matrix E equal 0. In the above, q>0 is any arbitrary integer and p = m(N − Nt).

Then Prob(X ∈ ∂Bi) = 0 for all i.

Proof of Lemma 3.6: For all ∫j∈S, the original source alphabet, define the two dimen-

sional set C∫j by,

C∫j
4
=
{
x=(x1, x2)∈R2 : ‖∫j−(x1 + ix2)‖2≤‖∫l−(x1 + ix2)‖2 for all l 6=j, 1≤l≤nS

}
.

Let ∫̄ik represent the kth element of vector ∫̄i. We reproduce the definition of the set

Bi of Section 3.3 here,

Bi
4
=
{
x∈R2p : ‖∫̄l−x̄‖2≥‖∫̄i−x̄‖2 for all l 6=i

}
.

We will show below that Bi = Πp
l=1C∫̄il . Clearly Πp

l=1C∫̄il ⊂ Bi. Now we show the converse

by contradiction. Say x∈Bi. Then ‖x̄ − ∫̄i‖≤‖x̄ − ∫̄l‖ for all l 6=i. Let xk represent the

kth element of vector x. Say for some k, xk∈C∫l where ∫l 6=∫̄ik . Let ∫̄j represent the vector

formed from ∫̄i by only replacing the kth element with ∫l. Then x∈Bj, which will be a

contradiction.

Let ∂C∫j represent the boundary of set C∫j . Then boundary ∂Bi, is contained in the

set,

∪p
l=1Π

p
k=1Di,l,k where Di,l,k =

 R2 k 6=l

∂C∫̄il k = l
.

Therefore, it suffices to show that Prob(X∈Πp
k=1Di,l,k) = 0 for all i, l.

Define xk
4
=Real (Xk + iXk+p) where Xk represents the kth coordinate of the random

vector X. The above condition is now equivalent to Prob(xk∈∂C∫l) = 0 for all l, k.

Finally, it suffices to prove that Prob(xk∈∂C∫i,∫l) = 0 for all i 6=l, k, where

∂C∫j ,∫l
4
=

{
x∈R2 : ‖∫j−(x1 + ix2)‖2 = ‖∫l−(x1 + ix2)‖2

}
=

{
x∈R2 : (x1 + ix2) =

‖∫l‖2−‖∫j‖2

2(∫j − ∫l)∗

}
.
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The two dimensional Gaussian random vector xk has non-zero variance as none of the

rows of E are zero. Thus the above probability equals zero. �

Lemma 3.7 C(θ̄0) is a continuous function of θ̄0.

Proof : I(ˆ̄s
N

Nt+1; s̄
N
Nt+1/θ̄0, P (s̄N

Nt+1)) is a continuous function of θ̄0 and P (s̄N
Nt+1). For

every θ̄0, the constraint set D(θ̄0) = P(S(Nt)) is compact. Thus the correspondence

θ̄0 7→ D(θ̄0) is compact and constant and hence continuous. Now the required continuity

follows from the Maximum Theorem ([51] p. 235). �

Appendix B

In the following we provide proofs of Lemmas 3.1, and 3.3. Here we refer to the arguments

used in Lemma 3.2 repeatedly.

Proof of Lemma 3.1 : Let Z represent the distribution of (z̄, ˆ̄z) with parameters βz.

Similarly, let Zn correspond to that of βzn , where βzn → βz. Then the characteristic

function of Zn converges pointwise to that of Z. Thus, Zn
w→ Z.

Define ΘR in the same way as in Section 3.4, now using θ̄(ˆ̄z) (the MMSE equalizer

defined in Section 3.3 corresponding to the MMSE channel estimate ˆ̄z). That is, first

form complex convolutional matrix using the MMSE equalizer θ̄(ˆ̄z) and then obtain its

real counter part ΘR as in Section 3.4. It is easy to see that, for almost all ˆ̄z, none of

the rows of ΘR equal 0. Following steps as in Lemma 3.2 we can show that, P (ˆ̄s
N

Nt+1 =

∫̄i/s̄N
Nt+1 = ∫̄j; z̄, ˆ̄z) is continuous for almost all z̄, ˆ̄z.

With Pn(.) (P (.)) representing the conditional probabilities averaged over (z̄, ˆ̄z) which

are distributed as Zn (Z),

Pn(ˆ̄s
N

Nt+1 = ∫̄i/s̄N
Nt+1 = ∫̄j) → P (ˆ̄s

N

Nt+1 = ∫̄i/s̄N
Nt+1 = ∫̄j)

by the mapping theorem 2.7 in ([9] p. 21). Thus g is a continuous function.

Hence the mutual information I(ˆ̄s
N

Nt+1; s̄
N
Nt+1/P (s̄N

Nt+1)) is a continuous function of

βz, P (s̄N
Nt+1) and a strictly concave function of P (s̄N

Nt+1) for every given βz. For every βz,
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the constraint set D(βz) = P(S(Nt)) is compact and convex. Thus the correspondence

βz 7→ D(βz) is compact, convex and constant and hence continuous. The lemma now

follows by the Maximum Theorem under Convexity ([51] p.237). �

Proof of Lemma 3.3 : The proof of this lemma is similar to that of Lemma 3.2.

Here the initial condition θ̄o(ˆ̄z) is fixed by ˆ̄z and then the conditional probabilities, now

conditioned also on ˆ̄z, will be averaged with the joint Gaussian distribution of z̄, ˆ̄z. The

overall conditional probabilities and hence mutual information now depends only upon

P (s̄N
Nt+1). By following steps similar to Lemma 3.2, one can show the required continuity

(by just removing θ̄o in all steps). We are also using the fact that θ̄o(ˆ̄z) is a continuously

differentiable function of ˆ̄z and that none of the rows of θ̄0(ˆ̄z) equal 0 with probability

one. �



Chapter 4

LMS-LE versus LE-WF for a

Wireless Channel

In this chapter we consider a time varying wireless fading channel, equalized by an LMS

linear equalizer. We study how well this equalizer tracks the optimal Wiener equalizer.

We model the channel by an Auto-regressive (AR) process studied in Chapter 2.

We obtain an ODE approximation of the LMS equalizer and the AR(2) process, using

the ODE approximation of the general system obtained in the Appendix I at the end of

the thesis. Using these ODEs, the error between the LMS equalizer and the Wiener filter

is shown to decay exponentially to zero for a stable AR process and a class of unstable

AR(2) processes. For another class of unstable channels the error decays linearly. The

error remains bounded for a marginally stable channel.

The Mean Square Error (MSE), between the transmitted symbol and the equalizer

output, also converges towards the minimum MSE (MMSE) exponentially, for a stable

channel. We further show that the difference between the MSE and the MMSE does not

explode with time even when the channel is unstable. Furthermore, we obtain a step size

which provides optimal tracking performance whenever the error decays exponentially.

This Chapter is organized as follows. In Section 4.1 we explain our model. Section 4.2

provides the ODE approximation for the processes of interest. Section 4.3 uses the ODE

approximation to provide exponential/inverse linear decay of the difference between the

70
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Channel

k

k Equalizer

nk

ks

kZ

u

θ
+

Figure 4.1: Block Diagram of Wireless channel followed by a Linear Equalizer (LE)

LMS equalizer and the Wiener filter. Section 4.4 extends the results to Complex channels

and input signals. Section 4.5 provides examples to demonstrate the theory obtained.

The appendices contain the proofs.

4.1 System Model, Notations and Assumptions

We consider a system consisting of a wireless channel followed by an adaptive linear

equalizer (see Figure 4.1). The input of the channel sk comes from a finite alphabet and

is a zero mean IID process. The channel is a time varying finite impulse response filter

(FIR) {Zk} of length L followed by white Gaussian noise {nk}. We assume nk ∼ N (0, σ2
n).

Also, we assume that {sk} and {nk} are independent of each other. The channel output

at time k is

uk =
L−1∑
i=0

Zk,isk−i + nk,

where Zk,i is the ith component of Zk. The adaptive equalizer at time k is an FIR linear

filter θk of length M . The linear equalizer update equation (the LMS-LE algorithm) is,

θk+1 = θk − µUk(θ
T
k Uk − sk), (4.1)

where the length M channel output vector Uk can be written as,

Uk = πkSk +Nk,
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where Sk, Nk are the appropriate length input and noise vectors respectively. We assume

ESkS
T
k = I. The convolutional matrix πk depends upon channel values Zk, · · · , Zk−M+1

and is given by 
Zk,1 Zk,2 · · · Zk,L 0 · · · 0

0 Zk−1,1 · · · Zk−1,L−1 · · · 0

0
...

0 0 · · · Zk−M+1,1 · · · Zk−M+1,L

 .

We model the channel update process by an AR(2) process,

Zk+1 = d1Zk + d2Zk−1 + µWk (4.2)

where Wk is an IID sequence, independent of the processes {sk}, {nk}. We assume

E|Wk|4 <∞.

4.2 ODE Approximation

In Appendix I given at the end of the thesis, we obtain an ODE approximation for a

general system whose components may depend upon two previous values. Using this,

we present an ODE approximation for the linear equalizer (4.1), when the channel is

modeled as an AR(2) process. We obtain the performance analysis of the LMS-LE via

the approximating ODE.

A better ODE (second order) is shown to approximate the channel trajectory when

d2 is close, but not equal to −1 (as in Chapter 2 and Appendix I) .

The linear equalizer (4.1) tracking an AR(2) process (4.2) can be rewritten in the

setup of Appendix I. Defining Gk+1
4
=[UT

k , ST
k ]T , one can rewrite the AR(2) process and

the equalizer adaptation as,

Zk+1 = (1− d2)Zk + d2Zk−1 + µ(Wk + ηZk),

θk+1 = θk + µH1(θk, Gk+1),
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H1(θk, Gk+1)
4
= −Uk(θ

T
k Uk − sk),

where η
4
=d1+d2−1

µ
. Theorem A.1 of Appendix I can be applied to this system if assumptions

B.1-B.4 of Appendix I and A.1-A.3 of Chapter 2 are satisfied. Assumptions A.1-A.3 are

satisfied as in Chapter 2. The rest is done in the following.

Verification of assumptions B.1-B.4 of Appendix I :

It is easy to see that {Gk} is a process whose transition probabilities PZk
(G,A) are

function of Zk alone. Thus condition B.1 is satisfied. B.2 is also satisfied as for any

compact set Q and for any θ ∈ Q,

|H1(θ,G)| ≤ 2

[
max

{
1, sup

θ∈Q
|θ|
}]

(1 + |G|2).

Fixing channel Zk = Z for all k, we obtain the transition kernel PZ(., .) for {Gk} which

is a function of Z alone. We write this process as {Gk(Z)}. It is easy to see that {Gk(Z)}

is a Markov chain and has a stationary distribution given by

ΠZ(A1 × [s1, s2, · · · sn]) = Prob(S = [s1, s2, · · · sn])Prob(N ∈ A1 − πZ [s1, s2, · · · sn]T )

where πZ is the M ×M + L − 1 length convolutional matrix formed from vector Z and

S,N are the input and noise vectors of length M + L− 1, M respectively. Define,

Ruu(Z)
4
= EZ

[
U(Z)U(Z)T

]
= (πZπ

T
Z + σ2

nI),

Rus(Z)
4
= EZ [U(Z)s] = πZ [1 0 · · · 0]T ,

h1(Z, θ)
4
= EZ(H1(θ,G(Z)) = −Ruu(Z)θ +Rus(Z),

νZ(G)
4
=

∑
k≥0

P k
Z(H1(θ,G)− h1(Z, θ)).

Since h1 is continuously differentiable, it is locally Lipschitz. Thus conditions B.3 a, b

are met.

We now prove condition B.3.c using Proposition 4.1 of Appendix A provided at the
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end of this chapter. {Gk} is a linear dynamic process depending upon channel realization

Z (in this section, Zl represents the lth component of constant vector Z, where Zk is set

equal to Z for all time k) and can be written as,

Gk+1 = A(Z)Gk +B(Z)Wk+1,

where, A(Z) =

 JM P

0L+M−1×M JL+M−1

 ,

B(Z) =


Z1 1

0M−1×2

1 0

0L+M−2×2

 ,
Wk+1 = [sk, nk].

In the above definitions, 0n is a n× n zero matrix, Jn is a n× n shift matrix given by,

Jn =



0 0 0 · · · 0 0

1 0 0 · · · 0 0

0 1 0 · · · 0 0
...

0 0 0 · · · 1 0


,

and the matrix P is a M × L+M − 1 matrix defined by,

P =

 Z2 Z3 · · · ZL 0 · · · 0

0M−1×L+M−1

 .
It is easy to see that, An(Z) = 0 for all n ≥ max{L,L+M −1} for all Z as it involves

the powers of shift matrices JL, JL+M−1, which satisfy Jn
n = 0. It is easy to see that

the function H(θ,G), linear in θ, is in L1
i (R

n) (defined in Appendix A). Now all other

conditions of Proposition 4.1 are satisfied trivially (because A(Z) and B(Z) are linear in

Z) and hence Proposition 4.1 of Appendix A holds and therefore, B.3.c holds with λ = 1.
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The condition B.4 is trivially met, as, for any n > M + L − 1, the expectation does

not depend upon the initial condition X, but, is bounded based on the compact set Q

and because of the Gaussian random variable N and discrete random variable S.

Thus the conditions B.1–B.4 and A.1–A.3 required in Theorem A.1 are met for the

linear equalizer and the AR(2) process. Therefore, by Theorem A.1 of Appendix I, for any

linear equalizer adaptively equalizing an AR(2) process with small µ, one can approximate

their joint trajectory {(θk, Zk)} by the solution of the system of ODEs,

(1 + d2)
�
Z (t) = [E(W ) + ηZ(t)] , if d2 ∈ (−1, 1],

d2Z(t)

dt2
= [E(W ) + ηZ(t)] , if d2 = −1,

d2Z(t)

dt2
+ η1

�
Z (t) = [E(W ) + ηZ(t)] , if d2 is close to − 1, (4.3)

�
θ (t) = −Ruu(Z(t))θ(t) +Rus(Z(t)) (4.4)

where η1
4
=d2+1√

µ
, if we show that the above ODE has bounded solution for every finite time.

We will show below that the above system of ODE’s have a unique solution for any

finite time. Further we will show that the solution is bounded for any finite time and

hence that the ODE approximation is valid for any finite time. We already know that the

channel ODE (4.3) has a unique solution given by (2.2) of Chapter 2. Rest of the job is

done by the following Lemma. This Lemma also shows that the equalizer ODE (4.4) has

a unique attractor for a stable channel (an ODE for a stable channel itself has a unique

attractor).

Lemma 4.1 For each initial condition, the ODE (4.4) has a unique bounded solution for

any finite time. Also, for a stable AR(2) process (i.e. with η < 0, d2 6= −1), the ODE

(4.4) has a unique global exponentially stable attractor.

Proof : We first prove the Lemma for a Z(t), which is either exponential or a linear
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curve. For this Z(t), one can write

Ruu(Z(t)) =

 B1e
2 η

1+d2
t
+B2e

η
1+d2

t
+B3, for η 6= 0,

B1t
2 +B2t+B3, for η = 0,

Rus(Z(t)) =

 C1e
η

1+d2
t
+ C2, for η 6= 0,

C1t+ C2, for η = 0,

for some suitable matrices B1, B2, B3 and vector C1, C2.

Define the vector function,

K(t) = θ(t)− θ∗ with θ∗ = B−1
3 C2.

Then,

�
K (t) =

�
θ (t)

= −Ruu(Z(t))K(t)−Ruu(Z(t))θ∗ +Rus(Z(t)). (4.5)

Define the scalar function b(t),

b(t) =

 ce
m0η
1+d2

t
, for η 6= 0,

ct2 + c
′
, for η = 0,

where m0 = 2 if η > 0 and m0 = 1 otherwise. Choosing positive constants c, c
′
appropri-

ately we get,

| −Ruu(Z(t))θ∗ +Rus(Z(t))| ≤ b(t) for all t.

The matrix Ruu(Z(t)) is positive definite for all t, and it’s minimum eigen value is greater

than σ2
n for all t. Thus, for any vector K, the inner product,

〈
�
K (t), K

〉
≤ −σ2

n|K|2 + b(t)|K|
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=
[
−σ2

n|K|+ b(t)
]
|K|.

Therefore by Global existence theorem (pp 169 - 170 of [42]), the ODE (4.5) and hence

the ODE (4.4), has a unique solution for any finite time. This solution is bounded by the

solution of the ODE (after choosing the initial conditions properly),

�
k (t) = −σ2

nk(t) + b(t),

if we show that the above scalar ODE has a unique solution for any finite time. But this

is immediately seen as the solution of this ODE is given by,

k(t) = c1e
−σ2

nt + e−σ2
nt

∫ t

0

eσ2
nτb(τ)dτ,

where c1 is a constant depending on the initial conditions. For η 6= 0, the solution is given

by,

k(t) = c
′
1e
−σ2

nt +c2e
m0η
1+d2

t
.

For η = 0,

k(t) ≤ c1e
−σ2

nt +

∫ t

0

b(τ)dτ

≤ c1e
−σ2

nt + c2t
3 + c3t.

This proves the first statement of the Lemma.

For stable channels, i.e., with η < 0, from this upper bound it is easy to see that θ∗

becomes the unique global exponentially stable attractor.

When Z(t) is given by a hyperbolic cosine curve or by an exponential hyperbolic cosine

curve (these are not stable channels), the proof goes through in a similar manner, because

Z(t) in that case will be sum of a constant term and two exponentials.

When Z(t) is given by a polynomial curve (Z(t) = C1t
2 + C2), the proof once again

goes through in a similar manner (a higher degree polynomial upper bounds the solution
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now).

When Z(t) is a cosine/ exponential cosine curve, the proof goes through also because

a cosine term is always upper bounded. This case includes a stable channel (exponentially

decaying cosine curve). In this case the exponential term can dominate the solution and

one can easily see that the equalizer ODE once again has a unique global exponentially

stable attractor. �

AR(p) process for any p ≥ 1 :

One can also try to show that the equalizer tracking an AR(p) process (2.3) can be

approximated by the solution of the system of ODEs,

�
Z (t) =

1

1 +
∑n

i=2(i− 1)di

[
E(W1) +

∑n
i=1 di − 1

µ
Z(t)

]
,

�
θ (t) = −Ruu(Z(t))θ(t) +Rus(Z(t)).

We have simulated some examples using an AR(4) process and one can see from Figure

4.12 in Section 4.5, that the solution of the above ODE approximates the equalizer and

the AR(4) process well.

4.3 Performance Analysis

We will show that a linear equalizer tracks the instantaneous Wiener filter when the chan-

nel is modeled as an AR(2) process. That is, we will show that the error between the

linear equalizer and the instantaneous Wiener filter decays to zero. We study this perfor-

mance using the solutions of the ODE’s (4.3), (4.4) which approximate the trajectory of

the channel and equalizer adaptation closely for small values of µ. We will also analyze

the time evolution of the difference between the instantaneous MSE of the linear equalizer

and the instantaneous MMSE. At the end of this section we obtain an optimum step size

for LMS, when the channel enjoys exponential decay of the error E(t) (defined below).

We define the error process E(t) as the error between the equalizer θ(t) and the Wiener
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filter corresponding to the channel value at t, i.e.,

E(t)
4
= θ(t)− θ∗(t) where (4.6)

θ∗(t)
4
= [Ruu(Z(t))]−1Rus(Z(t)).

Let M(t) define the difference between the MSE and the MMSE at time t, i.e.,

M(t)
4
= g(θ(t), t)− g(θ∗(t), t),

where the MSE g(θ, t) at time t with the equalizer θ is given by,

g(θ, t) =
[
θtRuu(Z(t))θ − 2Rus(Z(t))θ + E(s2

k)
]
.

By direct computations,

M(t) = E(t)tRuu(Z(t))E(t).

Hence,

|M(t)| ≤ |Ruu(Z(t))| |E(t)|2 . (4.7)

We will show that the error process E(t) decays to zero, exponentially for an AR(2)

process with d1 + d2 6= 1 and at rate 1
t

for an AR(2) process with d1 + d2 = 1. We also

show that M(t) decays exponentially for a stable AR(2) process and that it does not

explode with time for an unstable process. The processes E(t), M(t) remain bounded

for a marginally stable channel. The stable process is dealt with in Subsection 4.3.1 and

the unstable process in Subsection 4.3.2. A Marginally stable channel is considered in

Subsection 4.3.3.
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4.3.1 Stable Channels

Initially we will work with a stable AR(2) process. A stable AR(2) process has all the

poles inside the unit circle and hence satisfies ([25]), d1 + d2 < 1, d1 − d2 > −1 and

|d2| < 1. In this case, η = (d1 + d2 − 1)/µ < 0 and the solution of the channel ODE (4.3)

will be an exponential curve

Z(t) = C1e
−γt + C2 (4.8)

where the constants C1 and C2 depend upon the initial condition, and constant γ is

given by − η
1+d2

(note that γ > 0). When d2 is close to −1, a stable channel is better

approximated by an exponentially decaying cosine curve (solution of the second order

ODE). However the exponential term dominates the behavior and hence the performance

analysis of a stable channel can be understood by studying an exponentially decaying

channel. In this case γ will be given by a = 1+d2

2
√

µ
and hence we will see that the error

decay rate will be given by 1+d2

2
√

µ
(using |eatcos(bt)| ≤ eat, by slight alteration of the proof

of Theorem 4.1, which is given below, we once again obtain exponential error decay at

rate a).

With πC representing the M × L+M − 1 convolutional matrix using vector C,

Ruu(Z(t)) = e−2γtπC1π
T
C1

+ e−γt[πC2π
T
C1

+ πC1π
T
C2

] + πC2π
T
C2

+ σ2
nI,

Rus(Z(t)) = [e−γtπC1 + πC2 ][1 0 · · · 0]T .

It is clear that the ODE (4.3) has a unique global attractor Z∗ = C2. The Wiener filter

θ∗ corresponding to Z∗, is

θ∗ =
(
πC2π

T
C2

+ σ2
nI
)−1

πC2 [1 0 · · · 0]T .

By Lemma 4.1, θ∗ is the unique exponentially stable global attractor for the equalizer

ODE (4.4). The following theorem establishes the exponential decay of the processes

{E(t)} and {M(t)}. For the special case when σ2
n = γ, the term c2 in the Theorem 4.1
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would actually be c2t. Since te−γt → 0 as t→∞ the decay is still ensured. For simplifying

the explanations, we do not consider this case.

Theorem 4.1 The processes E(t), M(t) decay exponentially with time:

|E(t)| ≤ c1e
−σ2

nt + c2e
−γt,

|M(t)| ≤ c′1e
−2σ2

nt + c′2e
−2γt.

Proof : We will show below exponential decay of the error process E(t). Then from

(4.7), the process M(t) also decays exponentially, as, Ruu(Z(t)) is bounded by a constant

for all t.

The derivative of the error E(t) is given by,

�
E (t) = −Ruu(Z(t))θ(t) +Rus(Z(t))−

�
θ∗ (t)

= −Ruu(Z(t))E(t)−
�
θ∗ (t). (4.9)

The matrix Ruu(Z(t)) is positive definite for all t, and it’s minimum eigen value is greater

than σ2
n for all t. Therefore |[Ruu(Z(t))]−1]| ≤ σ−2

n for all t. Hence by direct calculations

from (4.8), ∣∣∣∣ �
θ∗ (t)

∣∣∣∣ =

∣∣∣∣[Ruu(Z(t))]−1

(
�

Ruu (Z(t))θ∗(t)−
�

Rus (Z(t))

)∣∣∣∣
≤ 1

σ2
n

∣∣∣∣( �
Ruu (Z(t))θ∗(t)−

�
Rus (Z(t))

)∣∣∣∣
a

≤ 1

σ2
n

(
c̃1e

−γt 1

σ2
n

+ c̃2e
−γt

)
≤ ce−γt,

for some appropriate scalar positive constants c̃1, c̃2 and c. For proving inequality a, we

used |Ruu(Z(t))]−1| ≤ σ−2
n , e−2r < e−r for any positive r and that |ABC| ≤ |A||B||C| for

any matrices A,B and vector C.

Define scalar function, b(t)
4
=ce−γt. Then using equation (4.9), for any vector E, the
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inner product

〈
�
E (t), E

〉
= 〈−Ruu(Z(t))E,E〉 −

〈
�
θ∗ (t), E

〉
≤ −σ2

n|E|2 + b(t)|E|

=
[
−σ2

n|E|+ b(t)
]
|E|.

By Global Existence theorem ([42], pp 169, 170) the solution of the ODE (4.9) will be

bounded by the solution of the scalar ODE,

�
e (t) = −σ2

ne(t) + b(t)

when the initial condition e(0) = |E(0)| and E(0) is the initial condition of the error ODE

(4.9). Thus the solution of the error ODE (4.9) satisfies

|E(t)| ≤ e(t)

= c1e
−σ2

nt + c2e
−γt

with c1 + c2 = |E(0)| . �

4.3.2 Unstable Channels

Now we consider unstable channels. An AR(2) process approximating such a channel is

given by,

Z(t) = C1r(t) + C2

where r(t) is given by,

r(t) =

 eγt, d1 + d2 > 1,

t, d1 + d2 = 1.
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Note that γ = η
1+d2

. A hyperbolic cosine curve and a square curve (r(t) = t2) are another

class of unstable channels. But they behave similar to the above channels and hence it

suffices to study the above unstable channels. For these channels,

Ruu(Z(t)) = B1r(t)
2 +B2r(t) +B3, (4.10)

Rus(Z(t)) = C1r(t) + C2,

for some suitable matrices B1, B2, B3 and vectors C1, C2.

E(t) process for an unstable channel :

The following theorem shows that the error E(t) given by equation (4.6) decays to zero,

exponentially for an AR(2) process with d1 + d2 > 1 and at rate 1
t

for a process with

d1 + d2 = 1. We will be dealing with the process M(t) for an unstable channel at the end

of this subsection.

Theorem 4.2 The error process E(t) satisfies:

|E(t)| ≤ c1e
−σ2

nt + 1{t>T}
c2
r(t)

,

for some T <∞.

Proof : The derivative of the error E(t) is given by,

�
E (t) = −Ruu(Z(t))θ(t) +Rus(Z(t))−

�
θ∗ (t)

= −Ruu(Z(t))E(t)−
�
θ∗ (t). (4.11)

The matrix Ruu(Z(t)) is positive definite for all t. We upper bound the norm of its inverse

in the following. From (4.10)

|Ruu(Z(t))| ≥ |B1|r(t)2 − |B2|r(t)− |B3|.
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The matrix B1 = πCπ
T
C for some vector C and hence is a positive definite matrix unless

C = 0. Therefore, |B1| > 0. Thus, it is possible to choose T ≥ 1 large enough such that,

|B1| −
|B2|
r(t)

− |B3|
r(t)2

> β > 0 for all t ≥ T,

eσ2
nt

t2
> eσ2

nt1

t21
for all t ≥ T, t > t1.

The second inequality is required for r(t) = t and it’s use will become evident in the last

step of the proof. Defining,

f(t)
4
=


α
′

r(t)2
, t > T,

α
′

σ2
n
, 0 ≤ t ≤ T,

and choosing α
′

appropriately we can get |[Ruu(Z(t))]−1| ≤ f(t) for all t. By direct

calculations we get,∣∣∣∣ �
θ∗ (t)

∣∣∣∣ =

∣∣∣∣[Ruu(Z(t))]−1

(
�

Ruu (Z(t))θ∗(t)−
�

Rus (Z(t))

)∣∣∣∣
≤ f(t)

∣∣∣∣( �
Ruu (Z(t))θ∗(t)−

�
Rus (Z(t))

)∣∣∣∣
≤ f(t)

(
c̃1r(t)

dr(t)

dt
f(t)r(t) + c̃2

dr(t)

dt
+ c̃3

)

for some appropriate scalar positive constants c̃1, c̃2, c̃3. Defining,

b(t)
4
=


ce−γt, d1 + d2 > 1 and t > T,

ct−2, d1 + d2 = 1 and t > T,

c
′
, 0 ≤ t ≤ T,

and choosing the positive constants c, c
′
appropriately, we can ensure that b(t) is a con-

tinuous function and ∣∣∣∣ �
θ∗ (t)

∣∣∣∣ ≤ b(t)
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for all t ≥ 0. Using equation (4.11), for any vector E, the inner product

〈
�
E (t), E

〉
= 〈−Ruu(Z(t))E,E〉 −

〈
�
θ∗ (t), E

〉
≤ −σ2

n|E|2 + b(t)|E|

=
[
−σ2

n|E|+ b(t)
]
|E|.

By Global Existence theorem ([42], pp 169, 170) the solution of the ODE (4.11) will

be bounded by the solution of the scalar ODE,

�
e (t) = −σ2

ne(t) + b(t)

when the initial condition e(0) = |E(0)|, where E(0) is the initial condition of the error

ODE (4.11). Thus the solution of the error ODE (4.11) is bounded as before by,

|E(t)| ≤ e(t)

= c
′

1e
−σ2

nt + e−σ2
nt

∫ t

0

eσ2
nτb(τ)dτ

≤ c
′

1e
−σ2

nt + e−σ2
ntc

′
∫ min{T,t}

0

eσ2
nτdτ + 1{t>T}e

−σ2
nt

∫ t

T

b(τ)eσ2
nτdτ

≤ c
′′

1e
−σ2

nt + 1{t>T}e
−σ2

nt

∫ t

T

b(τ)eσ2
nτdτ.

Thus for r(t) = eγt, the proof is complete.

For r(t) = t, b(t) = ct−2 and hence the second term in the above expression is upper

bounded for all t ≥ T by,

e−σ2
nt

∫ t

T

b(τ)eσ2
nτdτ = ct−2

∫ t

T

τ−2eσ2
nτ

t−2eσ2
nt
dτ

≤ ct−2

∫ t

T

d(τ)

= ct−2(t− T ) ≤ ct−1.
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The above inequality follows by the choice of T . �

M(t) process for an unstable channel :

By Theorem 4.2 the error process E(t) decays exponentially/polynomially with time for

any unstable AR(2) process. We also have,

|Ruu(Z(t))| ≤ b1r(t)
2 + b2

for some constants b1, b2. Hence from equation (4.7), one can upper bound the process

M(t) as

|M(t)| ≤ c′1e
−2σ2

ntr(t)2 + c′2.

Thus M(t) does not explode with time as long as e−2σ2
ntr(t)2 does not. This will not

happen unless r(t) = eγt with γ > σ2
n. In this case, by using the optimum step size µ∗

(defined at the end of this Section) one can again ensure that M(t) does not explode with

time. Hence M(t) does not explode with time for any unstable channel (by choosing the

optimum step size µ∗ if required).

4.3.3 Marginally stable Channels

A Marginally stable channel (d1 < 2 and d2 = −1) is approximated by a cosine waveform.

For this channel, we are not able to show that the error decays with time. However, using

similar steps as before, one can see that the processes E(t) and M(t) remain bounded

with time. In fact, for this case, we can see in Section 4.5 that, the error may not decay

to zero.
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4.3.4 Optimum Step-size for channels with exponential error

decay

Theorems 4.1 and 4.2 show that for an AR(2) process with d1 + d2 6= 1, if the channel

noise variance σ2
n and/or |η|

1+d2
is large, the decay will be faster. Our examples in Section

4.5 will verify this dependence. But this does not imply that the system performance is

improved with larger σ2
n. With σ2

n increasing, the variation in the Wiener filter reduces

(note that the performance of the Wiener filter itself worsens as σ2
n increases) and hence

error between the Wiener filter and the actual equalizer decays faster. We will also see

this in the simulations in Section 4.5. But below we will use this dependence to obtain a

step size that optimizes the decay rate for any σ2
n.

With d1 +d2 6= 1, we see that the error decays exponentially at a rate which is equal to

the minimum of σ2
n and |d1+d2−1|

µ(1+d2)
. By introducing a constant r in the equalizer adaptation

θk+1 = θk − µrUk(θ
T
k Uk − sk),

we see that the error Er(t) (we introduce the subscript r to show the dependency on factor

r) decays as

|Er(t)| ≤ c1e
−rσ2

nt + c2e
−|d1+d2−1|

µ(1+d2)
t
.

This decay is obtained in the same way as in Theorem 4.1, the only difference being

that |rRuu(Z(t))| is now lower bounded by rσ2
n. Then the error decay rate is equal

to the minimum of rσ2
n and |d1+d2−1|

µ(1+d2)
. If σ2

n << |d1+d2−1|
µ(1+d2)

, the error decay rate reduces

considerably, which can be compensated by choosing an appropriate scaling factor r.

Hence one can choose the optimum r∗ = max
{
|d1+d2−1|
σ2

nµ(1+d2)
, 1
}

, to achieve the fastest decay

in the error. But note that this decay only considers the first order analysis and hence if

the value of r is very large such that the overall equalizer adaptation step-size r∗µ is large

then, one must choose a smaller r. We will denote the optimal step size r∗µ by µ∗.

In Section 4.5, we will show that the improvement obtained by µ∗ can be significant.
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4.4 Complex Channel and inputs

In this section we will study a linear complex equalizer that adaptively equalizes a complex

channel whose inputs are complex signals from a finite alphabet. We will see that the

theorems and their proofs are simple extensions of the real case. The same will hold

good for the other systems studied in this thesis. Thus, we will not explicitly provide this

extensions in the rest of the thesis.

We introduce an extra notation in this section. For any complex matrix, E = Er +iEi,

we denote the corresponding double dimensional real matrix by f(E), which is defined

as,

f(E)
4
=

 Er

Ei

 .
We use E∗ to denote the conjugate transpose of the complex matrix E. The rest of

the notations remain same as before except that now all symbols will represent complex

signals.

The channel, the channel output and the equalizer adaptation with complex inputs

and signals can be written as,

Zk+1 = d1Zk + d2Zk−1 + µWk,

Uk = πkSk +Nk,

θk+1 = θk − µUk (θ∗kUk − sk)
∗ . (4.12)

Here Nk ∼ CN (0, σ2
nI), Wk ∼ CN (0, I) are IID complex circularly symmetric Gaussian

vectors independent of each other and independent of the complex IID vector sequence

Sk coming from a finite alphabet.

We define θ̃k:=f(θk), Z̃k:=f(Zk), which are real vectors. Defining,

GT
k+1:=[f(Uk)

T ; f(Sk)
T ], one can rewrite the complex equalizer adaptation (4.12) and the
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channel adaptation, in the equivalent real domain as,

Z̃k+1 = d1Z̃k + d2Z̃k−1 + µf(Wk),

θ̃k+1 = θ̃k + µH1(θ̃k, Gk+1) where

H1(θ̃k, Gk+1) = f(Uks
∗
k)− Akθ̃k where,

Ak =


Uk,rU

T
k,r + Uk,iU

T
k,i Uk,rU

T
k,i − Uk,iU

T
k,r

−Uk,rU
T
k,i + Uk,iU

T
k,r Uk,rU

T
k,r + Uk,iU

T
k,r

 .

Once again, {Gk} is a process, whose transition probabilities PZk
(G,A), are a function

of Z̃k alone. Thus condition B.1 is satisfied. B.2 is also satisfied as in Section 4.2.

Fixing channel Zk = Z for all k, it is easy to see that {Gk(Z̃)}, where Z̃ = f(Z), has

a stationary distribution given by,

Πf(Z)(f(A1)× f([s1, s2, · · · sn])) = Prob(S = [s1, s2, · · · sn])

Prob(N ∈ A1 − πZ [s1, s2, · · · sn]T ).

Define,

Ruu(Z̃)
4
= EZ̃Ak(Z̃),

Rus(Z̃)
4
= EZ̃f(Uk(Z̃)s∗k),

h1(Z̃, θ̃)
4
= EZ̃(H1(θ̃, G(Z̃)) = −Ruu(Z̃)θ̃ +Rus(Z̃),

νZ̃(G)
4
=

∑
k≥0

P k
Z(H1(θ̃, G)− h1(θ̃, Z̃)).

Once again, we see that the conditions B.3 a, b are met using these definitions. Also, it

is easy to see that,

[Ruu(f(Z))] f(θ) = f
([
πZπ

∗
Z + σ2

nI
]
θ
)
,
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Rus(f(Z)) = f(πZ [1 0 · · · 0]T ),

which shows that the instantaneous Wiener filter is a zero of the gradient vector h1(., .)

at that time.

As in Section 4.2, using Proposition 4.1, we can prove condition B.3.c. Condition B.4

can also be verified as in Section 4.2. It is trivial to see that the conditions A.1–A.3 are

also satisfied.

Thus the conditions B.1–B.4 and A.1–A.3 required in Theorem A.1 are met for the

complex linear equalizer and the complex AR(2) process. Thus, for any complex linear

equalizer adaptively equalizing a complex AR(2) process with a small µ, one can ap-

proximate their joint trajectory {(Z̃k, θ̃k) = f((θk, Zk))} by the solution of the system of

ODEs,

(1 + d2)
�

Z̃ (t) =
[
E(W ) + ηZ̃(t)

]
, if d2 ∈ (−1, 1],

d2Z̃(t)

dt2
=

[
E(W ) + ηZ̃(t)

]
, if d2 = −1,

d2Z̃(t)

dt2
+ η1

�

Z̃ (t) =
[
E(W ) + ηZ̃(t)

]
, if d2 is close to − 1, (4.13)

�

θ̃ (t) = −Ruu(Z̃(t))θ̃(t) +Rus(Z̃(t)), (4.14)

where η
4
=d1+d2−1

µ
and η1

4
=1+d2√

µ
. The approximation holds for all finite T > 0 because as

we show below, this ODE has a unique bounded solution for all initial conditions and for

all time.

Writing the ODE’s directly in terms of the complex channel and equalizer co-efficients

we get,

(1 + d2)
�
Z (t) = [E(W ) + ηZ(t)] , if d2 ∈ (−1, 1],

d2Z(t)

dt2
= [E(W ) + ηZ(t)] , if d2 = −1,

d2Z(t)

dt2
+ η1

�
Z (t) = [E(W ) + ηZ(t)] , if d2 is close to − 1, (4.15)
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�
θ (t) = −

[
πZ(t)π

∗
Z(t) + σ2

nI
]
θ(t) + πZ(t)


1

0
...

0



T

. (4.16)

Once again, ODE (4.13) has a unique solution which is similar to the solution (2.2),

the only difference being that it will be in a double dimensional space. As in Lemma 4.1,

we obtain the following.

Lemma 4.2 The ODE (4.14) and hence the ODE (4.16), has an unique bounded solution

for all initial conditions and for all time. For a stable AR(2) process (η < 0 and d2 6= −1)

the ODE (4.14) and hence the ODE (4.16), has an unique exponentially stable global

attractor.

Defining the error process E(t) as in Section 4.3,

E(t)
4
= θ̃(t)− θ̃∗(t) where

θ̃∗(t)
4
= [Ruu(Z̃(t))]−1Rus(Z̃(t)).

But the process θ̃∗(t) is the double dimensional real vector formed from the real part and

complex part of the instantaneous Wiener filter θ∗(t), i.e., θ̃∗(t) = f(θ∗(t)). Hence,

|E(t)| = |θ(t)− θ∗(t)|.

Repeating all the steps in Section 4.3, we get the following theorem.

Theorem 4.3 The error process E(t) decays exponentially/polynomially with time:

|E(t)| ≤ c1e
−σ2

nt + c2


e
−|η|
1+d2

t
, if η 6= 0 and d2 6= −1,

1
t
, if η = 0 and d2 6= −1,

1
t2
, if η = 0 and d2 = −1.
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The above theorem shows that for a complex linear equalizer adaptively equalizing

a complex AR(2) process the error between the equalizer value and the instantaneous

Wiener filter decays, exponentially if d1 + d2 6= 1 and otherwise at the rate 1
t

(Just like

in Section 4.3). Once again as in Section 4.3 M(t), the difference between the MSE and

MMSE at time t, reduces exponentially to zero for a stable channel and does not explode

with time for an unstable channel.

4.5 Examples

In this section via examples we illustrate the theory developed so far. We consider a

three-tap channel with a two tap equalizer. Wk ∼ N (Mn, 1) for varying values of mean

Mn. The input is BPSK.

In the first example, we set d1 = 0.6, d2 = 0.3995 and µ = 0.001. This is a stable

channel. The results are plotted in Figure 4.2. In first subfigure of Figure 4.2, we plot the

actual trajectory and the ODE solution of the AR(2) process. In the second subfigure, we

plot the corresponding equalizer trajectory and the ODE solution for two different values

of σ2
n. We also, plot the instantaneous Wiener filter in the same figure.

It is clear from both the sub figures, that the ODE solutions approximate the actual

trajectories well. Figure 4.2 also shows that the error E(t) decays faster with σ2
n = 0.5.

This is also evident from Theorem 4.1. But as one can see from the second sub figure

of Figure 4.2, this is mainly because the Wiener filter itself does not change much with

time for the same channel if the noise variance is increased. We have also varied d1, d2

values keeping Mn, η fixed and seen that the decay rate increases with decrease in d2,

which is once again evident from Theorem 4.1. We can obtain a better performance, even

with smaller σ2
n (or bigger d2) by using an optimum step-size for the equalizer µ∗ given in

Section 4.3. We will show the improvement with µ∗ in subsequent figures.

In Figure 4.3, we plot the equalizer and the channel trajectories for d1 +d2 = .8, which

is away from 1 . Now we have taken µ = 0.01. We can see that when 1 − (d1 + d2) is

large, the AR(2) process converges faster to the attractor and this channel will be like a

channel without drift. In this case, it is very close to an IID Gaussian random variable.
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Figure 4.2: Trajectories of the Channel, the LE coefficients along with the Wiener filter
for a stable channel.
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Figure 4.3: Trajectories of the Channel, the LE coefficients along with the Wiener filter
for a stable channel with d1 + d2 = 0.8 << 1.

This is also evident from the theory developed as in this case |η| will be larger. One can

also see from figures that the approximation is accurate even for d1 + d2 away from 1.

Furthermore, because of larger µ, the equalizer trajectory is more random.

In Figure 4.4, we plot the AR(2) process and the equalizer coefficients for an unstable

AR(2) process. We set d1 = 0.9, d2 = 0.1001 and µ = 0.001. We see that the AR(2)

process is unstable, as d1 + d2 = 1.001 > 1. Thus the AR(2) parameters are converging

towards infinity exponentially, as is shown by theory. We can also see that the ODE

approximation is very accurate even in this case.
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Figure 4.4: Trajectories of the Channel, the LE coefficients along with the Wiener filter
for an unstable channel.
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In Figure 4.5, we plot the error between the actual equalizer trajectory and the Wiener

filter, i.e., |θk − θ∗(tk)|2. In this figure, we varied the noise variance σ2
n keeping the

remaining parameters fixed. The plots in the Figure 4.5 confirm the results of Theorem

4.1. They show that the error decays faster with larger σ2
n. However, by using a bigger

step size µ∗ obtained in Section 4.3, we see that the error decays fast even for smaller σ2
n

(Figure 4.8).

In Figure 4.7, we plot the channel coefficients and the equalizer coefficients for a

complex channel and a complex linear equalizer. Once again, we are consider a three-tap

channel and a two-tap equalizer. In these figures, we plot both the real and imaginary

parts of the coefficients separately. In Figure 4.6, we plot the corresponding error curve

|θk−θ∗(tk)|2. We see that the ODE approximation is very close even for a complex channel

and equalizer. We also see that the error reduces to zero exponentially.

In Figure 4.8, we plot the equalizer coefficients and the ODE solution for different step

sizes. The channel model remains the same for both the values of step sizes. We see that

with a step size of µ∗ (defined at the end of Section 4.3), the error between the Wiener

filter and the ODE solution (hence the actual equalizer trajectory) decreases very fast.

In Figure 4.9, we consider a special case, when d2 = −1. We set d1 < 2, to get a

marginally stable AR(2) process, whose trajectory is approximated by a cosine waveform.

Even in this case, both the channel ODE and the equalizer ODE solutions well approxi-

mate the actual trajectories. For this case, we could not get a result on the optimal step

size, µ∗, as in Section 4.3. We still choose a better step size for the equalizer by trial and

error and obtained the equalizer ODE solution (and hence the actual equalizer trajectory)

well approximating the Wiener filter.

In Figure 4.10, we consider a stable channel with d2 is close to −1. In this case,

as is shown theoretically, a better ODE approximation is obtained by a second order

ODE. Here, the channel trajectory is approximated by an exponentially reducing cosine

waveform. We considered an AR(2) process, which approximates the fading channel with

band limited and U-shaped spectrum and received with fdT = 0.01 (fdT represents the

product of maximum Doppler frequency and the actual data sampling time). We once
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i.e., for a marginally stable channel.
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again obtained a better step size for the equalizer by trial and error and got the equalizer

ODE solution (and hence the actual equalizer trajectory) providing good approximation

to the Wiener filter.

We plot the instantaneous MSE versus time in Figure 4.11. We plot it for the channel

of Figure 4.2 and for two values of noise variances σ2
n, 0.1 and 1.0. We can see from

the figure that the MSE converges exponentially to the steady state value as is given by

Theorem 4.1.
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Figure 4.11: MSE Versus Time for a LE

Finally, we plot the AR(4) process and the corresponding equalizer trajectories in

Figure 4.12. We see that the ODE solution once again approximates the actual trajectories

well. We also used the optimal step size defined in Section 4.3. We see that the error
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Figure 4.12: Trajectories of AR(4) process, LE coefficients with r = r∗, the optimum
defined in Section 4.3.

between the instantaneous Wiener filter and the actual equalizer trajectories really decays

fast. Do note that, as for an AR(2) process (e.g., when d2 = −1), there will be different

values of d1, d2, d3, d4 for which the exponential curve will not approximate the channel

trajectory.

Also note that in some of the figures provided above, the equalizer ODE (and actual

equalizer trajectory) is initialized away from the Wiener filter of initial channel state Z(0).

Conclusions

In this chapter we study an LMS-linear equalizer tracking a time varying channel modeled

by an AR(2) process (which is approximated by an ODE in Chapter 2). We obtain the

first order analysis of the error, which is defined as the deviation of the equalizer value

from the instantaneous Wiener filter. Towards this end we obtained the ODE of a general

system whose components may depend upon 2 previous values, in Appendix I at the

end of the thesis. Using this general system, we showed that one can obtain an ODE

approximation for a linear equalizer while tracking an AR(2) process for any finite time

T . For a stable channel (d2 6= −1 and d1 + d2 < 1), we showed that the error between the

equalizer and the Wiener filter falls exponentially with time. For an unstable channel the

error decays exponentially if d1 + d2 6= 1. For an unstable channel with d1 + d2 = 1, the

error decays at the rate 1
t

if d2 6= −1 and at the rate 1
t2

if d2 = −1. But for a Marginally
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stable channel (d2 = −1 and d1 < 2), the AR(2) process is approximated by a cosine

waveform (Figure 4.9) and the error does not decay to zero but remains bounded in time.

The MSE is shown to approach the instantaneous MMSE exponentially with time

when the channel is stable. It is also shown that the difference between the MSE and

the MMSE does not explode with time even when the channel explodes (in case of an

unstable channel).

We obtained an optimal step size for the linear equalizer tracking an AR(2) process

when d2 6= −1 and d1 + d2 6= 1 (i.e., when the error decay is exponential). This can

substantially increase the rate of decay of the error.

We suggested a system of ODEs, whose solution can approximate an AR(p) process

with p > 2 and the corresponding linear equalizer trajectory.

For simplicity, we have only shown the theory for the case when all the taps of the

channel are given by the same AR(2) process. But in simulations we have used different

AR(2) processes for different channel taps (we only varied the mean E(W1) in our simu-

lations, one can also use different d1, d2 for different taps). The extension of the theory

to the general case is very easy. The only thing to note here is that the error decay rate

is governed by σ2
n as well as η of the tap for which |η| is the smallest.

In this Chapter we have not considered the problem of designing an equalizer with

delays greater than one. This is once again done to keep the discussions simple and the

analysis can be easily extended.

Appendix A

In this section we prove the Proposition 4.1 that is used in this chapter as well as the

next chapter. This is obtained after modifying the Proposition 10, p.270, [4] to suit our

setup. We use the notations of Section 4.1.

Let the process {Gn}, taking values in Rp and parameterized by (θ, Z), be defined by,

Gn+1 = A(θ, Z)Gn +B(θ, Z)Wn+1, (4.17)
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where A(θ, Z) is a p× p matrix, B(θ, Z) is a p× p′ matrix and {Wn} is a sequence of IID

random variables taking values in Rp′ .

The following definitions are used. For any given function g, for any p ≥ 0 we set,

||g||∞,p = sup
G

|g(G)|
1 + |G|p

,

[g]p = sup
G6=G′,i

|g(G)− g(G′)|
|G−G′|

(
1 + |G|p + |G′|p

) ,
Li(p) = {g; [g]p <∞} ,

Np(g) = sup
{
||g||∞,p+1 [g]p

}
.

A function f(θ, Z,G), differentiable wrt G, is of class Li(Q) if there exist positive

constants, L1, L2, p1 and p2 such that,

• For all (θ, Z) ∈ Q, Np1(f(θ, Z, .)) ≤ L1.

• For all (θ, Z), (θ′, Z ′) ∈ Q, all G,

|f(θ, Z,G)− f(θ′, Z ′, G)| ≤ L2 |(θ, Z)− (θ′, Z ′)| (1 + |G|p2) .

A function f(θ, Z,G) is of class Li1(Q) if there exist positive constants, L1, L2, p1 and p2

such that,

• For all (θ, Z) ∈ Q, |f(θ, Z, 0) +Np1(f
′(θ, Z))| ≤ L1,

• For all (θ, Z), (θ′, Z ′) ∈ Q, |f(θ, Z, 0)− f(θ′, Z ′, 0)| ≤ L2 |(θ, Z)− (θ′, Z ′)| ,

• For all (θ, Z), (θ′, Z ′) ∈ Q, all G,

|f ′(θ, Z,G)− f ′(θ′, Z ′, G)| ≤ L2 |(θ, Z)− (θ′, Z ′)| (1 + |G|p2) .

We assume the following:

X.1 For all p ≥ 0, ||Wn||p ≤ µp <∞.
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X.2 Let (θ, Z) take values in a subset Q. There exist positive constants, α1, α2, β1, β2,

M and ρ ∈ (0, 1) such that for all (θ, Z), (θ′, Z ′) ∈ Q, and all n ≥ 0,

(a) |A(θ, Z)| ≤ α1,

(b) |A(θ, Z)− A(θ′, Z ′)| ≤ α2 |(θ, Z)− (θ′, Z ′)|,

(c) |An(θ, Z)| ≤Mρn,

(d) |B(θ, Z)| ≤ β1,

(e) |B(θ, Z)−B(θ′, Z ′)| ≤ β2 |(θ, Z)− (θ′, Z ′)|.

We make a slight modification to the Proposition 10. Here the adaptive process {θk}

is modified as in Proposition 10, [4]. However the Markov chain {Gk} is parametrized by

(θ, Z) in contrast to a single parameter θ of the Proposition 10. Hence only the above

assumptions have changed appropriately. One can easily see that the proof goes through

even with this modification.

Proposition 4.1 Let D be an open subset. Suppose the linear dynamical process (4.17),

satisfies the assumptions X.1, X.2 for any compact set Q of D. Let,

θn+1 = θn + γn+1H(θn, Gn+1),

with {γn+1} a sequence of positive steps. If H or Pθ,ZH(θ, .) =
∫
H(θ, y)Pθ,Z(., dy) (the

expectation of the function H(θ, .) wrt the one-step transition measure Pθ,Z) is of class

Li(Q) (Li1(Q)), for any compact set Q of D, then {θn, Zn} satisfies the following for all

λ < 1 (λ = 1):

There exists a function h1 on D, and for each θ, Z ∈ D a function νZ,θ(.) such that

1. h1 is locally Lipschitz on D.

2. (I − Pθ,Z)νθ,Z(G) = H1(θ, Z,G)− h1(θ, Z).

3. For all compact subsets Q of D, there exist constants C3, C4, q3, q4 and λ ∈ [0.5, 1],

such that for all θ, Z, θ
′
, Z

′ ∈ Q
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(a) |νθ,Z(G)| ≤ C3(1 + |G|q3),

(b) |Pθ,Zνθ,Z(G)− Pθ′ ,Z′νθ′ ,Z′ (G)| ≤ C4 (1 + |G|q4)
∣∣(θ, Z)− (θ

′
, Z

′
)
∣∣λ.

Proof : It is easy to see that the Lemma 8 p.266 and Lemma 9 p.268 of [4] goes through

with θ replaced by ordered pair (θ, Z) as the above assumptions are just the assumptions in

Proposition 10 with θ replaced with the ordered pair (θ, Z). By modifying the statements

of Theorem 5, p. 259 and Theorem 6, p. 262 (by replacing θ with the ordered pair (θ, Z))

it is easy to see that the remaining proof of the Proposition goes through as in [4] (note

that the {θn} updation is similar to that of Proposition 10 p. 270). �



Chapter 5

DD-LMS-LE versus WF for a

Wireless Channel

We consider a time varying wireless fading channel, equalized by an LMS linear equalizer

in decision directed mode (DD-LMS-LE). We study how well this equalizer tracks the

optimal Wiener equalizer. We also examine when this equalizer can be used, i.e., when

one can switch over to the DD mode.

We first study a DD-LMS-LE on a fixed channel. We obtain an ODE approximation

for its trajectory. Using this ODE, we obtain the existence of DD attractors near the

corresponding Wiener filter at high SNRs. We also show via some examples that for large

noise variances (i.e., at low SNRs) the DD attractors will not be close to the WF.

Next we study a DD-LMS-LE tracking a time varying wireless channel, modeled by an

AR(2) process of Chapter 2. We use the stochastic approximation theorem of Appendix I,

provided at the end of the thesis, and obtain an ODE approximation for the DD-LMS-LE.

Using this ODE approximation, we illustrate via some examples, that a DD-LMS-LE can

indeed track an AR(2) process reasonably (the DD-LMS-LE trajectory is quite close to

the instantaneous WFs) as long as the SNR is high (when properly initialized). With

increase in noise variance the DD algorithm loses out.

This chapter is organized as follows. In Section 5.1 we explain our model. Section

5.2 studies the decision directed (DD) algorithm on a fixed channel. Section 5.3 obtains

103
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the ODE approximation for a time varying channel. Section 5.4 provides examples to

demonstrate the ODE approximations and the proximity of the DD attractors to that

of the WFs (at high SNRs). Section 5.5 concludes the chapter. The appendices contain

some details on the proofs.

5.1 System Model, Notations and Assumptions

We consider a system consisting of a time varying (wireless) channel followed by an

adaptive linear equalizer. The input of the channel sk comes from a finite alphabet and

forms a zero mean IID process. The channel is a time varying finite impulse response

(FIR) linear filter {Zk} of length L followed by additive white Gaussian noise {nk}. We

assume nk ∼ N (0, σ2). We also assume that {sk} and {nk} are independent of each other.

The channel output at time k is

uk =
L−1∑
i=0

Zk,isk−i + nk,

where Zk,i is the ith component of Zk. At the receiver, the channel output uk passes

through a linear equalizer θk and then through a hard decoder Q. The output of the hard

decoder at time k is ŝk.

In this chapter we consider a linear equalizer updated using the LMS algorithm in

decision directed mode (DD-LMS-LE). For this system, the LE θk, of length M at time

k, is initially updated using a training sequence. After a while, the training sequence is

replaced by the decisions made at the receiver about the current input symbol sk. This is

the decision directed mode.

The output of the hard decoder, ŝk = Q(θt
kUk), where Uk = πkSk +Nk and Sk, Nk, Uk

are the appropriate length input, noise and channel output vectors respectively. We

assume E[SkS
T
k ] = I. Note that the convolutional matrix πk depends upon the channel
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co-efficients Zk · · ·Zk−M+1 and is given by,


Zk,1 Zk,2 · · · Zk,L 0 · · · 0

0 Zk−1,1 · · · Zk−1,L−1 · · · 0

0
...

0 0 · · · Zk−M+1,1 · · · Zk−M+1,L

 .

In this chapter we assume the input to be BPSK, i.e., sk ∈ {+1,−1}. This assumption

is made to simplify the discussions and can easily be extended to any finite alphabet

source. For BPSK, Q(x) = 1{x>0} − 1{x≤0}.

In DD mode, the LE is updated using (ŝk(θ) = Q(θtUk)),

θk+1 = θk − µkUk(θ
T
k Uk − ŝk(θk)) (5.1)

where µk is a positive sequence of step-sizes.

Initially we study the DD system when the channel is fixed, i.e., Zk = Z for all k.

Later, we consider a time varying channel when the channel is modeled by an AR(2)

process:

Zk+1 = d1Zk + d2Zk−1 + µWk. (5.2)

Here Wk is an IID sequence, independent of the processes {sk}, {nk}. An AR(2) process

can capture most of the channel dynamics of a wireless channel, required for the receiver

design ([28]) and has been approximated by an ODE in Chapter 2. Using this ODE

approximation, we obtain the required tracking performance analysis.

The fixed channel is studied in Section 5.2 while the time varying channel in Section

5.3.
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5.2 DD-LMS-LE for a fixed channel

In this section, we assume that the channel is fixed, i.e., Zk = Z for all k. We first obtain

an ODE approximation for it when the step-sizes µk → 0. We then obtain the existence

of DD attractors (ODE) near the corresponding Wiener filters at high SNRs. We show

that as noise variance σ2 tends to zero, these DD attractors tend to the corresponding

WFs.

5.2.1 ODE approximation

DD-LMS-LE for a fixed channel has been approximated by an ODE in [4]. (given by

Theorem 13, p.278) . For convenience, the Theorem 13, p.278, [4] and its assumptions

are reproduced in Appendix D as Theorem 5.3. We start our analysis with this ODE.

Towards this goal, as a first step the DD-LMS-LE algorithm (5.1) is rewritten to fit in

the setup of Appendix D (i.e., as an example of system (5.5))

ξ
k

:=
[
St

k U t
k ŝk

]t
,

H(θ, ξ) := U t
(
θtU − ŝ

)
,

θk = θk−1 − µk−1H(θk−1, ξk
).

Let θ(t, t0, a) denote the solution of the following ODE with initial condition θ(t0) = a

(πZ is the convolutional matrix πk of the previous section for a fixed channel Z),

�
θ (t) = −Ruuθ(t) +Ruŝ(θ(t)),

Ruu = πZπ
t
Z + σ2I,

Ruŝ = E
[
UQ

(
U tθ
)]
.

It is easy to see that the Markov chain {ξk} has a unique stationary distribution for every

θ and that the DD-LMS satisfies all the required hypothesis of Theorem 5.3. Also, as

shown below, the above ODE has a bounded unique solution for any finite time. Hence

one can approximate its trajectory on any finite time scale with the solution of the above
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ODE. We reproduce the precise result below.

For any initial condition θ0 and for any finite time T, with t(r) :=
∑r

k=0 µk, m(n, T ) :=

maxr≥n{t(r)− t(n) ≤ T}

sup
{n≤r≤m(n,T )}

|θr − θ (t(r), t(n), θ0)|
p→ 0

as n → ∞, whenever
∑

k µk = ∞,
∑

k µ
1+δ
k < ∞ for some δ < 0.5, µk ≤ 1 for all k and

lim infk
µk+r

k
> 0 for all r.

As in Lemma 5.1 of Appendix C one can show that, the above ODE has a unique

global bounded solution for any finite time. We will also show the existence of attractors

for this ODE, near WF, at least at high SNRs in the next subsection.

5.2.2 Relation between DD attractors and WFs

In the following we study the desired attractors in more detail. Using implicit function

theorem ([5]), we obtain the existence of DD-LMS attractors close to the WFs at high

SNRs. For this we make an extra assumption: Q
(
θ∗(0)

tπZSk

)
= sk for all Sk and that

πZπ
t
Z is invertible. In the above, θ∗(σ

2
n)
4
=R−1

uuRus, the WF at noise variance σ2
n. These as-

sumptions are generalization of the commonly made assumptions of perfect equalizability

at σ2
n = 0 (see e.g., [16], [21]). Theorem 2 in [16] provides explicit conditions for perfect

equalizability at σ2
n = 0.

Let (note that Ruu, Ruŝ depend on σ2),

f(θ, σ2)
4
= −Ruuθ +Ruŝ(θ),

θ∗(σ2)
4
= R−1

uuRus, where Rus = E[Us].

Note that θ∗(σ2) represents the WF at noise variance σ2, while a DD attractor is a zero

of the function f . At σ2 = 0, by the above mentioned assumptions, Ruŝ(θ
∗(0)) equals

Rus. Hence θ∗(0), the WF at zero noise variance, also becomes a DD attractor. Thus,

(θ∗(0), 0) is a zero of the function f(., .). One can easily verify the following :
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• f(θ, 0) = −Ruuθ + Rus whenever θ ∈ B(θ∗(0), ε) for some ε > 0, where B(x, r) =

{y : |x− y| ≤ r}.

• Thus, ∂f
∂θ

(θ∗(0), 0) = −Ruu and Ruu is invertible.

• Using Lemma 5.2 of Appendix C, f is continuously differentiable.

By implicit function theorem (Theorem 3.1.10, p. 115, [5]), there exists a σ2
0 > 0 and

a unique differentiable function g of σ2 such that, for all 0 ≤ σ2 ≤ σ2
0,

f(g(σ2), σ2) = 0.

Since ∂f
∂θ

(θ∗(0), 0) = −Ruu is negative definite and ∂f
∂θ

is continuous at (θ∗(0), 0), ∂f
∂θ

is

negative definite over a small neighborhood around (θ∗(0), 0). Thus zeros, g(σ2) are DD

attractors for all σ2 small enough. We represent these DD attractors at noise variance

σ2, by θ∗d(σ
2).

We will now relate the DD attractors, θ∗d(σ
2) = g(σ2), to the corresponding WFs,

θ∗(σ2), when σ2 is close to zero. Define h(σ2) = Ruŝ(θ
∗
d(σ

2)). Using dominated con-

vergence theorem and continuity of the map g, one can see that h(σ2) → h(0) = Rus

whenever σ2 → 0. Define

m(θ, σ2, η) = −Ruuθ +Rus + η.

At any noise variance, σ2, m(θ∗(σ2), σ2, 0) = 0 as θ∗(σ2) is the unique WF at noise

variance σ2. Also, the function m is C∞ (infinitely differentiable) in all parameters (note

that Rus is a fixed vector independent of all the parameters whenever input is IID). Hence

once again using implicit function theorem at any noise variance, σ2
0 there exist α, β > 0

and a continuous function γ(., .) such that,

m(γ(σ2, η), σ2, η) = 0 when |η| ≤ β, and
∣∣σ2 − σ2

0

∣∣ ≤ α.

Hence by continuity of the functions γ and h, the WF (which is also given by γ(σ2, 0))
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will be close to the DD attractor, γ (σ2, [Rus −Ruŝ(θ
∗
d(σ

2))]) at low noise variances.

Above we have shown the existence of DD attractors at high SNRs (under zero

noise perfect equalizability conditions), near the corresponding WF (the DD may have

other attractors also, e.g., [38]). The following theorem shows that if the DD mode is

started in the region of attraction of such an attractor, the DD-LMS-LE will converge

to the attractor (and hence close to the WF) almost surely as the step sizes tend to

zero (Proof is presented in the technical report no TR-PME-2007-1 downloadable from

http : //www.pal.ece.iisc.ernet.in/PAM/tech rep07.html).

Theorem 5.1 Let µk = µνk for all k, where
∑

k νk = ∞ and
∑

k ν
1+δ
k <∞. Then there

exist σ2 > 0 and ε > 0 such that, for all σ2
n ≤ σ2 and for all θ′ ∈ B(θ∗d(σ

2
n), ε),

Pθ0=θ′

(
lim
k→∞

θk = θ∗d(σ
2
n)
)
≥ 1− β(µ),

where β(µ) → 0 as µ→ 0.

Therefore, the DD mode should be started when the LE is within the region of attrac-

tion of the above mentioned attractor (e.g., when the ’eye’ has opened, as mentioned in

chapter 11 of [21], [37], [43]). To reach the region of attraction, one starts with a ’good’

initial condition and then uses a training sequence. The region of attraction of the desired

attractor depends upon the channel Z, the input distribution and σ2
n. However, for a given

set of parameters it may be computed via the various available methods ([20]).

5.3 DD-LMS-LE tracking an AR(2) process

In this section we present the ODE approximation for the linear equalizer (5.1) in decision

directed mode when the channel is modeled as an AR(2) process (5.2). Here we set the

step-size µk = µ for all k, to facilitate tracking of the time varying channel. We use

Theorem A.1 of Chapter 4 to obtain the required ODE approximation.

We will show below that the trajectory (θk, Zk) given by equations (5.1), (5.2) can be
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approximated by the solution of the following system of ODEs,

(1 + d2)
�
Z (t) = [E(W ) + ηZ(t)] , if d2 ∈ (−1, 1],

d2Z(t)

dt2
= [E(W ) + ηZ(t)] , if d2 = −1,

d2Z(t)

dt2
+ η1

�
Z (t) = [E(W ) + ηZ(t)] , if d2 is close to − 1, (5.3)

�
θ (t) = −Ruu(Z(t))θ(t) +Ruŝ(θ(t), Z(t)), (5.4)

η
4
=

d1 + d2 − 1

µ
, η1 =

1 + d2√
µ

Ruu(Z)
4
= EZ

[
U(Z)U(Z)T

]
= (πZπ

T
Z + σ2I),

Ruŝ(θ, Z)
4
= EZ [U(Z)ŝ(θ)] .

By Lemma 5.1, the above system of ODEs has unique bounded global solutions for

any finite time. Let Z(t, t0, Z), θ(t, t0, θ) represent the solutions of the ODEs (5.3), (5.4)

with initial conditions Z(t0) = Z, θ(t0) = θ and
�
Z (t0) = 0 whenever the channel is

approximated by a second order ODE.

We prove Theorem 5.2 using the Theorem A.1 of Appendix I, provided at the end of

the thesis.

Theorem 5.2 For any finite T > 0, for all δ > 0 and for any initial condition (G, θ, Z),

with d2Z−1 + d1Z0 = Z,
�
Z (t0) = 0 whenever the channel is approximated by a second

order ODE and θ0 = θ,

PG,Z,θ

 sup
{1≤k≤ T

µα}
|(Zk, θk)− (Z(µαk, 0, Z), θ(µk, 0, θ))| ≥ δ

→ 0,

as µ→ 0, uniformly for all (Z, θ) ∈ Q, if Q is contained in the bounded set containing the

solution of the ODEs (5.3), (5.4) till time T . In the above α = 1 if Z(., ., .) is solution of

a first order ODE and equals 1/2 otherwise.

Proof : Please see the Appendix A.
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The approximating ODE (5.4) suggests that, its instantaneous attractors will be same

as the DD-LMS-LE attractors obtained in the previous section when the channel is fixed

at the instantaneous value of the channel ODE (5.3). We have shown in the previous

section that these attractors are close to the WF at high SNRs. We will verify the same

behavior for tracking, using some examples, in the next section.

One of the uses of the above ODE approximation is that, one can study the tracking

behavior of the DD-LMS (e.g., proximity of its trajectory to the instantaneous WFs) using

this ODE. This is done in the next section. Further, one can also obtain instantaneous

theoretical performance measures (approximate) like BER, MSE.

5.4 Examples

In this section we illustrate the theory developed so far using some commonly used ex-

amples.

We first consider a fixed channel, Z = [.41, .82, .41]. This channel is very widely used

(see p. 414, [25] and p. 165, [21]). We use a two-tap linear equalizer. We plot the DD-

LMS-LE, its ODE approximation and the Wiener filter for two values of noise variances

σ2 = 0.01, 1 in Figure 5.1. We see that the ODE approximation is quite accurate for

all the coefficients. We can also see that the DD-LMS coefficients as well as their ODE

approximations converge to the DD attractor for both the noise variances. The ODE

approximation thus confirms that, with high probability the realizations of the DD-LMS

trajectory (the DD-LMS trajectory in the figure being one such realization) converge

to an attractor (of course, when initialized properly). One can see from this example

that the DD-LMS attractors are close to the corresponding Wiener filters at high SNRs

(σ2 = 0.01) as is shown theoretically in Section 5.2, but are away from the same at low

SNRs (σ2 = 1).

We next consider two examples of a time varying channel equalized by a four-tap equal-

izer. We consider stable and marginally stable channels in Figure 5.2, 5.3 respectively. For

both the examples, the mean channel is a constant multiple of a commonly used raised
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Figure 5.1: The fixed channel equalizer coefficients for three tap channel Z = [.41, .8, .41]

cosine channel, [−0.4, 1, 0.6,−0.3, 0.1]. The AR parameters, d1 = .497, d2 = 0.5 and

µ = 0.0007 are used for the stable channel, while the same parameters for the marginally

stable channel are set at 1.99999, −1 and 0.000001 respectively (these parameter are cho-

sen appropriately to obtain a suitable period for oscillations as from (2.2) of Chapter 2,

the period of oscillation is controlled by
√

1−d1−d2

µ
). Both the examples are run under

high SNR conditions (σ2 equals 0.1 and 0.05 for marginally stable and stable channels

respectively). In both the examples, the DD-LMS and the ODE are started with the

initial value of the WF. One can see from both the figures that the ODE once again

approximates the DD-LMS quite accurately. Also, the DD-LMS and the ODE track the

instantaneous WF quite well. We also plot the instantaneous BER of the DD-LMS, the

ODE and the WF in the last subfigure of the Figures 5.2, 5.3. One can see that the

performance of the DD-LMS and ODE are quite close to that of the WFs throughout the

time axis. The proximity of the ODE solution and the BER once again indicate that with

high probability the realizations of DD-LMS track the instantaneous WFs.

Finally, in Figure 5.4, we consider a stable channel with d2 close to −1 (from the figure,

it actually looks like a marginally stable channel but its magnitude is reducing at a very

small rate, 1+d2√
µ

, as d2 is very close to -1). In this case, as is shown theoretically, a better
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ODE approximation is obtained by a second order ODE. Here, the channel trajectory is

approximated by an exponentially decaying cosine waveform. We considered the AR(2)

process, which approximates the fading channel with band limited and U-shaped spectrum

and received with fdT = 0.002 and hence d1 = 1.999926, d2 = −.9999789, µ = 2.218332e−

009. The mean of the channel is constant multiple of [.41, .8,−.4] while the noise variance

is set at 0.03. Once again, as is seen from the Figure, the DD-LMS (and also the ODE)

is tracking the WF well. Further, the performance (BER) of the DD-LMS and ODE is

quite close to that of the WFs throughout the time axis.

Next we plot the DD-LMS, the ODE and the instantaneous WFs at two different noise

variances in Figure 5.5 for a marginally stable channel. It is evident from the figure that

the LMS-LE in DD mode, can track the channel variations at high SNR (σ2 = 0.05),

while it looses out at low SNRs (σ2 = 1).

5.5 Conclusions

We obtain theoretical performance analysis of an LMS linear equalizer in decision directed

mode. We first study a decision directed LMS-LE for a fixed channel. We approximate the

trajectory of the DD-LMS-LE by an ODE. Next using this ODE, we obtain the existence

of DD attractors in the vicinity of the WFs at high SNRs. We also illustrate this for

some commonly used channel examples. We further show via some examples that, a DD

attractor may be away from the Wiener filter at low SNRs. We thus conclude that at

high SNRs, one can update the LMS-LE in decision directed mode to obtain the WFs,

by initializing it with a ’good’ enough (the initializer must be in the region of attraction

of the desired attractor) training based estimate.

We next consider time varying channels. We model the time varying channel by an

AR(2) process and obtain an ODE approximation for the tracking DD-LMS-LE. Using

this ODE approximation, via some examples, we illustrated that LMS-LE in decision

directed mode, can also be used to track the instantaneous WF at high SNRs. We also

show that, at low SNRs the decision directed mode does not provide a good equalizer.
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Figure 5.2: Trajectories of raised cosine AR(2) channel, the DD-LMS filter coefficients
and the BER for a stable channel.

Appendix A

Proof of Theorem 5.2 : Defining Gk+1
4
=
[
UT

k , S
T
k

]T
, one can rewrite the AR(2) process

and the DD equalizer adaptation as,

Zk+1 = (1− d2)Zk + d2Zk−1 + µ(Wk + ηZk)

θk+1 = θk + µH1(θk, Gk+1)

H1(θk, Gk+1)
4
= −Uk(θ

T
k Uk − ŝk)

= −Uk(θ
T
k Uk −Q(U t

kθk)).
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Figure 5.3: Trajectories of raised cosine AR(2) channel, the DD-LMS filter coefficients
and the BER for a marginally stable channel.

This is similar to the general system (1), (2) of Appendix I (provided at the end of the

thesis). Hence by Theorem A.1 of Appendix I, it suffices to show that our system satisfies

the assumptions A.1-A.3 of Chapter 2, B.1-B.4 of the Appendix I and that the above

system of ODEs has a bounded solution for any finite time.

The AR(2) process {Zk} in (5.2) clearly satisfies the assumptions A.1 - A.3 as is

shown in Chapter 2. Assumption B.2 is satisfied as for any compact set Q and for any

θ ∈ Q,

|H1(θ,G)| ≤ 2

[
max

{
1, sup

θ∈Q
|θ|
}]

(1 + |G|2).

Fixing channel Zk = Z for all k, we obtain the transition kernel ΠZ(., .) for {Gk} which

is a function of Z alone. Thus condition B.1 is satisfied. It is easy to see that {Gk(Z)}
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Figure 5.4: Trajectories of an AR(2) channel, the DD-LMS filter coefficients and the BER
for a stable channel with fdT = 0.002.

has a stationary distribution given by,

ΠZ(A1 × [s1, s2, · · · sn]) = Prob(S = [s1, s2, · · · sn])Prob(N ∈ A1 − πZ [s1, s2, · · · sn]T ),

where πZ is the M ×M +L− 1 length convolutional matrix formed from vector Z (as in

the fixed channel case) and S,N are the input and noise vectors of length M +L− 1, M

respectively. Define,

h1(θ, Z)
4
= EZ(H1(θ,G(Z)) = −Ruu(Z)θ +Ruŝ(θ, Z),
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Figure 5.5: DD-LMS versus WFs at varying σ2 in a time varying channel

νθ,Z(G)
4
=

∑
k≥0

Πk
Z(H1(θ,G)− h1(Z, θ)).

By Lemma 5.2 of Appendix C, h1 is locally Lipschitz. Thus conditions B.3 a, b are met.

We now prove condition B.3.c using Proposition 4.1 provided in Appendix A of Chap-

ter 4 in similar lines as in Chapter 4. {Gk} is a linear dynamic process depending upon

the channel realization Z and it can be written as,

Gk+1 = A(Z)Gk +B(Z)Wk+1,

where, A(Z) =

 JM P

0L+M−1×M JL+M−1

 ,

B(Z) =


Z1 1

0M−1×2

1 0

0L+M−2×2

 ,
Wk+1 = [sk, nk].
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In the above definitions, 0n is a n× n zero matrix, Jn is a n× n shift matrix given by,

Jn =



0 0 0 · · · 0 0

1 0 0 · · · 0 0

0 1 0 · · · 0 0
...

0 0 0 · · · 1 0


,

and the matrix P is a M × L+M − 1 matrix defined by,

P =

 Z2 Z3 · · · ZL 0 · · · 0

0M−1×L+M−1

 .
It is easy to see that, An(Z) = 0 for all n ≥ max{L,L+M−1} for all Z as it involves the

powers of shift matrices JL, JL+M−1, which satisfy Jn
n = 0. By Lemma 5.3, the function

Pθ,ZH(θ,G) is Li(R
n). Now all other conditions of Proposition 4.1 are satisfied trivially

(because A(Z) and B(Z) are linear in Z) and hence assumption B.3.c is satisfied for any

λ < 1.

The condition B.4 is trivially met as for any n > M + L − 1, the expectation does

not depend upon the initial condition G, but is bounded based on the compact set Q and

because of the Gaussian random variable N and discrete random variable S.

Finally the theorem follows by Lemma 5.1, which gives the existence of unique bounded

solution, for any finite time, for the DD-LMS ODE. �

Appendix C

Lemma 5.1 The ODE (5.4) has a unique solution, which satisfies,

|θ(t)| ≤ c0 + c1e
−σ2t,

for appropriate positive constants c0 and c1.
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Proof : For convenience, we reproduce the ODE (5.4),

�
θ (t) = −Ruu(Z(t))θ(t) +Ruŝ(θ(t), Z(t)).

The matrix Ruu(Z(t)) is positive definite for all t, and it’s minimum eigen value is greater

than σ2 for all t. Also, |Ruŝ(θ(t), Z(t))| ≤ C |Z(t)| for all t for some constant C > 0.

Using the channel ODE solution curves (given in Chapter 2), |Ruŝ(θ(t), Z(t))| ≤ C(T )

for all t ≤ T for any finite time T for some positive constant C(T ) depending only on T .

Thus, for any vector θ, the inner product,

〈
�
θ (t), θ

〉
≤ −σ2|θ|2 + C(T )|θ|

=
[
−σ2|θ|+ C(T )

]
|θ|.

Therefore by Global existence theorem (pp 169 - 170 of [42]), the ODE (5.4), has a unique

solution for any finite time and the solution is bounded by the solution of the following

scalar ODE (after choosing the initial conditions properly),

�
k (t) = −σ2k(t) + C(T ),

whose solution is given by, k(t) = c1e
−σ2t + C(T ), where c1 is an appropriate constant.

�

Lemma 5.2 The function Ruŝ(θ, Z) is continuously differentiable in (θ, Z), σ2 and hence

is locally Lipschitz.

Proof : With fN (σ2, N) representing the zero mean M dimensional Gaussian density,

with variance σ2I,

Ruŝ(θ, Z) = E[(πZS +N)Q(θt(πZS +N))]

=
∑

S

∫
{N :θt(πZS+N)>0}

(πZS +N)fN (σ2, N)dN

−
∫
{N :θt(πZS+N)<0}

(πZS +N)fN (σ2, N)dN.
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We make the following change of variable,

Y = A(θ)(πZS +N) where matrix

A(θ)
4
=


θ1 θ2 · · · θM

0 1 · · · 0
...

0 0 · · · 1

 .

With |B| representing the determinant of the matrix B,

Ruŝ(θ, Z) =
∑

S

∫
{Y : Y1>0}

A(θ)−1Y
∣∣A(θ)−1

∣∣ fN (σ2, A(θ)−1Y − πZS)dY.

−
∫
{Y : Y1<0}

A(θ)−1Y
∣∣A(θ)−1

∣∣ fN (σ2, A(θ)−1Y − πZS)dY.

Using dominated convergence theorem, we can show that the terms on the right hand

side are continuously differentiable. �

Lemma 5.3 Let Pθ,Z(.|.) represent the transition function of the Markov chain {Gk(θ, Z)}

(when the channel and equalizer are fixed at (θ, Z)). The function Pθ,ZHθ(G) is locally

Lipschitz.

Proof : Note that,

Pθ,ZHθ(G0) = E [H1(θ,G1)|G0 = (U0, S0)]

= E [H1 (θ, (A(Z)G0 +B(Z)W1))] .

For all (θ, Z) in a compact set, one can get a positive constant C1 depending only upon

the compact set Q such that,

∣∣Pθ,ZHθ(G0)− Pθ′,Z′Hθ′(G
′
0)
∣∣

≤ E
∣∣∣(θtU1)U1 − (θ′

t
U ′

1)U
′
1

∣∣∣+ 2E |U1 − U ′
1|+ C1E

∣∣∣Q(θtU1)−Q(θ′
t
U ′

1)
∣∣∣ ,

where U1
4
=A(Z)G0 + B(Z)W1, U

′
1

4
=A(Z ′)G′

0 + B(Z ′)W1. Thus it suffices to show the
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Lipschitz continuity for the last term. Now,

E
∣∣∣Q(θtU1)−Q(θ′

t
U ′

1)
∣∣∣ = 2P (Q(θtU1) 6= Q(θ′

t
U ′

1))

The Lemma follows because, using the steps as in Lemma 5.2, we can show that the above

term is continuously differentiable. �

Appendix D

In this section we provide the statement of Theorem 13, p.278, [4] that is used in this

chapter as well as the next chapter. We state the Theorem 13, [4], in our setup using our

notations.

We consider the following dynamical process {Vk, Uk}:

Vk = AVk−1 +Bsk,

uk+N = CVk−1 + nk,

UT
k = [uk+N , · · · , uk−N ].

For the quantizer Q we define a sequence of random variables ŝk, Ŝk, θn by:

ŜT
k = [ŝk, · · · , ŝk−p+1]

ŝk = Q
(
θf

t

k−1
Uk + θb

t
k−1Ŝk−1

)
θk = θk−1 + µkH(θk−1, ξk), θk = [θf

T

k
, θb

T
k ], (5.5)

where ξk = [V T
k+N , U

T
k , Ŝ

T
k ].

We make the following assumptions:

D.1 The matrix A satisfies :

|An| ≤ K.ρn, 0 < ρ < 1.
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D.2 The sequence {(sk, nk)} is a sequence of IID random vectors with values in S × R,

for some finite set S of R. The {sk} are uniformly distributed over S.

D.3 The decoder Q is assumed to satisfy

(a) There exist s1, · · · , sq ∈ R such that {|s− si| > |s− s′| for all i} ⇒ Q(s) =

Q(s′).

(b) There exists an ∫̄ ∈ S, s̄ ∈ R such that s > s̄ ⇒ Q(s) = ∫̄ .

D.4 H is of class Li(K) (defined in Appendix A of Chapter 4) for any compact set K.

D.5 The random variable nk has a density f satisfying,

f > 0 and for all m ≥ 0 : sup
t

(1 + |t|m)f(t) <∞.

D.6 For any integer r

lim
n

inf
µn+r

µn

> 0.

D.7
∑

n µn = ∞.

We consider the ODE

�
θ (t) = h(θ(t)), (5.6)

where h
4
= limn P

n
θ H(θ, .)(ξ) (This limit is shown to exist in Theorem 13. Here, P n

θ repre-

sents the n−step transition function of the Markov chain {ξk} obtained by fixing θk = θ

for all k) for t ≥ t0. Let θ(t, t0, a) denote the solution of this ODE for θ(t0) = a0.

Define D = {θT = (θT
f , θ

T
b ) :

∣∣θf

∣∣ > 0}. We choose T > 0 and two compact sets Q1,

Q2 of D with Q1 ⊂ Q2, which we assume to satisfy:

d(θ(t, 0, a), Qc
2) ≥ δ0 > 0,



CHAPTER 5. DD-LMS-LE VERSUS WF FOR A WIRELESS CHANNEL 123

for all a ∈ Q1 and all t ≤ T . This condition can be satisfied by showing that a ODE

has a bounded solution for any finite time (as in Chapter 2). Let t(r) :=
∑r

k=0 µk,

m(n, T ) := maxr≥n{t(r)− t(n) ≤ T}.

Theorem 5.3 (Theorem 13, p.278, [4]) : Under the above assumptions, the algorithm

(5.5) and the ODE (5.6) satisfy the following:

For any compact set Q ⊂ D there exist constants B5, L2 and s, such that for all k ≥ 0

with µk ≤ 1, all a ∈ Q, all ξ, all δ ≤ δ0, and for all λ < 1,

Pn,ξ,a

{
sup

n≤r≤m(n,T )

|θr − θ(tr, tn, a)| ≥ δ

}
≤ B5

δ
(1 + ξs)(1 + T )exp(2L2T ).

∑
k≥n

µ
2∧(1+λ/2)
k

where Pn,ξ,a denotes the n−step transition function of the chain {ξk, θk} with initial con-

dition ξ, a.



Chapter 6

LMS-DFE versus DFE-WF for a

Fixed Channel

A Decision Feedback Equalizer (DFE) can significantly improve the performance of a

system as compared to an LE (especially when there are deep nulls in the frequency

response of the channel). A DFE feeds back the previous decisions of the transmitted

symbols, to nullify the ISI due to them and makes a better decision about the current

symbol. However, due to feedback, studying its performance is complicated and hence

there is no known method to obtain an MSE optimal DFE (henceforth we will call it DFE-

WF) even for a fixed channel ([10], [32], [43]). An ’optimal’ DFE is commonly obtained

by assuming error free decisions. We will call it IDFE. It is believed that the IDFE is

close to the optimal DFE under high SNR. However it is not known how an IDFE really

compares with the DFE-WF.

Another way to obtain an optimal DFE is to replace the feedback filter of the DFE

with a precoder at the transmitter. The precoder requires that the channel state be known

at the transmitter. This is possible for a wireline channel by estimating at the receiver via

a training sequence and sending this information to the transmitter. But for a wireless

channel, due to its time varying nature, this will be inefficient.

A common iterative algorithm to obtain MMSE filters is LMS (as we studied in the

previous chapters). LMS has also been used to obtain a DFE ([43]). But the convergence

124
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Decoder
+

+θf

θb

ukZ
sk

nk

sk̂Channel

Q(.)

Figure 6.1: Block Diagram of Decision Feedback Equalizer (DFE)

behavior of an LMS for a DFE is not well understood. In particular, it is not known

whether the LMS will converge to the DFE-WF even for a fixed channel.

In this chapter we theoretically study the LMS-DFE and show that under high SNR it

converges to a limit close to the optimal DFE, the DFE-WF. We also show, via examples,

that the IDFE (designed also using perfect channel estimate) may perform much worse

than the DFE-WF and the limiting LMS-DFE (limiting LMS-DFE is close to the DFE-

WF). In fact, the performance improvement is very significant even at high SNRs (up to

50%), where the IDFE is believed to be closer to the optimal one. To obtain these results

we again approximate the LMS-DFE trajectory with an ODE and relate its attractors to

the DFE-WF using implicit function theorem. We thus conclude that, via LMS one can

obtain a computationally efficient way to obtain the true DFE Wiener filter under high

SNR for a fixed channel. In the next chapter, we will study the tracking behavior of an

LMS-DFE for a wireless channel.

This chapter is organized as follows. In Section 6.1 we define the model and specify our

assumptions. In Section 6.2 we discuss the problems involved and the approach followed

by us. In Section 6.3 we show that the trajectory of the LMS-DFE can be approximated

by the solution of an ODE. We use this ODE for further analysis of the LMS algorithm.

We study the differentiability of the stationary distribution of the system in Section 6.4.

In Section 6.5 we show that the LMS attractors are close to that of the DFE Wiener

filters at high SNRs. Section 6.6 provides some examples while Section 6.7 concludes the

chapter. Proofs are contained in the appendices.
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6.1 The model and notations

We consider the system shown in Figure 6. Inputs {sk} enter a time invariant finite

impulse response channel {zl}L−1
l=0 and are corrupted by additive white Gaussian noise

{nk} with variance σ2. The channel output, uk, at any time k, is given by,

uk =
L−1∑
l=0

sk−lzl + nk.

We use a DFE with a forward filter θf and a feedback filter θb. The decisions are made

by hard decoding. The performance of this system will depend upon the DFE filters θf

and θb. We are interested in obtaining the (θf , θb) that minimizes the probability of error.

Since it is not easy to optimize the probability of error, the common criterion used is to

minimize E
[
|sk − ŝk|2

]
. We consider this problem in this chapter.

We make the following assumptions (some of these can be easily weakened) and use

the following notations:

• We assume BPSK modulation, i.e., inputs sk ∈ {+1,−1}.

• Sequences {sk} and {nk} are IID (independent, identically distributed) and inde-

pendent of each other. The inputs {sk} are uniformly distributed.

• fN (y) is theN dimensional standard IID Gaussian density, whereN is the dimension

of the vector y, i.e.,

fN (y) =
1

(2π)N/2
exp−

|y|2
2 .

• The equalizer forward filter is given by {θfl
}Nf−1

l=0 , while the feedback filter is given

by {θbl
}Nb

l=1. Also, NL
4
=Nf+L−1.

• The decisions are obtained after hard decoding. Hence decision ŝk is given by,

ŝk = Q

Nf−1∑
l=0

θf luk−l +

Nb∑
l=1

θblŝk−l

 where
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Q(x) :=

 +1 if x ≥ 0,

−1 if x < 0.
(6.1)

• The following vector notations are used throughout:

Sk

4
= [ sk sk−1 . . sk−NL+1 ]T ,

Nk

4
= [ nk nk−1 . . nk−Nf+1 ]T ,

Uk

4
= [ uk uk−1 . . uk−Nf+1 ]T ,

Ŝk

4
= [ ŝk ŝk−1 . . ŝk−Nb+1 ]T ,

Xk

4
= [ UT

k Ŝ
T

k−1
]T ,

Gk

4
= [ ST

k Ŝ
T

k−1 NT
k

]T ,

θf

4
= [ θf 0 θf 1 . . θf Nf−1

]T ,

θb

4
= [ θb1 θb2 . . θbNb

]T ,

θ
4
= [ θf

T θb
T ]T .

• With S := {+1,−1}, for a fixed θ, {Gk} is a Markov chain taking values in SNL ×

SNb × RNf , where R is the set of real numbers. We represent throughout this

chapter the current and previous state values of this Markov chain by the ordered

pairs (i, y), (j, y′) respectively. Here i, j take values in the discrete part of the state

space, SNL × SNb , while y, y′ take values in RNf .

• For any vector, x, we use xl to represent its lth component and xk
l , l ≤ k, represents

the vector
[
xl xl+1 · · · xk

]T
.

• Zθ = {zθl}NL−1
l=0 represents the convolution of the channel {zl}and the forward filter

θf .

• The input to the hard decoder for a given state of the Markov chain is represented
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by,

eθ(i, y) :=

NL−1∑
l=0

zθlsk−l +

Nf∑
l=0

θf lnk−l +

Nb∑
l=1

θblŝk−l.

Note that ŝk−1 = Q(eθ(j, y
′)).

• B(θ, δ), B̄(θ, δ) are the open and closed balls respectively with center θ and radius

δ.

• Throughout the chapter, unless otherwise mentioned, integrability is always with

respect to the measure fN (y)dy.

• The equalizer output without noise, eθ(i, 0) 6= 0 for all values of i at the LMS

attractor. Without this assumption the LMS algorithm makes more errors than the

correct decisions.

One can easily extend the theory in this chapter to any finite alphabet input source

with any arbitrary distribution as in the next chapter. Also, the theory to follow, considers

an optimal equalizer for delay 0. However, the entire theory will go through for any

arbitrary delay. Indeed in Section 6.6, an example with an optimal equalizer for delay 1,

is presented.

6.2 The issues and our approach

A DFE-WF is given by,

θ∗ = arg min
θ
E
[
θtXk − sk

]2
(6.2)

where the expectation on the right hand side is under stationarity for a given θ and is

shown to exist in Theorem 6.1 below.

For a DFE, vector Xk =
[
UT

k , ŜT
k−1

]T
, includes previous decisions Ŝk−1 along with

channel outputs Uk and hence its distribution depends upon the parameter θ. Thus, there
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is no known way to compute a Wiener filter. We address this problem directly via the

iterative algorithm, LMS, given by the following iteration:

θk+1 = θk − µkXk

(
X t

kθk − sk

)
, (6.3)

where {µk} is a decreasing sequence.

In practical systems, a DFE Wiener filter is commonly designed by assuming perfect

decisions (i.e. Ŝk = Sk
k−Nb+1), which we called IDFE. It is easy to see that the IDFE is

given by,

θIDFE =
(
E
[
X kX t

k

])−1
E [X ksk] ,

where X t
k :=

[
U t

k Sk−1
k−Nb+1

t
]
. This computation may be expensive because of matrix

inversion and LMS (6.3) is actually used as an alternative. Our claim is that in case of

a DFE, apart from being computationally efficient the LMS algorithm also outperforms

the popularly used Wiener filter, IDFE, θIDFE and can indeed be close to DFE-WF. We

achieve this goal by showing that the LMS-DFE attractors are close to that of the DFE-

WF at least for high SNRs (later in Section 6.6 we show via examples that this covers

the practically used SNRs).

Towards this, we first show the existence of a unique stationary distribution for {Xk}

for every θ (one can now define the optimum in (6.2) under stationarity). Using this along

with the ODE approximation in [4], we obtain a more tractable ODE,

�
θ (t) = −1

2
Eθ

[
∇θ

[
θtX − s

]2]
= −Eθ

[
X
(
θtX − s

)]
. (6.4)

The attractors of the LMS-DFE will be the zeros of the RHS of the above ODE, while

the DFE Wiener filter will be a zero of the gradient (if it exists) of the RHS of equation

(6.2). Under certain conditions these two terms can be related by,

∇θEθ

[[
θtX − s

]2]
= Eθ

[
∇θ

[
θtX − s

]2]
+ E

[[
θtX − s

]2∇θπθ

]
, (6.5)
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where πθ is the stationary density of {Gk} wrt the Lebesgue measure (we will show that

it exists), when the DFE θ is used. One can expect the LMS-DFE attractors to be close

to the DFE Wiener filter, if the second term in the RHS of (6.5) is close to zero. We

show in this chapter that, the above is indeed true at high SNRs, for a decoder that is

slightly perturbed from the original one. The perturbation of the decoder is required

because with the original decoder πθ may not be differentiable. We show that the DFE

Wiener filter and an LMS-DFE attractor of this perturbed decoder converge to that of

the original hard decoder as the level of perturbation tends to zero. Then we analyze this

perturbed decoder and show that the LMS-DFE attractors of this decoder are close to

the DFE Wiener filters of the same at high SNR. This suggests that at high SNR an LMS

attractor for the original decoder is close to its DFE-WF.

6.3 ODE Approximation

We first show that the Markov chain {Gk} has a stationary distribution for any given

DFE, θ. This result was not known so far and is of obvious interest. Later we use this

result to obtain an LMS-DFE ODE approximation with a more tractable ODE.

Theorem 6.1 For every θ, Markov chain {Gk} has a unique stationary distribution Πθ.

Starting from any initial conditions, the Markov chain converges geometrically to the

stationary distribution. The continuous part of the stationary distribution has a density,

πθ that is continuous with respect to θ in L1 norm. Also the MSE under stationarity is

continuous in θ.

Proof : Please refer to Appendix A.

Because of the continuity of the MSE as a function of θ, by confining our search

to an approximately compact region, we obtain the existence of the DFE Wiener filter.

Next we consider the LMS attractors. For this we first approximate the trajectory of the

LMS-DFE with an ODE and then study the ODE’s attractors.

DFE with a hard decoder has been approximated by an ODE in [4] (given by Theorem

13, p.278 . For convenience, the Theorem 13, p.278, [4] and its assumptions are reproduced
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in Appendix D of Chapter 5 as Theorem 5.3). We start our LMS-DFE analysis with this

ODE. Towards this goal, as a first step the LMS-DFE algorithm (6.3) is rewritten to fit

in the setup of Appendix D (i.e., as an example of system (5.5))

ξ
k

:=
[
St

k X t
k

]t
,

H(θ, ξ) := X t
(
θtX − s

)
,

θk = θk−1 − µk−1H(θk−1, ξk).

Let θ(t, t0, a) denote the solution of the following ODE with initial condition θ(t0) = a,

�
θ (t) = −h(θ)

where h(θ) = lim
n→∞

P n
θ Hθ(j, y

′), (6.6)

and P n
θ is the n-step transition function of the Markov chain {Gk} with DFE θ, and

P n
θ Hθ(j, y

′) is the expectation of the function H(θ, ξ) using the conditional measure

P n
θ (.|j, y′) (note that ξk is a fixed function of Gk). The existence of the limit in the

right hand side of (6.6) is established in the next para. We will show later on that, this

limit will be independent of the initial condition (j, y′) and will equal EθH(θ, ξ).

We will now show that our algorithm satisfies the assumptions D.1-6 of Appendix D of

Chapter 5. The LMS algorithm satisfies assumption D.1 as the matrix A of D.1 is a shift

matrix now and hence for any n > NL, |An| = 0. Assumption D.3 is satisfied for a BPSK

source (for a fixed channel DFE, we obtain the ODE approximation using BPSK source.

However we relax this condition in the next chapter and obtain an ODE approximation

for tracking DFE for any finite alphabet source. The fixed channel DFE is a special case

of the tracking DFE and hence can be approximated for any finite alphabet source) and

the hard decoder Q with s1 = 0, ∫̄ = 1 and s̄ = 0 (p.277, [4]). Assumptions D.4 and

D.5 are easily satisfied by the function H and the noise process {nk} respectively. As in

previous chapters, one can see that the above ODE will have unique bounded solution for

any finite time (this will be a special case of Lemma 7.1 of next chapter). Hence the LMS

algorithm satisfies all the required hypothesis of Theorem 5.3 and we obtain :
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• The existence of the limit in the right hand side of (6.6).

• For finite time T, with t(r) :=
∑r

k=0 µk, m(n, T ) := maxr≥n{t(r)− t(n) ≤ T}, and

for any initial condition θ0,

sup
n≤r≤m(n,T )

|θr − θ (t(r), t(n), θ0)|
p→ 0 as n→∞

whenever,

–
∑

k µk = ∞,

–
∑

k µ
1+δ
k <∞ for some 0 < δ < 0.5,

– 0 < µk ≤ 1 for all k and

– lim infk
µk+r

k
> 0 for every integer r.

We will show below that the RHS of the ODE (6.6) is same as that of the ODE (6.4)

and hence equate the ODE (6.6) with a more tractable ODE (6.4). For each θ, {Gk} is a

Markov chain taking values in a general state space. Its transition function is given by,

Pθ(i, y ∈ B|j, y′) = δ̃(i, j)δ̄(y, y′)P (i1)P (y
1
∈ By′)Pθ(iNL+1|j, y′), (6.7)

where δ̄(y, y′) equals 1 only when the vector formed from all but the last component of

the vector y′ equals the vector formed from all but the first component of the vector y and

δ̃(i, j) = δ̄
(
iNL
1 , jNL

1

)
δ̄
(
iNb+NL
NL+1 , jNb+NL

NL+1

)
(note that the first component, iNL

1 , represents

the sample value of Sk, while the second one, iNb+NL
NL+1 , represents the sample value of Ŝk−1).

Note here that, i1 represents the current input sk while, iNL+1 represents the most recent

decision ŝk−1. The only component of the transition function (6.7) that depends upon θ

is, Pθ(iNL+1|j, y′) given by,

Pθ(iNL+1 = 1|j, y′) = 1{eθ(j,y′)>0}.

By IID nature of the input sk and noise nk one can choose n0 large enough such

that the continuous part of the n step transition function P n
θ (i, y ∈ B|j, y′) is absolutely
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continuous with respect to fN (y)dy for all n ≥ n0. Further, n0 is chosen larger than

NL to ensure Sk, Sk−n0
are independent. Fix one such n. The corresponding density

(Radon-Nikodym derivative)

pn
θ

(
i, y|j, y′

)
=

∑
l

∫
v

P (Sk+n
k+1 )Πn

q=1Pθ(ŝk+n−q|x(q))fN (v) dv, (6.8)

where (the following notations are used throughout),

l := (Sk+n−NL
k+1 , Ŝ

k+n−1−Nb

k ),

v := N
k+n−Nf

k+1 ,

x(q) :=
(
Sk+n−q

k+n−q−NL+1, Ŝ
k+n−q−1

k+n−q−Nb
, σNk+n−q

k+n−q−Nf+1

)
.

It is easy to see that the density of the n−step transition function pn
θ (i, y|j, y′) ≤ 1,

for all values of i, y , j, y′. Also, we have by Theorem 6.1,
∣∣pn

θ (.|j, y′)− πθ

∣∣→ 0 for every

value of j, y′ as n→∞ in L1 norm. The function H() can be bounded uniformly by,

|H(θ, ξk)| ≤ C1 |Xk|
2 + C2 |Xk|

for all θ in a small neighborhood, for some appropriate constants C1, C2. The above

bound is square integrable and depends only on {Gk}. Hence by Lemma 6.1 of Appendix

E,

h(θ) = lim
n→∞

P n
θ Hθ(j, y

′) = ΠθH(θ, ξ),

=
1

2
Eθ

[
∇θ

[
θtX − s

]2]
.

In the above, ΠθH(θ, ξ) represents the expectation of the function H(θ, .) with respect to

the stationary measure Πθ. Thus the trajectory of the LMS-DFE can be approximated

by the solution of the ODE (6.4), reproduced here for convenience,

�
θ (t) = −1

2
Eθ

[
∇θ

[
θtX − s

]2]
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for any t ≤ T , where T is any finite constant.

One expects that the attractors of the above ODE will be LMS-DFE attractors. The

ODE attractors will be zeros of the RHS of the above equation. While the DFE Wiener

filter will be the zero of the gradient (if it exists) of the MSE (the cost in the RHS of

(6.2)). Under certain conditions (which will be discussed in Section 6.5) we get,

∇θEθ

[[
θtX − s

]2]
= Eθ

[
∇θ

[
θtX − s

]2]
+
∑
S,Ŝ

EfN

[[
θtX − s

]2∇θπθ

]
,

where ∇θπθ represents the gradient of the stationary density. One can easily see that an

LMS-DFE attractor will be exactly (close to) the DFE Wiener filter if in addition the

gradient of the stationary density equals zero (is close to zero). This shows that to get

the connection between an LMS-DFE attractor and the DFE Wiener filter one needs to

look at the differentiability of the stationary density.

6.4 Differentiability of the Stationary density.

One can see from equation (6.8) that it is very difficult to comment on differentiability of

the n-step transition density itself. Thus, it is even more difficult to discuss the differen-

tiability of the stationary density. To proceed further with the analysis, we perturb the

hard decoder Q such that the n-step transition density and the stationary density become

differentiable. Next we show that the LMS attractors and the DFE Wiener filter of this

perturbed decoder converge to that of the original decoder as the level of perturbation

tends to zero. Finally we study the DFE using these perturbed decoders in Section 6.5.

We alter the decoder function Q(x) to,

Qε0(x) =


1, with prob 1, x > ε0,

−1, with prob 1, x < −ε0,

1, with prob 1
2

[
cos
(

(x−ε0)π
2ε0

)
+ 1
]
, |x| ≤ ε0,

(6.9)

where ε0 is a small constant. Observe that the perturbed decoder is also a hard decoder.
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With the perturbed decoder Qε0(x), the θ dependent component of the transition function

is given by,

P ε0
θ (iNL+1 = 1|j, y′) =

1{|eθ(j,y′)|≤ε0}
2

[
cos

(
(eθ(j, y

′)− ε0)π

2ε0

)
+ 1

]
+ 1{eθ(j,y′)≥ε0}.

The partial derivative,
∂P

ε0
θ (iNL+1=1|j,y′)

∂θ
exists everywhere and equals,

−1{|eθ(j,y′)|≤ε0}π

4ε0
sin

(
(eθ(j, y

′)− ε0)π

2ε0

)
∂eθ(j, y

′)

∂θ
. (6.10)

By the uniform upper bound on the derivative (6.10) and by the bounded convergence

theorem one can see that the n-step transition density (6.8) (with n ≥ n0) becomes

differentiable (more details are in Appendix B) and equals (using the notations of equation

(6.8)),

∂pε0,n
θ

∂θ

(
i, y|j, y′

)
=

∑
l

∫
v

n∑
m=1

Πn
q=1

q 6=m
P ε0

θ (ŝk+n−q|x(q))
∂P ε0

θ (ŝk+n−m|x(m))

∂θ

P (Sk+n
k+1 )fN (v) dv. (6.11)

For these perturbed decoders, we show that the stationary density (with respect to

Nf dimensional Gaussian IID vector) also becomes differentiable. Furthermore, using an

Implicit function theorem, we get a bound on the norm of this gradient.

Theorem 6.2 For every ε0 > 0, for every θ0, the Markov chain {Gk} has a unique

stationary distribution, Πε0
θ . It’s continuous part has a density, πε0

θ , that is continuously

differentiable with respect to θ in L2 norm.

Proof : Please refer to Appendix B.

In the proof of the above theorem, we also get the following upper bound. For every

δ > 0 and σ2
0 > 0 there exists a constant C <∞ such that for all θ ∈ B(θ0, δ), σ

2 ≤ σ2
0,

∣∣∣∇θπ
ε0
θ

∣∣∣2 ≤ C

(∑
i

P
(∣∣∣St

kZθ + θt
bŜk−1 + θt

fNk

∣∣∣ ≤ ε0

)
+ σ2

)
. (6.12)



CHAPTER 6. LMS-DFE VERSUS DFE-WF FOR A FIXED CHANNEL 136

We conclude this section by showing that the DFE Wiener filters and the LMS-DFE

attractors of the perturbed decoder converge to that of the original decoder. Let θ∗n and

θLMS
n denote the DFE Wiener filter and an LMS-DFE attractor for perturbation ε0n.

Theorem 6.3 There exists a sequence ε0n → 0, θ∗, a DFE Wiener filter of the original

decoder, and θLMS an LMS-DFE attractor of the original decoder, such that,

θ∗n → θ∗,

θLMS
n → θLMS,

for any fixed noise variance, σ2.

Proof : Please refer to Appendix C.

Thus we can always take the perturbation ε0 in (6.9) small enough such that the LMS

attractors and the DFE Wiener filters for the perturbed decoder are close enough to the

corresponding equalizers for the original decoder. Henceforth, we analyze these perturbed

decoders to draw important conclusions.

6.5 LMS attractors versus Wiener filter at high SNRs

In this section we would like to understand the connection between an LMS attractor and

a DFE Wiener filter for a perturbed decoder. Since the former is a zero of the RHS of

equation (6.4) and the later is the zero of the gradient of the MSE (the cost in the RHS

of equation (6.2)), we study the connection between the two RHSs.

Fix an ε0 > 0. With the error defined by, errθ(Gk) := (sk − eθ(Gk)) (note that i

defined in the notations in Section 6.1 represents, (Sk, Ŝk−1), the discrete part of the

Markov chain, {Gk}),

∇θEGk(θ)

[
errθ(Gk)

2
] a

=
∑

i

∇θEfN

[
errθ(Gk)

2πε0
θ (Gk)

]
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b
=

∑
i

EfN∇θ

[
errθ(Gk)

2πε0
θ (Gk)

]
=

∑
i

EfN

[
∇θ

(
errθ(Gk)

2
)
πε0

θ (Gk)
]

+
∑

i

EfN

[
errθ(Gk)

2∇θπ
ε0
θ (Gk)

]
= EGk(θ)

[
∇θ

(
errθ(Gk)

2
)]

+
∑

i

EfN

[
errθ(Gk)

2∇θπ
ε0
θ (Gk)

]
.

(6.13)

Here equality a follows by the existence of the stationary density πε0
θ with respect to the

Gaussian measure fN (y)dy. Equality b is given by Lemma 6.2 of Appendix E. The above

equality (6.13) is true for any ε0 > 0 and for any σ2.

We will show that the DFE Wiener filter will be close to the limiting LMS-DFE if the

second term on the right hand side of (6.13) is small.

We have assumed that St
kZθ + θt

bŜk−1 6= 0 at an LMS attractor. By continuity, we

choose an ε1 small enough such that

0 /∈ [St
kZθ + θt

bŜk−1 − ε1, S
t
kZθ + θt

bŜk−1 + ε1],

for all (Sk, Ŝk−1) and for all θ in a small neighborhood of an LMS attractor. Choose

ε0 ≤ ε1. By Chebyshev’s inequality, if 0 /∈ [c − ε0, c + ε0] and if n is a Gaussian random

variable with mean zero and variance σ2,

P (|c+ n| ≤ ε0) ≤ P (|n| ≥ min{|c− ε0| , |c+ ε0|}) → 0

as σ2 → 0. Thus, from the upper bound 6.12 of Theorem 6.2, for any fixed ε0 ≤ ε1,

|∇θπθ| → 0 as σ2 → 0.

Thus by Cauchy Schwartz inequality as σ2 → 0,

∣∣∇θEθ

[
errθ(Gk)

2
]
− Eθ

[
∇θ

(
errθ(Gk)

2
)]∣∣

=

∣∣∣∣∣∑
i

EfN

[
errθ(Gk)

2∇θπθ(Gk)
]∣∣∣∣∣
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≤
∑

i

(
EfN

[
errθ(Gk)

4
])1/2 |∇θπθ| → 0.

Now we show that this implies that the LMS-DFE attractors will be close to the DFE

Wiener filters. In general two functions f1, f2 can be close to each other at every point,

but their zeros may be far apart, i.e., if x1 is a zero of f1 then f2(x1) will be close to zero

but the zero of f2 closest to x1 may still be far away. It is useful to rule out this possibility

in our scenario. We show this using the following theorem. Define,

s(θ, σ2) := EGk(θ)

[
∇θ

(
errθ(Gk)

2
)]

and

w(θ, σ2, η) := s(θ, σ2) + η.

Theorem 6.4 There exists an ε2 with 0 < ε2 ≤ ε1 such that for any ε0 ≤ ε2, there exists

a continuous function

q : B(0, δ) ⊂ R×R 7→ RNf , such that,

w
(
q
(
σ2, η

)
, σ2, η

)
= 0.

Proof : Please refer to Appendix D.

For any fixed ε0 ≤ ε2, the gradient of the stationary density, near an LMS attractor, is

tending to zero as σ2 → 0. Thus there exists a small enough σ2
0 such that for all σ2 ≤ σ2

0,

∣∣(σ2, ∇θEθerrθ(Gk)
2 − Eθ∇θerrθ(Gk)

2
)∣∣ ≤ δ.

For these σ2 ≤ σ2
0, the LMS attractors, q(σ2, 0), will be close to that of the Wiener filters,

q (σ2, (∇θEθerrθ(Gk)
2 − Eθ∇θerrθ(Gk)

2)).

It is clear from the above Theorem that at high SNRs, for very small ε0 (close to the

practical decoder), the LMS attractor is close to the DFE Wiener filter. Since, IDFE

θIDFE, is designed with an improper assumption (like perfect decisions), there is a good

chance of these filters to be inefficient in comparison to the LMS attractors. We will see
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this in the examples of the next section.

We conclude this section by pointing out another useful consequence of the Theorem

6.4. This theorem also establishes the existence of the LMS attractors at high SNRs for

perturbed decoders with perturbation level ε0 small. A Remark at the end of Appendix

D establishes this point.

6.6 Examples

In this section we reinforce the theory developed so far using some examples. We take a

few examples of channels obtained from previous studies and show the proximity of the

DFE Wiener filter and the LMS attractor for practical values of SNRs. We also show

that in many cases, the IDFE performs much worse than the DFE Wiener filter and an

LMS attractor close to the DFE-WF. Probability of Error (Pe) and the MSE are used to

compare the various equalizers. We used Monte-Carlo simulations to estimate Pe using

one million samples of data.

DFE Wiener filter, θ∗ for these examples was obtained by running a gradient descent

type of algorithm on the cost function (6.2) itself, where the gradient was approximated

at each point by finite difference approximation,

1

|∆|

[
Eθ+∆

(
X(θ + ∆)t(θ + ∆)− s

)2 − Eθ

(
X(θ)t(θ)− s

)2]
.

Here the expectation Eθ (X(θ)t(θ)− s)
2

is obtained approximately by the sample path

averages,

1

N

N∑
i=1

(
X t

i (θ)θ − si

)2
using a large number of samples, N . Vector sequence {Xi(θ)}N

i=1 is obtained by running
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the DFE with fixed coefficients θ. Thus θ∗ is estimated by the following algorithm,

θk+1 = θk −
µk

N |∆k|

[
N∑

i=1

(
X t

k,i(θk)θk − sk,i

)2 − N∑
i=1

(
X t

k,i(θk + ∆k) (θk + ∆k)− sk,i

)2]
.

Here sk,i are IID with the distribution of the inputs, sk. Vector sequence {Xk,i(θ)}N
i=1 is

obtained by running the DFE with fixed coefficients θ. Sequences {∆k}, {µk} are chosen

appropriately to reduce to zero. In our simulations we used µk = 0.07
k0.6 , ∆k = 5µk. We

obtained the estimates with N = 4× 105 samples.

In Table 6.1, we have used an interesting example (significant part of the raised cosine

channel of [21], p. 199) to show that the LMS attractors will be very close to the Wiener

filters at practical SNRs. Its coefficients are provided in the table. We also provide Pe

in this table. One can see an improvement up to 25% in Pe in LMS in comparison with

the IDFE. In fact this improvement is more at high SNRs (where the IDFE is assumed

to have lesser problem because of error propagation). We can also see that the Pe of the

DFE Wiener filter is very close to that of the LMS attractor.

We have developed the entire theory for an equalizer with delay zero. One can easily

extend these results to the equalizer with any arbitrary delay. In fact, the channel in

Table 6.2 is one such example. Here the equalizer with delay 1 will be the best one. The

channel of Table 6.2 is very widely used (see p. 414 of [25], p. 165 of [21]). We can see

once again a huge improvement (up to 50%) in Pe of LMS with respect to θIDFE. We

can also see that the LMS attractors are very close to the DFE Wiener filter, θ∗ for all

practical SNRs.

6.7 Conclusions

Obtaining MSE optimal filter for DFE is a long-standing problem. Precoding provides

one practical solution but may not be feasible with wireless channels. Otherwise one

commonly uses the optimal Wiener filter obtained assuming perfect past decisions.

In this chapter we show via ODE analysis, that LMS itself can provide the optimal
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Table 6.1: Comparison of DFEs for raised cosine channel with Nf = 5, Nb = 10
and Channel =

[
0.45 0.59 0.43 0.11 −0.22 −0.32 −0.27 0 0.11 0.11

]
SNR θ∗ θIDFE θLMS

MSE Pe Dist from θ∗ MSE Pe Dist from θ∗ MSE Pe

16.7 .21 .024 1.1 .26 .027 .035 .21 .024
14.5 .38 .089 1.7 .64 .10 .037 .38 .091
12.5 .49 .150 1.6 .94 .184 .027 .49 .151
11.5 .54 .176 1.5 1.0 .215 .023 .54 .177
4.5 .81 .311 .64 .94 .33 .021 .80 .311
1.5 .87 .353 .37 .93 .364 .023 .87 .353

Table 6.2: Comparison of DFEs with Nf = Nb = 2, Channel = [ 0.41 .82 0.41]

SNR θ∗ θIDFE θLMS

MSE Pe Dist from θ∗ MSE Pe Dist from θ∗ MSE Pe

16.7 .11 .0027 .13 .12 .0035 .014 .11 .0028
14.5 .16 .01 .26 .18 .015 .021 .16 .011
12.5 .23 .03 .35 .26 .037 .025 .23 .032
11.5 .27 .047 .40 .30 .055 .031 .28 .050
4.5 .54 .184 .43 .59 .2 .009 .54 .184
1.5 .65 .235 .32 .69 .25 .008 .65 .235

Wiener filter. We show it by proving that the attractors of the LMS are close to that

of the optimal DFE at high SNRs. Proofs become nontrivial partly because of the non-

differentiability of the hard decoder. Next, we show by examples that the SNRs need

not be very high, i.e., in fact practically used SNRs can be sufficient. We also show that

the BER of the commonly used Wiener filter, designed assuming perfect past decisions

(also designed using perfect channel estimate), can be up to 50% higher than the optimal

Wiener filter even at high SNRs (where the former is believed to be closer to the later).

Of course, one advantage of LMS over Precoding is that it can be used at the receiver

and has tracking capability when the channel is time varying. In the next chapter we will

study the tracking performance of LMS-DFE.
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Appendix A

Proof of Theorem 6.1 :

We prove the existence and continuity of the stationary distribution of the Markov

chain, {Gk}, using the results on Markov chains and Stochastic stability ([39]).

For any θ0 and for any ε > 0,

M1
4
= min

Sk,Ŝk−1,θ∈B̄(θ0,ε)
ZθtSk + θt

bŜk−1. (6.14)

Continuity of the map considered in the bound and compactness of the closed ball B̄(θ0, ε)

ensures |M1| <∞.

By continuity of the map (θ,Nk) 7→ θf
tNk, its inverse image of the open set, {x >

−Mn}, is open and hence it is possible to get a open set C and a δ ≤ ε such that,

{
(Nk, θ) : θt

fNk > −M1

}
⊃ C × B̄(θ0, δ). (6.15)

Thus decoder (6.1) outputs 1 (irrespective of the inputs/past decisions) once the noise

vector is in C whenever θ ∈ B̄(θ0, ε). Hence,

P (Ŝk = [ 1 . . 1 ]) = P (∩k
l=k−Nb−1{ŝl = 1})

≥ P
(
∩k

l=k−Nb−1{N l ∈ C}
)

≥ P (Nk
k−Nb−Nf+1 ∈ C1 × C2),

where sets C1 ∈ RNb , C2 ∈ RNf are selected such that their respective Lebesgue measures

are not equal to zero and such that the open set,

∩k
l=k−Nb−1{N l ∈ C} ⊃ C1 × C2.

Define G := [ 1 . . 1 ] × [ 1 . . 1 ] ×RNf . For any n0 > max{Nb + Nf + 1, NL},
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for any initial condition Gk−n0 , for any measurable set BN , and for any θ ∈ B̄(θ0, δ),

P (Gk ∈ {[ 1 . . 1 ]× [ 1 . . 1 ]×BN}|Gk−n0)

= P (Sk = [ 1 . . 1 ], Ŝk−1 = [ 1 . . 1 ], Nk ∈ BN |Gk−n0)

≥ P (Sk = [ 1 . . 1 ], Nk
k−Nb−Nf+1 ∈ C1 × C2, Nk ∈ BN)

≥ αP (Nk ∈ BN ∩ C2)

where α := P (Sk = [ 1 . . 1 ])P (N
k−Nf

k−Nb+Nf
∈ C1). Thus for any θ ∈ B̄(θ0, δ), and for

any initial condition Gk−n0 , the n0-step conditional measure is majorized :

Pθ(Gk ∈ E|Gk−n0) ≥ νn0(E ∩ G),

where the measure νn0() is defined by,

νn0([ 1 . . 1 ]× [ 1 . . 1 ]×BE) := αP (Nk ∈ BE ∩ C2).

Thus the entire state space SNL ×SNb ×RNf is νn0−small (hence also a petite set) for all

the Markov chains, {Gk}, parameterized by θ ∈ B̄(θ0, δ). Thus using Proposition 9.1.7,

p. 206 and Theorem 10.01, p. 230, [39] one obtains the existence and uniqueness of the

probability stationary distribution, Πθ for each θ.

Define ρ = 1 − νn0(G). Further, by Theorem 16.2.4 in page 392 of [39], for all θ ∈

B̄(θ0, δ), we get the following uniform convergence in total variation norm,

∣∣P n
θ (.|j, y′)− Πθ

∣∣ ≤ ρ
n

n0 for all initial conditions (j, y′).

This along with the continuity of the transition function, establishes the continuity of

the stationary distribution Πθ under total variation norm at θ0. This is because, for any

θ ∈ B̄(θ0, δ)

lim
θ→θ0

∣∣Πθ − Πθ0

∣∣ ≤ lim
θ→θ0

[∣∣Πθ − P n
θ (.|j, y′)

∣∣+ ∣∣∣Πθ0
− P n

θ0
(.|j, y′)

∣∣∣+ ∣∣∣P n
θ0

(.|j, y′)− P n
θ (.|j, y′)

∣∣∣]
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≤ 2ρ
n

n0 + lim
θ→θ0

∣∣∣P n
θ0

(x, .)− P n
θ (x, .)

∣∣∣
a
= 2ρ

n
n0 for all n ≥ 1.

Equality a follows by continuity of the transition function with respect to θ. By letting

n→∞ we get,

lim
θ→θ0

∣∣Πθ − Πθ0

∣∣ = 0.

The stationary distribution, Πθ, has discrete and continuous components. The contin-

uous component of Πθ, is absolutely continuous with respect to the measure fN (y)dy for

every θ. Hence the stationary density, πθ for {Gk} exists. Continuity in total variation

norm of the stationary distribution implies the continuity of the stationary densities in

L1 norm (Theorem 8.2, p. 110, [55]). It is also easy to see that the stationary density

πθ(i, y) ≤ 1 for all (i, y).

MSE, the cost in RHS of equation (6.2), can be rewritten as,

Eθ

[
θtX − s

]2
=
∑
S,Ŝ

EfN

[(
θtX − s

)2
πθ

]
.

Lemma 6.1 in Appendix E, now gives the continuity of the MSE with respect to θ. �

Appendix B

Proof of Theorem 6.2 :

The existence and continuity of the stationary density πε0
θ for every ε0 is achieved in

a way similar to the proof of the Theorem 6.1. The only difference being, ε0 must be

added to −M1 in the definition of the set (6.15). We leave superscript ε0 to simplify the

notation in the rest of the proof.

We use an implicit function theorem to prove differentiability. For that, we will need

to prove the following results. Consider the Banach spaces :

• X = RNf+Nb with Euclidean norm.
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• Y = {g : SNL+Nb ×X → R; |g| <∞} with L2 norm, |.|, defined by,

|g| := 1

|S|
∑

i

(∫
y

∣∣g(i, y)∣∣2 fN (y)dy

)1/2

,

where |S| represents the cardinality of set SNL+Nb .

Fix n0 > max{Nf +Nb, NL}. We consider the following continuous map f : X×Y 7→

Y ,

f(θ, π) = g(θ, π)− π +

(∑
j

∫
y′
π(j, y′)fN (y′)dy′ − 1

)
,

where,

g(θ, π)(i, y) :=
∑

j

∫
y′
pn0

θ (i, y|j, y′)π(j, y′)fN (y′)dy′.

Observe that (θ, πθ) is a zero of f .

By Lemma B.1, Lemma B.2 the function f is differentiable with respect to π and θ

respectively and further the derivative ∂f
∂π

is a homeomorphism. Also,
∣∣∣(∂f

∂π

)−1
∣∣∣ and

∣∣∣∂f
∂θ

∣∣∣
are upper bounded locally by the RHS of (6.16) and (6.19) respectively.

Using similar logic one can easily show that both the partial derivatives of f are

continuous in (θ, π). Hence by Implicit function theorem on Banach spaces, (Theorem

3.1.10 and corollary 3.1.11, p. 115, [5]), the map θ 7→ πθ is continuously differentiable and

the derivative is given by,

∇θπθ = −

[
∂f

∂π

∣∣∣∣
(θ,πθ)

]−1
∂f

∂θ

∣∣∣∣
(θ,πθ)

.

Upper bound 6.12 is obtained by bounding the above gradient using the upper bounds

(6.16), (6.19). �

Lemma B.1 f is differentiable with respect to π and the derivative is a homeomorphism.
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Also for any δ > 0, σ2
0 > 0 there exists a constant C0 <∞ such that,∣∣∣∣∣∣

[
∂f

∂π

∣∣∣∣
(θ,πθ)

]−1
∣∣∣∣∣∣ ≤ C0 (6.16)

for all θ ∈ B(θ0, δ), σ
2 ≤ σ2

0.

Proof : The function f is affine linear in the second variable π ∈ Y . Thus,

∂f

∂π

∣∣∣∣
(θ,π̂)

(π) = g(θ, π)− π +

(∑
j

∫
y′
π(j, y

′)fN (y′)dy′

)
. (6.17)

We will show below that this map is one-one through contradiction. It is easy to see that

g(θ, π)− π is in the set,

H :=

{
π :
∑

j

∫
y′
π(j, y

′)fN (y′)dy′ = 0

}
⊂ Y.

Operator π 7→
(∑

j

∫
y′
π(j, y

′)fN (y′)dy′
)

has one-dimensional range which lies inside Hc.

We can show that the partial derivative (6.17) is one-one, if we show that there is no

common non-zero vector in the null space of both the operators. Say there exists a vector

π 6= 0 in the null space of both the operators. Let,

D :=
{
(i, y) : π(i, y) ≥ 0

}
,

α :=
∑

j

∫
{y′:(j,y′)∈D}

π(j, y
′)fN (y′)dy′,

|π|1 :=
∑

j

∫
y′

∣∣π(j, y
′)
∣∣ fN (y′)dy′.

As π is in the null space of the operator, π 7→
∑

j

∫
y′
π(j, y

′)fN (y′)dy′,

∑
j

∫
{y′:(j,y′)∈Dc}

π(j, y
′)fN (y′)dy′ = −α.
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Hence |π|1 = 2α. Also, because g(θ, π) = π,

g(θ, π)(i, y) ≥ 0 for all i, y ∈ D and

g(θ, π)(i, y) < 0 for all i, y ∈ Dc.

Then,

|g(θ, π)|1

=
∑

i

∫
y:(i,y)∈D

g(θ, π)(i, y)fN (y)dy −
∑

i

∫
y:(i,y)∈Dc

g(θ, π)(i, y)fN (y)dy

=
∑

i

∫
y:(i,y)∈D

∑
j

∫
y′
pn0

θ (i, y|j, y′)π(j, y′)fN(y′)dy′fN (y)dy

−
∑

i

∫
y:(i,y)∈Dc

∑
j

∫
y′
pn0

θ (i, y|j, y′)π(j, y′)fN(y′)dy′fN(y)dy

Fubini
=

∑
j

∫
y′

(∑
i

∫
y:(i,y)∈D

pn0
θ (i, y|j, y′)fN (y)dy

)
π(j, y′)fN (y′)dy′

−
∑

j

∫
y′

(∑
i

∫
y:(i,y)∈Dc

pn0
θ (i, y|j, y′)fN (y)dy

)
π(j, y′)fN (y′)dy′

=
∑

j

∫
y′
P n0

θ (i, y ∈ D|j, y′) π(j, y′)fN (y′)dy′

−
∑

j

∫
y′
P n0

θ (i, y ∈ Dc|j, y′) π(j, y′)fN (y′)dy′

=
∑

j

∫
y′

(
P n0

θ (i, y ∈ D|j, y′)− P n0
θ (i, y ∈ Dc|j, y′)

)
π(j, y′)fN (y′)dy′
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=
∑

j

∫
y′:j,y′∈D

(
1− 2P n0

θ (i, y ∈ Dc|j, y′)
) ∣∣π(j, y′)

∣∣ fN (y′)dy′

+
∑

j

∫
y′:j,y′∈Dc

(
1− 2P n0

θ (i, y ∈ D|j, y′)
) ∣∣π(j, y′)

∣∣ fN (y′)dy′

≤
∑

j

∫
y′:j,y′∈D

(1− 2νn0(D
c))
∣∣π(j, y′)

∣∣ fN (y′)dy′

+
∑

j

∫
y′:j,y′∈Dc

(1− 2νn0(D))
∣∣π(j, y′)

∣∣ fN (y′)dy′

=
|π|1
2

(2− 2νn0(D
c)− 2νn0(D))

= |π|1 (1− νn0(Y )) < |π|1 .

This provides a contradiction as 0 < νn0(Y ) < 1 and hence |π|1 = |g(θ, π)|1 < |π|1. This

proves that the partial derivative (6.17) is one-one. The inequality is obtained by using the

majorizing measure, νn0(.), defined in the proof of continuity of stationary distribution.

The map g(θ, π) is compact integral operator (example 2, p. 277, [64]). The last map

of the partial derivative has one-dimensional range and hence is compact. Therefore, the

partial derivative equals T − I, where T is a compact operator. Then by Riesz-Schauder

Theory (Theorem 1, p. 283, [64]), the fact that ∂f
∂π

is one-one implies that it is onto and

also further that the inverse is bounded. Hence ∂f
∂π

is a linear homeomorphism.

Furthermore, the mapping (σ2, θ) 7→
∣∣∣∣[ ∂f

∂π

∣∣
(θ,πθ)

]−1
∣∣∣∣ is continuous. This continuity

follows by the joint continuity of the n0-step transition function, pn0
θ (i, y|j, y′) with respect

to (σ2, θ) and then by bounded convergence theorem (as pn0
θ (i, y|j, y′) + 1 is uniformly

bounded) and finally by the continuity of the map x 7→ x−1 (p. 135, [52]). Hence the

lemma follows for some C0 <∞, δ > 0, σ2
0 > 0. �
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Lemma B.2 f is differentiable with respect to θ. The partial derivative ∂f
∂θ

∣∣∣
(θ,πθ)

is upper

bounded by bound (6.19).

Proof : We reintroduce the notations that will be used here (notation of equation (6.8)).

• i =
[
Sk+n0

k+n0−(Nf+L−2), Ŝ
k+n0−1

k+n0−1−(Nb−1)

]
, y = Nk+n0

k+n0−(Nf−1), represent the current state

of the Markov Chain, at k + n0.

• j =
[
Sk

k−(Nf+L−2), Ŝ
k−1

k−(Nb−1)

]
, y′ = Nk

k−(Nf−1) represent the initial condition for

n0−step transition function, which is the state of the Markov chain at k.

• l =
[
S

k+n0−(Nf+L−3)

k+1 , Ŝ
k+n0−1−(Nb−2)

k

]
, v = N

k+n0−(Nf−2)

k+1 represent the intermediate

input, decision and noise vectors.

• x(q) :=
[
Sk+n0−q

k+n0−q−(Nf+L−1), Ŝ
k+n0−q−1

k+n0−q−Nb
, Nk+n0−q

k+n0−q−Nf

]
represent the intermediate

state of the Markov chain at k + n0 − q.

To begin with, we will show component wise differentiability of the function f , i.e.,

differentiability of f(θ, π)(i, y) for every (i, y). We will show the differentiability of the

n0−step transition function, pn0
θ

(
i, y|j, y′

)
along with that. Positive and finite constants

are introduced in the derivations as and when required. While obtaining upper bounds we

have taken advantage of the finite alphabet nature of the set S. By simple computations,

one can see that the density with respect to the Gaussian measure is,

pn0
θ

(
i, y|j, y′

)
=

∑
l

∫
v

Πn0
q=1Pθ(ŝk+n0−q|x(q)) P (Sk+n0

k+1 ) fN (v) dv. (6.18)

Hence,

f(θ, π)(i, y) =
∑

l,j

∫
v,y′
Πn0

q=1Pθ(ŝk+n0−q|x(q))P (Sk+n0
k+1 )π(j, y′)fN (v)fN (y′)dvdy

−π(i, y) +
(∑

j

∫
y′
π(j, y′)fN (y′)dy′ − 1

)
.

The only component of the above functions which depend upon θ is Pθ(ŝk+n0−q|j, y′).
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By (6.10), ∣∣∣∣∂Pθ

∂θ
(ŝk+n0−q|x(q))

∣∣∣∣ ≤ c
∣∣∣Nk+n0−q

k+n0−q−Nf

∣∣∣ ,
uniformly in (i, y), for every θ, (j, y′) and for every q. Thus for any θh in a small neighbor-

hood of 0 and for any i, y, j, y′, θ and q (by mean value theorem, Theorem X.4.5, p.312,

[7]), ∣∣∣∣Pθ(ŝk+n0−q|x(q))− Pθ+θh
(ŝk+n0−q|x(q))− θt

h

∂Pθ

∂θ
(ŝk+n0−q|x(q))

∣∣∣∣
≤

∣∣Pθ(ŝk+n0−q|j, y′)− Pθ+θh
(ŝk+n0−q|j, y′)

∣∣+ ∣∣∣∣θt
h

∂Pθ

∂θ

(
ŝk+n0−q|j, y′

)∣∣∣∣
≤ 2c |θh|

∣∣∣Nk+n0−q
k+n0−q−Nf

∣∣∣ .
Finally by dominated convergence theorem, we obtain the existence of the following

partial derivatives,

∂pn0
θ

∂θ

(
i, y|j, y′

)
=

∑
l

∫
v

∂
(
Πn

q=1Pθ(ŝk+n0−q|x(q))
)

∂θ
P (Sk+n0

k+1 ) fN (v) dv,

∂f

∂θ

∣∣∣∣
θ,π

(i, y) =
∑

j

∫
y′

∂pn0
θ

∂θ

(
i, y|j, y′

)
π(j, y′)fN (y′)dy′.

For obtaining the second partial derivative, the function inside each of the integral (one

each for different values of i, j, l, r),

∫
v,y′

(
Pθ(ŝk+n0−r|x(r))− Pθ+θh

(ŝk+n0−r|x(r))− θt
h

∂Pθ

∂θ
(ŝk+n0−r|x(r))

)
Πn0

q=1,q 6=rPθ(ŝk+n0−q|x(q))π(j, y′)fN (v)fN (y′)dvdy

(for which the limit lim|θh|→0 is taken inside the integral by dominated convergence theo-

rem), is dominated by some constant multiple of the integrable function,

∣∣∣Nk+n0−r
k+n0−r−Nf

∣∣∣ ∣∣π(j, y′)
∣∣ .
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The above function is integrable by Cauchy Schwartz inequality.

The component wise partial derivative, ∂f
∂θ

∣∣
θ,π

(i, y), is uniformly upper bounded by,

∣∣∣∣∣ ∂f∂θ
∣∣∣∣
θ,π

(i, y)

∣∣∣∣∣ ≤ c′′

ε0

[∣∣y∣∣+ 1
]

for all (i, y), all θ,

where the constant c′′ depends on |π|.

One can now prove the existence of the overall partial derivative ∂f
∂θ

at every (θ, π)

using the above upper bound and the dominated convergence theorem (in L2 norm).

Consider the limit,

lim
|θh|→0

1

|θh|
∑

i

∫
y

∣∣∣∣∣f(θ, πθ)(i, y)− f(θ + θh, πθ)(i, y)− θt
h

∂f

∂θ

∣∣∣∣
θ,πθ

(
i, y
)∣∣∣∣∣

2

fN (y)dy

=
∑

i

∫
y

lim
|θh|→0

1

|θh|

∣∣∣∣∣f(θ, πθ)(i, y)− f(θ + θh, πθ)(i, y)− θt
h

∂f

∂θ

∣∣∣∣
θ,πθ

(
i, y
)∣∣∣∣∣

2

fN (y)dy

= 0.

The first equality follows because the function inside the integral tends to zero at every

point and is upper bounded by the following integrable function,

c′

ε0

[∣∣y∣∣+ 1
]
1n��� ∂f

∂θ |θ,π
(i,y)

���≤1
o +

(
c′′

ε0

[∣∣y∣∣+ 1
])2

1n��� ∂f
∂θ |θ,π

(i,y)
���>1

o.

We will now upper bound this partial derivative for all (θ, πθ). First observe that, because

πθ(i, y) ≤ 1 for all (i, y), from (6.10),

∣∣∣∣∣ ∂f∂θ
∣∣∣∣
(θ,πθ)

(i, y)

∣∣∣∣∣
=

∣∣∣∣∣∑
l,j

∫
y′,v

∂
(
Πn

q=1Pθ(ŝk+n0−q|x(q))
)

∂θ
P (Sk+n0

k+1 )πθ(j, y
′)fN (v)fN (y′)dvdy′

∣∣∣∣∣
≤

(
c1

n∑
r=1

∑
l,j

∫
v,y′

1{|eθ(x(r))|≤ε0}fN (v)fN (y′)dvdy′

)
+ c2

∣∣y∣∣+ c3E(|Nk|),

for some appropriate constants c1, c2, c3. Then using (
∑n

k=1 ak)
2 ≤ n

∑n
k=1 a

2
k, |x|

2 ≤ |x|
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(when |x| ≤ 1), we get,

∣∣∣∣∣ ∂f∂θ
∣∣∣∣
(θ,πθ)

∣∣∣∣∣
2

=

∑
i

∫
y

∣∣∣∣∣ ∂f∂θ
∣∣∣∣
(θ,πθ)

(i, y)

∣∣∣∣∣
2
fN
|S|

(y)dy

1/2


2

≤ c′1

n∑
r=1

∑
l,j,i

∫
v,y′,y

1{|eθ(x(r))|≤ε0}fN (v)fN (y′)fN (y)dvdy′dy

+c′2
∑

i

∫
y

∣∣y∣∣2 fN (y)dy + c′3 [E(|Nk|)]2

= c′′1
∑

l

P
({∣∣bl + θt

fNk

∣∣ ≤ ε0
})

+ c′′2σ
2, (6.19)

where the constants bl take values St
kZθ + θt

bŜk−1. �

Appendix C

Proof of Theorem 6.3 : Let

f1(θ, ε0) := Eε0
Gk(θ)

[
errθ(Gk)

2
]
,

f2(θ, ε0) :=
∣∣∣Eε0

Gk(θ)∇θ

[
errθ(Gk)

2
]∣∣∣ .

Note that for any fixed ε0, LMS attractors will be the zeros, i.e., minima of f2(., ε0) while

the DFE Wiener filters are the minima of the MSE cost function f1(., ε0). Also note that

ε0 = 0 corresponds to the original decoder.

Let {ε0n} be any sequence converging to 0. Let Ω = {ε0n}. Take a compact set C

large enough such that the Wiener filter is inside it (as θ is increased to infinity, eventually

MSE will start increasing and will tend to infinity).

One can follow steps similar to Theorem 6.1 and show that the stationary density πε0n
θn

converges to π0
θ as (ε0n, θn) → (0, θ). Similarly, one can also show that both functions

f1, f2 are jointly continuous in (θ, ε0) ∈ C × Ω.

The domain of the parameter θ for every ε0, say D(ε0), is the same compact set C

and hence the correspondence ε0 7→ D(ε0) is compact and continuous ([51]). Then by the
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maximum theorem (p. 235, [51]),

D1
∗
n := arg min

θ∈C
f1(θ, ε0n),

D2
∗
n := arg min

θ∈C
f2(θ, ε0n),

are compact valued upper semi-continuous correspondences on Ω. Thus by Proposition

9.8, p. 231, [51] there exists a subsequence of LMS attractors θLMS
nk

converging to an LMS

attractor of the original decoder, θLMS
0 . Once again by the same proposition there exists

a further subsequence such that the DFE Wiener filters θ∗nkl
converge to a DFE Wiener

filter of the original decoder, θ∗0. Thus there exists a sequence (after renaming) ε0n → 0

such that

θLMS
n → θLMS

0 and

θ∗n → θ∗0. �

Appendix D

Proof of Theorem 6.4 : By the last assumption of Section 6.1, we have St
kZθ+θ

t
bŜk−1 6=

0 for all values of Sk, Ŝk−1 at an LMS attractor. This implies the same (in fact the sign

of the term, St
kZθ + θt

bŜk−1, for each Sk, Ŝk−1 remains same) in a small neighborhood of

the LMS attractor by continuity. Thus, when σ2 = 0 (the noiseless case), for the original

decoder at an LMS attractor (call it θ∗0), we have,

∂Pθ

∂θ
(i, y|j, y′) = 0 for all values of (i, y) (j, y′).

Thus following the proof of Theorem 6.2 we can show that the gradient of the stationary

density, ∇θπθ exists and equals zero at the LMS-DFE attractor of the original decoder

for the noiseless case. Hence at θ∗0,

∇θEGk(θ)

[
errθ(Gk)

2
]

= EGk(θ)

[
∇θ

(
errθ(Gk)

2
)]
.
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Thus in this case, the DFE Wiener filter coincides with the LMS-DFE attractor, θ∗0.

Choose ε02 > 0 such that,

ε02 <
∣∣∣(St

kZθ
∗
0 + Ŝ

t

k−1θ
∗
0b

∣∣∣
for all values of Sk and Ŝk−1.

The DFE Wiener filter (θ∗,ε0) and the LMS-DFE attractor (θLMS,ε0) coincide and equal

θ∗0 for a noiseless system having a perturbed decoder, with ε0 ≤ ε02. This happens because

the perturbed decoder coincides with the original decoder for ε0 ≤ ε02, when there is no

noise.

Fix ε0 ≤ ε02. Then, w(θ∗,ε0 , 0, 0) = 0 and the partial derivative,

∂w

∂θ

∣∣∣∣
(θ∗ε0

,0,0)

=
ds

dθ
= EfN

[
∇θ

(
∇θ

(
errθ(Gk)

2
)
πθ(Gk)

)]
,

= Eθ

[
∇θ∇θ

(
errθ(Gk)

2
)]
,

= 2Rxx(θ
∗,ε0),

where Rxx(θ
∗,ε0) is the autocorrelation matrix of the vector Xk(θ), under stationarity,

at θ∗,ε0 . As θ∗,ε0 is a Wiener filter, the above partial derivative will be invertible (all

the eigenvalues of the derivative should be negative for the equilibrium point to be an

attractor).

Continuity of the above partial derivative with respect to σ2, η, θ can be seen as before.

Applying Implicit function theorem at (θ∗,ε0 , 0, 0), one gets a δ > 0, and a continuous

function q(σ2, η) such that q(0, 0) = θ∗,ε0 and w(q(σ2, η), σ2, η) = 0, for all (σ2, η) such

that |(σ2, η)| ≤ δ. �

Remark : The above theorem also provides the following useful conclusion. For all

σ2 ≤ δ, the zeros of w(., σ2, 0) exist and equal q(σ2, 0). These zeros are continuous in σ2.

One can see that these zeros will indeed be LMS attractors as invertability of the derivative

of the function f() at σ2 = 0 guaranties its invertibility in a small neighborhood of σ2 = 0.
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Appendix E

Lemma 6.1 Let πθn

L1→ πθ. Let |f(θn, x)| ≤ g1(x), |f(θn, x)|
2 ≤ g2(x) for all n, where

g1, g2 are integrable functions (with respect to measure µ). Also let f continuous and∣∣πθn
(x)
∣∣ ≤ C <∞ for all x. Then as n→∞,

∫
f(θn, x)πθn

(x)µ(dx) →
∫
f(θ, x)πθ(x)µ(dx).

Proof : We have∣∣∣∣∫ (f(θn, x)πθn
(x)− f(θ, x)πθ(x)

)
µ(dx)

∣∣∣∣
≤

∫ ∣∣(f(θn, x)πθn
(x)− f(θ, x)πθ(x)

)∣∣µ(dx)

≤
∫
|f(θn, x)|

∣∣πθn
(x)− πθ(x)

∣∣µ(dx) +

∫
|f(θn, x)− f(θ, x)|πθ(x)µ(dx)

≤
(∫

|f(θn, x)|
2 µ(dx)

)1/2(∫ ∣∣πθn
(x)− πθ(x)

∣∣2 µ(dx)

)1/2

+

∫
|f(θn, x)− f(θ, x)|πθ(x)µ(dx).

The first term on the right converges to zero because,

(∫ ∣∣πθn
(x)− πθ(x)

∣∣2 µ(dx)

)
≤ 4C2

(∫ ∣∣πθn
(x)− πθ(x)

∣∣µ(dx)

)
.

The second term converges to zero by continuity of the function f(., .) in θ and by the

bounded convergence theorem, �

Lemma 6.2 Let πθ represent the Radon-Nikodym derivative of measure Πθ with respect

to the common measure µ for all θ ∈ Rm, for some m. Assume πθ ≤ 1 everywhere for all

θ. If ∇θπθ exists in L2 norm, then

∇θEθ(g(θ)) = Eµ∇θ(g(θ)π(θ)),
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where g(θ, .) is square integrable, continuously differentiable in θ and bounded by a square

integrable function uniformly in a neighborhood of θ.

Proof : Since,

1

|θh|

∫ ∣∣g(θ + θh)πθ+θh
− g(θ)πθ − θt

h (g(θ)∇θπθ −∇θg(θ)πθ)
∣∣µ(dw)

≤ 1

|θh|

∫ ∣∣g(θ) (πθ+θh
− πθ − θt

h∇θπθ

)∣∣µ(dw)

+
1

|θh|

∫ ∣∣πθ+θh

(
g(θ + θh)− g(θ)− θt

h∇θg(θ)
)∣∣µ(dw)

+
1

|θh|

∫ ∣∣(πθ+θh
− πθ)θ

t
h∇θg(θ)

∣∣µ(dw), (6.20)

we will have the result if we show that each of the terms on the right tend to zero as

|θh| → 0. By Cauchy Schwartz inequality,

lim
|θh|→0

1

|θh|

∫ ∣∣g(θ) (πθ+θh
− πθ − θt

h∇θπθ

)∣∣µ(dw)

≤ |g|2 lim
|θh|→0

1

|θh|

(∫ ∣∣(πθ+θh
− πθ − θt

h∇θπθ

)∣∣2 µ(dw)

)1/2

The right side tends to zero because the gradient ∇θπθ exists in L2 norm.

The second term on the right hand side of (6.20) tends to zero by bounded convergence

theorem and mean value theorem (as in Appendix B), because πθ ≤ 1 everywhere for all

θ and as ∇g is uniformly bounded in a neighborhood of θ by an integrable function.

The third term of (6.20) tends to zero by Cauchy Schwartz inequality and by the

continuity of the stationary density π in L2 norm, and by uniform boundedness of the

function (∇θg) in a neighborhood of θ by a square integrable function. �



Chapter 7

LMS-DFE versus DFE-WF for a

Wireless Channel

In this chapter we study the tracking behavior of an LMS-DFE while tracking a time

varying wireless channel. We model the wireless channel by an AR(2) process of Chapter

2. We obtain an ODE approximation for the LMS-DFE. The instantaneous attractors of

this ODE are the same as the LMS attractors of the previous chapter, with the channel

fixed at the instantaneous value. It is shown in the previous chapter that the LMS

attractors are close to that of the DFE-WFs at high SNRs. Hence one may expect that

the LMS-DFE while tracking an AR(2) process moves close to the instantaneous WF at

high SNRs. Using the ODE approximation of the LMS-DFE and the channel, we show via

some examples that the LMS equalizer moves close to the instantaneous Wiener filter after

initial transience. We also compare the LMS equalizer with the instantaneous ’optimal’

DFE (the commonly used Wiener filter) designed assuming perfect previous decisions

and computed using perfect channel estimate (we will call it as IDFE). We show that the

LMS-DFE significantly outperforms the IDFE at all practical SNRs almost all the time

after initial transience. An interesting observation is that, the improvement is significant

even at high SNRs where an IDFE does not suffer from error propagation.

This chapter is organized as follows. Our system model, notations and assumptions

are discussed in Section 7.1. In Section 7.2, we obtain an ODE approximation for the

157
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tracking trajectory of an LMS-DFE. Section 7.3 provides some examples verifying our

claims, while Section 7.4 concludes the chapter. Proofs are provided in the Appendices.

7.1 System model and Notations

Decoder
+

+θf

θb

ukZ k
sk

nk

sk̂Channel

Q(.)

Figure 7.1: Block diagram of a Wireless channel followed by a DFE.

We consider a system with a time varying wireless channel and a DFE (see Figure 7.1).

Inputs {sk} enter a time varying finite impulse response channel {zk,l}L−1
l=0 , and are cor-

rupted by an additive white Gaussian noise {nk} with variance σ2. The channel output,

uk, at any time k, is given by,

uk =
L−1∑
l=0

sk−lzk,l + nk.

The time variations of the channel are modeled by an AR(2) process,

Zk = d1Zk−1 + d2Zk−2 + µW k (7.1)

where W k is an IID vector sequence of Gaussian random variables (Gaussian assumption

is not really needed) and Zk =
[
zk,0, zk,1 · · · zk,L−1

]
. The channel outputs uk pass

through a DFE with a hard decoder. The details about the equalizer are given below.

We use the following notations and assumptions.

• We assume BPSK modulation, i.e., sk ∈ {+1,−1}.
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• Sequences {sk} and {nk} are IID (independent, identically distributed) and inde-

pendent of each other.

• The equalizer forward filter is given by {θfl
}Nf−1

l=0 , while the feedback filter is given

by {θbl
}Nb

l=1.

• NL
4
=Nf+L−1.

• The decisions are obtained after hard decoding. Hence decision ŝk is given by,

ŝk = Q

Nf−1∑
l=0

θf luk−l +

Nb∑
l=1

θblŝk−l

 where

Q(x) :=

 +1 if x ≥ 0,

−1 if x < 0.

• For any vector, x, we use xl to represent its lth component. xk
l , l ≤ k, represents

the vector
[
xk xk−1 · · · xl

]T
.

• The following vector notations are used throughout.

Sk

4
= sk

k−NL+1, Nk

4
= nk

k−Nf+1,

Uk

4
= uk

k−Nf+1, Ŝk

4
= ŝk

k−Nb+1,

Xk

4
= [ UT

k Ŝ
T

k−1
]T , Gk

4
= [ ST

k XT
k

]T ,

θf

4
= θf

Nf−1
0 , θb

4
= θb

Nb
1 ,

Jk

4
= [ ST

k Ŝ
T

k−1 NT
k

]T , θ
4
= [ θf

T θb
T ]T .

• θk represent the time varying equalizer at time k.

• Let S := {+1,−1}. For a fixed (θ, Z), {Gk} is a Markov chain made of the channel

input Sk, channel output Uk and the decoder output Ŝk−1, when the channel is the

fixed vector Z and the equalizer is fixed at θ. Gk takes values in SNL ×SNb ×RNf ,

where R is the set of real numbers. We represent throughout this chapter the

current and previous state values of this Markov chain by the ordered pairs (i, y),
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(j, y′) respectively. Here i, j take values from the discrete part of the state space,

SNL × SNb , while y, y′ take values in RNf .

• Zθ = {zθl}NL−1
l=0 represents the convolution of the channel {zl}and forward filter θf .

• B(θ, δ), B̄(θ, δ) are the open and closed balls respectively, with center θ and radius

δ.

• K̄(ε,M) :=
{
(θ1, θ2) ∈ RNf ×RNb : ε < |θ1| ≤M, |θ2| ≤M

}
.

• Eθ,Z
j,y′ represents the expectation of the Markov chain {Gk} for fixed channel, equalizer

pair (θ, Z), when the initial condition is j, y′.

• Ej,y′;θ,Z represents the expectation of the Markov chain {Gk, θk, Zk, Zk−1} with initial

condition (j, y′, θ, Z).

• Eθ,Z;θ′,Z′

(j,y′);(i,y) represents the expectation of the Markov chain pair {(Gk, G
′
k)} under

the initial condition (j, y′, i, y). Here {Gk} is the Markov chain for fixed channel-

equalizer pair (θ, Z) with initial condition (j, y′), while {G′
k} is the one for channel-

equalizer pair (θ′, Z ′) with initial condition (i, y). When both the initial conditions

are same, it is simply represented by Eθ,Z;θ′,Z′

i,y . When the channel-equalizer pair is

same but with different initial conditions, it is represented by Eθ,Z
(i,y);(j,y′).

• P θ,Zk
(.|.), Πθ,Z , Eθ,Z respectively represent the k−step transition function, the sta-

tionary distribution, and the expectation wrt to the stationary measure (existence

will be shown) of the Markov chain {Gk} for a fixed channel, equalizer pair (θ, Z).

• We use a DFE, θ, to track the wireless channel modeled by an AR(2) process, {Zk}.

The LMS algorithm is used to continuously update the equalizer θ to cater to the

time varying channel.

θk+1 = θk − µH1θk
(Gk) where (7.2)

H1θ(G)
4
= X

(
X tθ − s

)
.
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One can easily extend this theory to any finite alphabet input source. Currently, the

theory to follow considers an optimal equalizer for delay 0. However, the entire theory

will go through for any arbitrary delay. Indeed in Section 7.3, an example with an optimal

equalizer for delay 1, is presented.

7.2 ODE Approximation

We can rewrite the channel AR(2) process (7.1) as,

Zk+1 = (1− d2)Zk + d2Zk−1 + µ(Wk + ηZk). (7.3)

We will show below that the trajectory (θk, Zk) given by equations (7.2), (7.3) can be

approximated by the solution of the following system of ODEs,

(1 + d2)
�
Z (t) = [E(W ) + ηZ(t)] , if d2 ∈ (−1, 1],

d2Z(t)

dt2
= [E(W ) + ηZ(t)] , if d2 = −1,

d2Z(t)

dt2
+ η1

�
Z (t) = [E(W ) + ηZ(t)] , if d2 is close to − 1, (7.4)

�
θ (t) = h1(θ(t), Z(t)), (7.5)

where

h(Z)
4
= E(Wk + ηZ) = E(W1) + ηZ,

η =
d1 + d2 − 1

µ
, η1 =

1 + d2√
µ

h1(θ, Z)
4
= Eθ,Z

[
Xk

(
X t

kθ − sk

)]
= −Rxx(θ, Z)θ +Rxs(θ, Z),

Rxx(θ, Z) = Eθ,Z
(
XX t

)
,

Rxs(θ, Z) = Eθ,Z (Xs).
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By the following Lemma, the above system of ODEs have unique global solutions that

are bounded for any finite time.

Lemma 7.1 The ODE (7.5) has a unique solution, which satisfies,

|θ(t)| ≤ c0 + c1e
c2t,

for appropriate positive constants c0, c1 and c2.

Proof : For convenience, we reproduce the ODE (7.5),

�
θ (t) = −Rxx(θ(t), Z(t))θ(t) +Rxs(θ(t), Z(t)),

It is easy to see that |Rxx(θ(t), Z(t))| ≤ C1 |Z(t)|2 + C2, |Rxs(θ(t), Z(t))| ≤ C |Z(t)|

for all t, for some positive constants C1, C2 and C. The above inequalities follow by

boundedness of the decisions ŝ. By boundedness of the channel ODE solution curves

(given in Chapter 2) given below, |Rxs(θ(t), Z(t))| ≤ C3(T ), |Rxx(θ(t), Z(t))| ≤ C4(T ),

for all t ≤ T for any finite time T for some positive constants C3(T ), C4(T ) depending

only on T . Thus, for any vector θ, the inner product,

〈
�
θ (t), θ

〉
≤ C3(T )|θ|2 + C4(T )|θ|

= [C3(T )|θ|+ C4(T )] |θ|.

Therefore by Global existence theorem (pp 169 - 170 of [42]), the ODE (7.5), has a unique

solution for any finite time and the solution is bounded by the solution of the following

scalar ODE (after choosing the initial conditions properly),

�
k (t) = C3(T )k(t) + C4(T ),

whose solution is given by,

k(t) = c1e
C3(T )t + C4(T ),
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for some appropriate constant c1. �

Let Z(t, t0, Z), θ(t, t0, θ) represent the solutions of the ODEs (7.4), (7.5) with initial

conditions Z(t0) = Z, θ(t0) = θ and
�
Z (t0) = 0, whenever the channel is approximated

by a second order ODE. We prove Theorem 7.1, using the Theorem A.2 of Appendix I,

provided at the end of the thesis.

Theorem 7.1 For any finite T > 0, for all δ > 0 and for any initial condition (G, θ, Z),

with d2Z−1 + d1Z0 = Z,
�
Z (t0) = 0, whenever the channel is approximated by a second

order ODE and θ0 = θ,

PG,Z,θ

 sup
{1≤k≤ T

µα}
|(Zk, θk)− (Z(µαk, 0, Z), θ(µk, 0, θ))| ≥ δ

→ 0,

as µ→ 0, uniformly for all Z, θ ∈ Q, if Q is contained in the bounded set containing the

solution of the ODEs (7.4), (7.5) till time T . In the above α = 1 if Z(., ., .) is solution of

a first order ODE and equals 1/2 otherwise.

Proof : Refer to Appendix A.

Thus we obtain the ODE approximation for the LMS-DFE tracking an AR(2) process.

The approximating ODE (7.5) suggests that, its instantaneous attractors will be same as

the LMS-DFE attractors when the channel is fixed at the instantaneous value of the

channel ODE (7.4) (as in the previous chapter, Chapter 6). In the previous chapter,

these LMS-DFE attractors are shown to be close to the DFE-WF at high SNRs. Hence

the ODE suggests that the LMS-DFE may move close to the instantaneous DFE-WFs.

We will in fact see that this is true for the examples we study in the next section.

One of the uses of the above ODE approximation is that, one can approximately obtain

the performance (e.g., BER, MSE) of LMS-DFE at any time by using the trajectory of

this ODE. Of course, obtaining BER theoretically is still a problem because the BER of

a system with a fixed known channel and a fixed DFE is still not available. But our ODE

approximation is still useful because one can obtain the performance (transient as well

as stationary) of the LMS-DFE with only one simulation, which would not be possible

otherwise.
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7.3 Examples

We use the ODE approximation of the previous section to obtain some interesting con-

clusions. The ODE approximation gives accurate deterministic approximation of the

LMS-DFE and the channel trajectory for practical values of step sizes. Hence as com-

mented above, using these ODEs one can get good estimates of instantaneous performance

measures like, Bit Error Rate (BER) and Mean Square Error (MSE) for almost all realiza-

tions of the LMS-DFE and the channel trajectory. Using the channel ODE, one can also

obtain the same performance measures for instantaneous IDFE. Then one can compare

the IDFE and the LMS-DFE along the entire time axis.

In all the examples below, we estimate the DFE-WF as in Chapter 6 (directly using

steepest descent algorithm by approximating the gradient of the MSE with difference of

estimated MSEs at two close points divided by the distance between the same two points).

In the figures, the solid line, the dash dot line and the dash dash line represent the true

coefficient trajectory, the ODE approximation and the IDFE trajectory respectively, while

the stars represent the DFE-WFs.

To begin with we consider a stable channel (for which all the poles are inside the unit

circle) in Figure 7.2,

Zk = .4995Zk−1 + 0.5Zk−2 + 0.0001Wk.

Here Wk is a Gaussian IID random vector with independent components of unit variance

and its mean is a constant multiple of,

[
0.26 0.34 0.25 0.064 −0.13 −0.19 −0.16 0 0.064 0.064

]
.

We consider a five tap feed-forward filter and a five tap feed-back filter. The LMS step-

size equals µ = 0.001 (In theory, it is shown that step-size of LMS µ is also equal to

the channel step-size. However one can absorb the difference into one of the H1(), H()

functions.) The noise variance σ2 = 0.05. We plot the channel in the first subfigure. Th

equalizer coefficient trajectories along with their ODE approximations are plotted in the
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next four subfigures of Figure 7.2. We start the LMS and the ODEs at time t = 0 with

the instantaneous IDFE. We also plot the instantaneous DFE-WF and the IDFEs in the

same sub figures. We can see that the ODE approximation is quite accurate for all the

co-efficients. The approximation for the feed-forward coefficients is better than for the

feed-back coefficients. We also see that the LMS-DFE is very close to the instantaneous

DFE-WF after some initial transience. Furthermore, the IDFE trajectory is away from

the DFE-WF in most of the cases. We also plot the instantaneous BER and MSE of the

IDFE and the LMS-DFE (both calculated from corresponding ODE approximations) in

the last two sub figures of Figure 7.2. One can see a huge improvement (upto 35%) of

LMS-DFE (also of DFE-WF) over the IDFE both in terms of BER, MSE after the initial

transience (Figure 7.2). On the other hand, performance of the LMS-DFE is quite close

to that of the DFE-WF.

Next, we consider a marginally stable channel in Figure 7.3. Here d1 = 1.9999998,

d2 = −2, µch = 1e−7 (One can see from channel solution curves, (2.2) of Chapter 2, that√
d1+d2−1

µ
gives the period of oscillations). Wk is generated as before. Again there are

five taps in the feed-forward filter and five in the feed-back filter. The step size of the

LMS equals, µLMS = 0.001. Here the channel trajectory is approximated by a cosine

waveform. From Figure 7.3, we can make the same observations as in the stable case.

In particular we see that the LMS-DFE has BER and MSE upto 50% less than for the

IDFE. We also see that the LMS-DFE is always (after initial transience) very close to the

DFE-WF, while the IDFE stays quite away. This again explains the poor performance of

the IDFE (in terms of BER, MSE) over the LMS-DFE after initial transience.

We consider two more examples one for stable channel in Figure 7.4 and the second for

a marginally stable channel in Figure 7.5. Here we consider a 3 tap channel followed by

a (2,2) tap DFE. One can make similar observations as above. However the improvement

(in BER, MSE) of LMS-DFE/DFE-WF over IDFE is slightly lower (≈ 18%).

Finally, in Figure 7.6, we consider a stable channel with d2 close to −1 (from the

figure, it actually looks like a marginally stable channel but its magnitude is reducing at

a very small rate, 1+d2√
µ

, as d2 is very close to -1). In this case, as is shown theoretically,
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a better ODE approximation is obtained by a second order ODE. Here, the channel

trajectory is approximated by an exponentially reducing cosine waveform. We considered

the AR(2) process, which approximates the fading channel with band limited and U-

shaped spectrum and received with fdT = 0.001 (fdT represents the product of maximum

Doppler frequency and the actual data sampling time). One can see that, the LMS-DFE

once again tracks the instantaneous DFE-WF after initial transience (in this case more

than half of the first cycle, as this is a fast varying channel) and that the IDFE is poor

in comparison with the LMS-DFE and the DFE-WF.

7.4 Conclusions

We study an LMS-DFE tracking a wireless channel, approximated by an AR(2) process.

We considered a long-standing problem of tracking the true MSE optimal DFE. We ap-

proximated the LMS-DFE trajectory with the solution of a system of ODEs. Using this

ODE approximation, we show that the LMS-DFE comes close to the instantaneous DFE-

WF after the initial transience. We also see that the performance measures BER and

MSE of the LMS-DFE are quite close to that of the DFE-WF after the transient period.

We thus conclude that the LMS-DFE can be used to track the DFE-WF.

Furthermore, we also compared the LMS-DFE with IDFE, the popular WF designed

assuming perfect past decisions (also designed from perfect channel estimate). IDFE is

shown to be far away from the DFE-WF (also from the LMS-DFE) trajectory throughout

the entire time axis. Its performance (BER, MSE) is substantially worse than that of the

DFE-WF and the LMS-DFE.

Appendix A

Proof of Theorem 7.1 : We considered a general system (1)-(2) in Appendix I

(provided at the end of the thesis) and proved the ODE approximation for this in Theorem
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A.2. The channel, equalizer pair, (θk, Zk) given by equations (7.2), (7.3), is a specific

example of the general system (2), (1). Thus Theorem 7.1 is proved if we show that

(θk, Zk) given by (7.2), (7.3) satisfies the assumptions A.1-A.3 of Chapter 2 and B.1-B.4

(after replacing the assumption B.3.c.ii with B.3.c.ii′) of Appendix I (the solution of the

system of ODEs is bounded for any finite time by Lemma 7.1).

The AR(2) process {Zk} in (7.3) clearly satisfies the assumptions A.1 - A.3 as is shown

in Chapter 2. If (θk, Zk) stay constant and equal (θ, Z), then {Gk} is a Markov chain

whose transition probabilities P θ,Z(G,A) are a function of (θ, Z) alone. Thus condition

B.1 is satisfied. B.2 is also satisfied as for any compact set Q and for any θ ∈ Q,

|H1θ(G)| ≤ 2

[
max

{
1, sup

θ∈Q
|θ|
}]

(1 + |G|2).

The condition B.4 is trivially met as for any n > Nf +Nb + 1, the expectation does not

depend upon the initial condition G but is bounded based on the compact set Q and

because of the Gaussian random variable N and discrete random variable S, Ŝ.

In the previous chapter, we showed that for every fixed channel, equalizer pair (θ, Z),

a unique stationary measure of the Markov chain {Jk} (we referred it as {Gk} in that

chapter) exists and is continuous in θ. One can show the joint continuity wrt (θ, Z) pair,

on similar lines by redefining M1 of upper bound (6.14) of the Appendix A in the previous

chapter by,

M1
4
= min

Sk,Ŝk−1,θ∈B̄(θ0,ε),Z∈B̄(Z0,ε0)
ZθtSk + θt

bŜk−1.

We can show the same for the Markov chain, {Gk} also, as Gk = Γ(Jk) for some fixed one-

one, onto C∞ function Γ, whenever the channel and equalizer values are fixed. Further

in Chapter 6, it is shown that h1(θ, Z)
4
=Eθ,ZH1θ exists for every channel equalizer pair,

(θ, Z). We will show that,

νθ,Z (G)
4
=

∑
k≥0

P θ,Z k
(H1(θ,G)− h1(θ, Z)),
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exists and will satisfy the conditions B.3. This will complete the proof.

Verification of Assumptions B.3.b and B.3.c.i :

We will use the Proposition 2, p.253, [4] and Proposition 4, p. 257, [4] to verify the

required assumptions. For convenience, the statement of both the Propositions (and the

assumptions under which they are valid) are reproduced in Appendix C as Proposition

7.1, Proposition 7.2 respectively.

We will first verify the assumptions X.1 to X.4 of Appendix C. Towards this, one can

clearly see that for all initial conditions j, y′, i, y and all equalizers θ,

Eθ,Z
j,y′ (|Un|p) ≤

 C if p > Nf

C ′
∣∣y′∣∣p if p ≤ Nf ,

(7.6)

Eθ,Z
(j,y′);(i,y)

(
|Un − U ′

n|
p) ≤

 C if p > Nf

C ′
∣∣y − y′

∣∣p if p ≤ Nf ,
(7.7)

whenever the channel Z ∈ B(0, ε′) for any ε′.

Thus the Markov chain {Gk} satisfies the assumptions (X.1), (X.2) for any fixed

channel, equalizer pair (θ, Z). In Lemma 7.2 and 7.3 of Appendix B, we show that {Gk}

satisfies the assumptions (X.3), (X.4). Here all the constants in the upper bounds are

same as long as (θ, Z) ∈ K̄(ε,M) × B̄(0, ε′). Hence Proposition 7.2 follows and then we

can apply Proposition 7.1. This Proposition also needs the inequality (7.6) . By this

Proposition,

h1(θ, Z) = lim
k→∞

P θ,Zk
H1θ(j, y

′), (7.8)

exists for every (θ, Z), and for any initial condition j, y′. Note that P θ,Zk
as mentioned

in Section 7.1 represents the k-step transition function of the Markov chain, {Gk}, with

channel, equalizer fixed at θ, Z. The function h1 is actually equal to the expected value of

function H1θ under stationary measure as is shown above. Also, by the same Proposition,
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for some constants C <∞, q > 0 and ρ < 1,

∣∣∣h1(θ, Z)− P θ,Zk
H1θ(i, y)

∣∣∣ ≤ Cρk(1 + |y|q). (7.9)

We also get the existence of,

νθ,Z (G)
4
=

∑
k≥0

P θ,Z k
(H1(θ,G)− h1(θ, Z)),

for all channel, equalizer pairs (θ, Z), which satisfy the assumption B.3.b. Finally, by

uniformity of all the inequalities for any θ ∈ K(ε,M), Z ∈ B(0, ε′), assumption B.3.c.i is

satisfied, i.e.,

∣∣νθ,Z (i, y)
∣∣ ≤ C6(1 + |y|q), with C6 <∞,

uniformly in θ ∈ K(ε,M), Z ∈ B(0, ε′).

Verification of Assumption B.3.a :

One can easily see that for (θ, Z), (θ′, Z ′) from a compact set, Q, there exists a constant

C depending upon Q such that, for all k > Nf ,

∣∣H1θ(Gk(θ, Z))−H1θ′(Gk(θ
′, Z ′))

∣∣ ≤ C |(θ, Z)− (θ′, Z ′)| (1 + |Nk|).

(7.10)

Hence for all k > Nf ,

Eθ,Z;θ′,Z′

(i,y);(j,y′)

∣∣H1θ(Gk(θ, Z))−H1θ′(Gk(θ
′, Z ′))

∣∣ ≤ C ′ |(θ, Z)− (θ′, Z ′)| .

Using limit (7.8) and the upper bound (7.10) we get,

|h1(θ, Z)− h1(θ
′, Z ′)| =

∣∣∣ lim
k→∞

(
P θ,Zk

H1θ(j, y
′)− P θ′,Z′k

H1θ′(j, y
′)
)∣∣∣
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=
∣∣∣ lim
k→∞

Eθ,Z;θ′,Z′

(i,y);(j,y′)

{
H1θ(Gk(θ, Z))−H1θ′(Gk(θ

′, Z ′))
}∣∣∣

≤ C ′ |(θ, Z)− (θ′, Z ′)| ,

whenever (θ, Z) (θ′, Z ′) are in a compact set Q.

Verification of Assumption B.3.c.ii′ :

Note that,

P θ,Zνθ,Z(j, y′) =
∑
k≥1

{
P θ,Zk

H1θ(j, y
′)− h(θ, Z)

}
.

Hence, for any (θ, Z), (θ′, Z ′) pair and any j, y′,

∣∣∣P θ,Zνθ,Z(j, y′)− P θ′,Z′
νθ′,Z′(j, y′)

∣∣∣ ≤

∣∣∣∣∣
n∑

k=1

(
P θ,Zk

H1θ(j, y
′)− P θ′,Z′k

H1θ(i, y)
)∣∣∣∣∣

+(n− 1) |h1(θ, Z)− h1(θ
′, Z ′)|

+

∣∣∣∣∣
n∑

k=1

(
P θ′,Z′k

H1θ(j, y
′)− P θ′,Z′k

H1θ′(j, y
′)
)∣∣∣∣∣

+

∣∣∣∣∣∑
k≥n

{
P θ,Zk

H1θ(j, y
′)− h(θ, Z)

}∣∣∣∣∣
+

∣∣∣∣∣∑
k≥n

{
P θ′,Z′k

H1θ′(j, y
′)− h(θ′, Z ′)

}∣∣∣∣∣ .
The second term is bounded by a constant multiple of the term, n |(θ, Z)− (θ′, Z ′)|, as

h1 is locally Lipschitz (proved in the previous para). Using the upper bound (7.9), one

can see that the fourth and fifth terms are bounded by a constant multiple of the term

ρn(1 +
∣∣y′∣∣q). Without loss of generality, we can further choose q ≥ 2. The third term can

be bounded because
∣∣H1θ(i, y)−H1θ′(i, y)

∣∣ ≤ C
∣∣y∣∣2 |θ − θ′| whenever θ, θ′ come from a
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compact set and because P θ′,Z′

j,y′

k ∣∣y∣∣4 ≤ C ′
(
1 +

∣∣y′∣∣4) for any k. Hence we get,

∣∣∣P θ,Zνθ,Z(j, y′)− P θ′,Z′
νθ′,Z′(j, y′)

∣∣∣2 ≤ B1n

n∑
k=1

∣∣∣P θ,Zk
H1θ(j, y

′)− P θ′,Z′k
H1θ(j, y

′)
∣∣∣2

+
(
B2n

2 |(θ, Z)− (θ′, Z ′)|2 +B3ρ
2n
)

(1 +
∣∣y′∣∣2q

).

Fix ε > 0, M > 0, ε′ > 0. Define τ
4
= infn

{
(θn, Zn) /∈ K̄(ε,M)× B̄(0, ε′)

}
. By Lemma 7.4

and 7.5 for any m,

Ei,y,θ0,Z0

{
I(m+ 1 ≤ τ)

∣∣P θm+1,Zm+1νθm+1,Zm+1
(Gm+1)−P θm,Zmνθm,Zm

(Gm+1)
∣∣2}

≤ B1n
n∑

k=1

Ei,y,θ0,Z0

{
I(m+ 1 ≤ τ)

∣∣∣P θm+1,Zm+1
k
H1θm+1

(Gm+1)− P θm,Zm
k
H1θm+1

(Gm+1)
∣∣∣2}

+Ei,y,θ0,Z0

{
I(m+ 1 ≤ τ)

(
1 +

∣∣∣Um+1

∣∣∣2q
)(

B2n
2
∣∣(θm+1, Zm+1)− (θm, Zm)

∣∣2 +B3ρ
2n
)}

≤ B1n
2C5µ

0.5
(
1 +

∣∣y∣∣4)+B2n
2C6µ

0.5
(
1 +

∣∣y∣∣2q
)

+B3ρ
2n
(
1 +

∣∣y∣∣2q
)

≤ B
(
n2µ0.5 + ρ2n

) (
1 +

∣∣y∣∣2q
)
.

Now, we choose n =
⌈
logµ0.5. (logρ2)

−1
⌉
, where dxe represents the smallest integer ≥ x.

Then,

logρ2n ≥ logµ0.5.

Hence we have for some constant C depending upon ρ,

n2µ0.5 + ρ2n ≤ C
(
1 +

∣∣logµ0.5
∣∣2)µ0.5 + µ0.5.

Then for any λ < 0.5, the upper bound

sup
0≤µ≤µ0

(
1 +

∣∣logµ0.5
∣∣2)µ0.5−λ <∞.
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This follows because the limit, limx→0 x
α(log(x))2 = 0 whenever α > 0 (by applying

L’Hospital’s rule twice). Hence there exists a constant B′(λ) not depending upon µ such

that,

Ei,y,θ0,Z0

{
I(m+ 1 ≤ τ)

∣∣P θm+1,Zm+1νθm+1,Zm+1
(Gm+1)− P θm,Zmνθm,Zm

(Gm+1)
∣∣2}

≤ B′(λ)µλ
(
1 +

∣∣y∣∣2q
)
.

This completes the verification of Assumption B.3 and hence the theorem follows. �

Appendix B

Lemma 7.2 Let A(n) =
{
Ŝk 6= Ŝ

′
k; k = 1, 2, · · · , n

}
. Given ε,M, ε′, there exist positive

C2 <∞, and ρ < 1 such that, for all Z ∈ B̄(0, ε′), θ ∈ K̄(ε,M) and all n,

P θ,Z
(i,y);(j,y′)(A(n)) ≤ C2ρ

n.

Proof : Let r
4
=1 +Nf +Nb, B(n)

4
=A(nr). Then,

pn
4
= P θ,Z

(i,y);(j,y′)(B(n))

= Eθ,Z
(i,y);(j,y′) [I(B(n))I(B(n− 1))]

a
= Eθ,Z

(i,y);(j,y′)

[
E
[
I(B(n))I(B(n− 1))|G(n−1)r, .., G1, G

′
(n−1)r, .., G

′
1

]]
= Eθ,Z

(i,y);(j,y′)

[
E
[
I
(
{Ŝ

′
k 6= Ŝk; (n− 1)r ≤ k ≤ nr}

)
∣∣G(n−1)r, .., G1, G

′
(n−1)r, .., G

′
1

]
I(B(n− 1))

]
b
= Eθ,Z

(i,y);(j,y′)

[
E
[
I
(
{Ŝ

′
k 6= Ŝk; (n− 1)r ≤ k ≤ nr}

)
∣∣G(n−1)r, G

′
(n−1)r

]
I(B(n− 1))

]
= Eθ,Z

(i,y);(j,y′)

[
I(B(n− 1))P θ,Z

G(n−1)r,G′
(n−1)r

(B(1))
]
.

Here equality a follows by conditional expectation, while, equality b follows by Markovian

property. For any pair of initial conditions (i, y), (j, y′) and for all Z ∈ B̄(0, ε′) and all
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θ ∈ K̄(ε,M), with ρ1 given by Lemma 7.6,

P θ,Z
(i,y);(j,y′)

({
Ŝk 6= Ŝ

′
k; k = 1, 2, · · · , r

})
= 1− P θ,Z

(i,y);(j,y′)

(
∪r

k=1

{
Ŝk = Ŝ

′
k

})
≤ 1− P θ,Z

(i,y);(j,y′)

({
Ŝr = Ŝ

′
r

})
≤ 1− ρ1.

This also shows that, p1 ≤ (1 − ρ1). Hence, for any pair of initial conditions (i, y), (j, y′)

and for all Z ∈ B̄(0, ε′) and all θ,∈ K̄(ε,M)

pn ≤ Eθ,Z
(i,y);(j,y′) [I(B(n− 1))(1− ρ1)]

≤ (1− ρ1)E
θ,Z
(i,y);(j,y′) [I(B(n− 1))]

≤ (1− ρ1)pn−1.

Therefore, pn ≤ (1− ρ1)
n. Thus for any general n,

P θ,Z
(i,y);(j,y′)(A(n)) ≤ (1− ρ1)

n/r �

Lemma 7.3 For any θ, Z, for any pair of initial conditions (j, y′), (i, y) and for any

n > Nf +NL +Nb,

P θ,Z
(j,y′);(i,y)

({
Ŝn−1 = Ŝ

′
n−1, Ŝn 6= Ŝ

′
n

})
= 0.

Proof : Note that,

P θ,Z
(j,y′);(i,y)

({
Ŝn−1 = Ŝ

′
n−1, Ŝn 6= Ŝ

′
n

})
= P θ,Z

(j,y′);(i,y)

({
Ŝn−1 = Ŝ

′
n−1, ŝn 6= ŝ′n

})
.

For any n > Nf +NL +Nb on
{
Ŝn−1 = Ŝ

′
n−1

}
, the equalizer output/ decoder input will

be same once the channel and equalizer are fixed and hence the probability of the next

decision being different (based on different initial conditions) is zero. �

Lemma 7.4 There exists a constant C5 such that for all n, for all initial conditions (i, y),
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(θ0, Z0) ∈ K̄(ε,M)×B(0, ε′),

Ei,y;θ0,Z0

{
I(m+ 1 ≤ τ)

∣∣(P θm+1,Zm+1
n − P θm,Zm

n)
H1θm+1

(Gm+1)
∣∣2} ≤ C5µ

0.5
(
1 +

∣∣y∣∣4) .
Proof : By direct calculations we get (in all {Gn} represents the Markov chain for the

first channel equalizer pair, while {G′
n} represents the same for the second pair),

Ei,y;θ0,Z0

{
I(m+ 1 ≤ τ)

∣∣(P θm+1,Zm+1
n − P θm,Zm

n)
H1θm+1

(Gm+1)
∣∣2}

= Ei,y;θ0,Z0

{
I(m+ 1 ≤ τ)

∣∣∣Eθm+1,Zm+1;θm,Zm

Gm+1

[
H1θm+1

(Gn)−H1θm+1
(G′

n)
]∣∣∣2}

≤ Ei,y;θ0,Z0

{
I(m+ 1 ≤ τ)E

θm+1,Zm+1;θm,Zm

Gm+1

∣∣H1θm+1
(Gn)−H1θm+1

(G′
n)
∣∣2}

≤ CEi,y;θ0,Z0

{
I(m+ 1 ≤ τ)

∣∣(θm+1, Zm+1)− (θm, Zm)
∣∣2

E
θm+1,Zm+1;θm,Zm

Gm+1

(
1 + |Nn|

4)}
≤ CEi,y;θ0,Z0

{
I(m+ 1 ≤ τ)

∣∣(θm+1, Zm+1)− (θm, Zm)
∣∣2 (1 +

∣∣Nm+1

∣∣4)}
≤ C ′µ0.5(1 + |y|4).

The second inequality follows using upper bound (7.10) (on {m + 1 ≤ τ} the channel

equalizer trajectory {θk, Zk}k≤m+1 is in a compact set ), while the last inequality follows

as in Lemma 7.5 (by just repeating the steps as in Lemma 7.5). �

Lemma 7.5 For any given ε, ε′,M , there exists a constant C6 > 0 such that for all initial

conditions (i, y), (θ0, Z0) ∈ (K̄(ε,M)× B̄(0, ε′)) and for any q > 0,

Ei,y;θ0,Z0

{
I(m+ 1 ≤ τ)

∣∣(θm+1, Zm+1)− (θm, Zm)
∣∣2 (1 +

∣∣Um+1

∣∣q)} ≤ C6µ
0.5
(
1 +

∣∣y∣∣q) .
Proof : By Chebyshev’s inequality,

Ei,y;θ,Z

{
I(m+ 1 ≤ τ)

∣∣(θm+1, Zm+1)− (θm, Zm)
∣∣2 (1 +

∣∣Um+1

∣∣q)}
≤

(
Ei,y;θ,Z

[
I(m+ 1 ≤ τ)

∣∣(θm+1, Zm+1)− (θm, Zm)
∣∣4])1/2

(
Ei,y;θ,Z

[
I(m+ 1 ≤ τ)

(
1 +

∣∣Um+1

∣∣2q
)])1/2
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≤ C ′ (1 +
∣∣y∣∣q) (Ei,y;θ,Z

{
I(m+ 1 ≤ τ)

[
|Zm+1 − Zm|4 +

∣∣θm+1 − θm

∣∣4]})1/2

≤ C ′ (1 +
∣∣y∣∣q){(Ei,y;θ,Z

[
I(m+ 1 ≤ τ) |Zm+1 − Zm|4

])1/2

+
(
Ei,y;θ,Z

[
I(m+ 1 ≤ τ)

∣∣θm+1 − θm

∣∣4])1/2
}
.

By the upper bound (6) of Chapter 4,

Ei,y;θ,Z

[
I(m+ 1 ≤ τ) |Zm+1 − Zm|4

]
≤ Nµ,

where N < ∞ is a positive constant. We have the following also because, θm+1 − θm =

µH(Gm),

Ei,y;θ,Z

{
I(m+ 1 ≤ τ)

∣∣(θm+1, Zm+1)− (θm, Zm)
∣∣2 (1 +

∣∣Um+1

∣∣q)}
≤ C ′′ (1 +

∣∣y∣∣q) (µ0.5 + µ2). �

Lemma 7.6 Given ε, M , ε′ there exists a ρ1 > 0 such that for any pair of initial con-

ditions (j, y′), (i, y) for all n ≥ Nf + Nb for all θ ∈ K̄(ε,M) and for all Z ∈ B̄(0, ε′) we

have,

P θ,Z
(j,y′);(i,y)(Ŝn = Ŝ

′
n) ≥ ρ1 > 0.

Proof : Let

Mn
4
= inf

Z∈B̄(0,ε′),θ∈K̄(ε,M),Ŝ∈SNb ,S∈SNL

NL−1∑
l=0

zθlsl +

Nb∑
l=1

θblŝl.

Note that P θ,Z
(j,y′);(i,y)(Ŝn = Ŝ

′
n) represents the probability of the decisions Ŝn with channel

equalizer pair θ, Z equal to the decisions, Ŝ
′
n, of the same channel equalizer pair when the

system is started with the initial condition (j, y′), (i, y) respectively. Hence,

P θ,Z
(j,y′);(i,y)(Ŝn = Ŝ

′
n) ≥ P θ,Z

(j,y′);(i,y)(∩
Nb−1
l=0 {ŝn−l = ŝ′n−l = 1})
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≥ P θ,Z
(j,y′);(i,y)

(
∩Nb−1

l=0

{
θt

f .Nn−l > −Mn

})
= P

(
∩Nb−1

l=0

{
θt

f .Nn−l > −Mn

})
.

The last equality follows for all n ≥ Nf + Nb. The event in the last probability is a

finite intersection of inverse images of non-empty open sets and one can easily see that

its probability is strictly positive for every θ ∈ K̄(ε,M) as,

{
θt

f .Nk > −Mn

}
⊃ ∩Nf

l=0;θf l
6=0

{
nk−l >

−Mn

θf l
Nf

}
.

Furthermore, the map θ 7→ P
(
∩Nb−1

l=0

{
θt

f .Nn−l > −Mn

})
is continuous (by bounded con-

vergence theorem and by almost sure continuity of the indicator function). Hence one

can get a ρ1 > 0 such that the Lemma follows (as continuous maps take compact sets to

compact sets and since maximum/minimum are attained in a compact set). �

Appendix C

In this section we provide the statements of the Propositions of [4] that we used in

Appendix A. In all these {Gk} is a general Markov chain whose state has a discrete

component and a continuous component as in the case of our DFE example. We are

using the same notations as defined in Section 7.1. We state the required propositions of

[4] in our setup.

To begin with, we state the Proposition 2, p. 253, [4]. The following definitions are

used. For any given function, g on SNL × SNb ×RNf , for any p ≥ 0 we set,

||g||∞,p = sup
i,y

∣∣g(i, y)∣∣
1 +

∣∣y∣∣p ,
[g]p = sup

y 6=y′,i

∣∣g(i, y)− g(i, y′)
∣∣∣∣y − y′

∣∣ (1 +
∣∣y∣∣p +

∣∣y′∣∣p) ,
Li(p) = {g; [g]p <∞} ,

Np(g) = sup
{
||g||∞,p+1 [g]p

}
.
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Proposition 7.1 (Proposition 2, p. 253, [4]) : Suppose that there exist positive

constants K1, q, µ and 0 ≤ ρ < 1 such that for all g ∈ Li(p), y ∈ RNf , (i, y), j, y′ :

∣∣P ng(i, y)− P ng(j, y′)
∣∣ ≤ K1ρ

nNp(g)
(
1 +

∣∣y∣∣p +
∣∣y′∣∣p) ,

sup
j

∫
P (i, dy|j, y′)

∣∣y∣∣p ≤ µ
(
1 +

∣∣y′∣∣p) .
Then there exists a constant K2 depending only on K1, µ, ρ, and for all g ∈ Li(p) a

number Γg such that for all i, y,

(i)
∣∣P ng(i, y)− Γg

∣∣ ≤ K2Np(g)ρ
n
(
1 +

∣∣y∣∣q) and

(ii) ν =
∑

n≥0 (P ng − g) satisfies (I − P ) ν = g − Γg.

The assumptions for Proposition 4, p. 257, [4] given in p.256 are,

X.1 For all p ∈ N , there exists a constant C > 0 such that :

sup
i
Ei,y |Un|

p ≤ C
(
1 +

∣∣y∣∣p) .
X.2 There exist positive constants K1, ρ1 < 1 such that,

sup
i,j,y′

Ei,y;j,y′

(
|Gn −G′

n|
2
)
≤ K1ρ

n
1

(
1 +

∣∣y∣∣2 +
∣∣y′∣∣2) .

X.3 There exist positive constants K2, s1, ρ2 < 1 such that,

Pi,y;j,y′

(
(Sk, Ŝk−1) 6= (S ′k, Ŝk−1

′
), k = 0, 1, · · · , n

)
≤ K2ρ

n
2

(
1 +

∣∣y∣∣s1 +
∣∣y′∣∣s1

)
.

X.4 There exist r ∈ N , K3 ∈ R+, 0 ≤ ρ3 < 1 such that for all n ≥ r, (i, y), (j, y′):

Pi,y;j,y′

(
(Sn−1, Ŝn−2) = (S ′n−1, Ŝn−2

′
), (Sn, Ŝn−1) 6= (S ′n, Ŝn−1

′
)
)

≤ K3ρ
n
3

(
1 +

∣∣y∣∣s2 +
∣∣y′∣∣s2

)
.
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Proposition 7.2 (Proposition 4, p. 257, [4]) : If the process (ζn)n≥0
4
=(Gn, G

′
n)n≥0

satisfies X.1 to X.4; then for all p > 0, there exist positive constants K, q, ρ < 1,

depending only on Ki, si, ρi, such that for all g ∈ Li(p), n, (i, y), (j, y′) :

∣∣∣Ei,y;j,y′ (g(Gn)− g(G′
n))
∣∣∣ ≤ KNp(g)ρ

n
(
1 +

∣∣y∣∣s +
∣∣y′∣∣s) .

In particular, if each of the processes {Gn} and {G′
n} is a Markov chain with transition

function P , then for all g ∈ Li(p) we have,

∣∣P ng(i, y)− P ng(j, y′)
∣∣ ≤ KNp(g)ρ

n
(
1 +

∣∣y∣∣s +
∣∣y′∣∣s) .
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Figure 7.2: A Stable channel with d1 = 0.4995, d2 = 0.5, µ = 1e−4 and mean
= c[0.26, 0.34, 0.25, 0.064, −0.13, −0.19, −0.16, 0, 0.064, 0.064].
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Figure 7.3: A Marginally stable channel with d1 = 1.9999998, d2 = −1, µ = 1e−7 and
mean = c[0.26, 0.34, 0.25, 0.064, −0.13, −0.19, −0.16, 0, 0.064, 0.064].
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Figure 7.4: A Stable channel with mean a constant multiple of [0.41, .82, .41], d1 = 0.4995,
d2 = 0.5 and µ = 0.0005 .
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Figure 7.5: A Marginally stable channel with mean a constant multiple of [0.41, .82, .41],
d1 = 1.9999998, d2 = −1 and µ = 1e−7 .
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Figure 7.6: A Stable channel with mean a constant multiple of [0.41, .82, .41]. It is obtained
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Chapter 8

Conclusions

In this thesis we attempted to address various issues related to an equalizer working in

a wireless environment. Our goal was to obtain an optimal wireless equalizer for a given

wireless scenario. We considered a slow fading channel. We considered two notions of

optimality in this regard.

Traditionally the equalizers were designed to optimize the MSE (the BW lost due to

training sequence is not considered). This approach was well suited for time invariant

(e.g., wireline) channels. One could send required amount of training sequence in the

beginning, obtain a ’good’ equalizer and then switch over to the data transmission mode.

However with time varying nature of the wireless channels, training sequence needs to be

sent frequently and the optimality of the above approach is questionable. This was the

first issue considered in our thesis.

With the advent of wireless communications, people started using the information

theoretic measures (which consider the BW lost due to training) to optimize the wireless

components. We used this notion of optimality in the first part of our thesis to come up

with the best (blind, semi-blind or training based) equalizer for a given wireless scenario.

Any practical system uses training algorithms and they are still optimal as long as the

criterion for optimality is MSE. Some of these equalizers were well understood for a fixed

channel (some long-standing issues for a fixed channel are also addressed in this thesis).

However, the time varying wireless channels bring in the requirement for understanding

184
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the theoretical tracking behavior (e.g., the study of how well a training equalizer tracks

the time varying optimal equalizer). In the second part of the thesis we considered the

tracking behavior of the MSE optimal training equalizers.

Blind/Semi-blind versus Training equalizers

We compared blind/semi-blind equalizers with training based algorithms in Chapter 3.

The difficulty is in comparing the loss in accuracy of the blind algorithms with that of

loss in data rate in training based methods. As mentioned above, information capacity

is the most appropriate measure for this comparison. Defining a ’composite’ channel for

each equalizer, we compared the three algorithms based on the capacity of this channel.

We obtained easily computable tight lower bounds on this capacity.

Via some examples, using the above measure, we observed that the semi-blind/blind

methods perform superior to training methods in LOS conditions (≈50 to 70% improve-

ment in transmit power) even when they have not converged to the equilibrium point.

But for Rayleigh fading, the semi-blind methods are worse than the training based and

the blind methods become completely useless. We also obtained the optimum number of

training symbols (for training and semi-blind equalizers).

We modified the semi-blind algorithm, where the step size is adapted with respect to

the training based channel estimate. The modified-semi-blind algorithm shows significant

SNR improvement of 30%, 20% and 8.6% at low K-factors with K = 0.9, 0.1 and 0

(Rayleigh channel) respectively over the training method. One may achieve better results

by further investigation.

We finally conclude that a semi-blind algorithm can easily outperform the training

based equalizers for any wireless scenario (slow fading channel).

Training Equalizers

Training based equalizers are most commonly used even for a wireless system. They are

still optimal as long one just considers the performance of the equalizer as a standalone
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component. Hence it is important to understand their (tracking) performance in a wireless

environment. Also, some of the training equalizers (e.g. MMSE DFE) are not well

understood theoretically even when working with a time invariant channel. The second

part of our thesis concentrates on these issues.

Fixed Channel

For a fixed channel using implicit function theorem, we obtained the existence of DD-

attractors (decision directed attractors) close to the WF at high SNRs (Chapter 5). We

used similar techniques and compared the LMS-DFE attractors with that of the DFE

Wiener filters at high SNRs (Chapter 6). Our conclusions for a fixed channel can be

summarized as:

• A decision directed LMS linear equalizer converges close to the WF whenever the

SNR is high and when it is properly initialized (using training sequence). Hence,

we conclude that a DD-LMS-LE can be used to obtain the WF under high SNR

conditions (after using a small amount of training sequence to ’open the eye’).

However, at low SNRs, the DD attractors are away from the WF.

• A training based LMS decision feedback equalizer converges close to the WF at high

SNRs. Thus, we conclude that at least under high SNR, LMS can be used to obtain

the optimal DFE, i.e., the DFE Wiener filter. We also show that the ’Optimal’

DFE obtained by ignoring the decision errors can perform much worse than the

LMS DFE (and DFE-WF) even under high SNR (even after designing the former

with perfect channel estimate).

Wireless Channel

The tracking behavior of a wireless component (e.g., channel estimator) is obtained till

now, by theoretically modeling the wireless channel either as a first order AR process (e.g.,

Random Walk model) or as a deterministic periodic process. Block fading model is also

used to study a slow fading channel. However, an AR(2) process models a fading channel
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better and is sufficient most of the times while considering the receiver design. We used

an AR(2) process to model the wireless channel while studying the tracking performance

of various equalizers.

We first obtained an ODE approximation for an AR(2) process (Chapter 2). Using

this, we showed that an AR(2) process can be approximated with an exponential, co-

sine, polynomial, hyperbolic or an exponentially raising/decaying cosine or hyperbolic

waveforms.

We then obtained an ODE approximation for a general system, whose components

may depend on two previous values (like in an AR(2) process). Using this, we obtained

the ODE approximation for an LMS based LE, DD-LE or DFE while tracking an AR(2)

process. Using this ODE approximation (also using the fixed channel analysis) we con-

cluded the following :

• A training based LMS-LE tracks the instantaneous WF (Chapter 4).

– The error between the instantaneous WF and the LMS trajectory is shown

to reduce polynomially/exponentially to zero with time for stable/unstable

channels.

– The error remains bounded for a marginally stable channel. Via, some exam-

ples, we show that the LMS-LE tracks even a marginally stable channel quite

reasonably (the error does not tend to zero but remains bounded).

– For stable channels, the MSE of an LMS-LE converges to the instantaneous

MMSE exponentially.

• A decision directed LMS-LE can be used to track the instantaneous WF only under

high SNR conditions, after proper initialization using training sequence (Chapter

5).

– A decision directed LMS linear equalizer stays close to the instantaneous WF

whenever the SNR is high and when it is properly initialized.

– At low SNRs, the DD attractors are constantly away from the instantaneous

WF (as in case of the fixed channel).
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• A training based LMS decision feedback equalizer can be used to track the DFE-WF

(Chapter 7).

– It stays close to the instantaneous WF at all time, after an initial transience,

at high SNR (actually at all practical SNRs).

– The performance of an LMS-DFE (the BER and the MSE) is close to that of

the DFE-WF at all time once again after the initial transience.

– Further the BER and MSE performance of an ’Optimal’ DFE obtained by ig-

noring the decision errors stays constantly inferior to that of the LMS DFE

(and DFE-WF) at all time, after an initial transient period (even after design-

ing the former with perfect channel estimate).

New Results

In achieving the above results, we obtained new general results, which can be useful in

other applications.

In Appendix I, we obtained an ODE approximation for an adaptive system whose

components may depend on two previous values (Theorems A.1 and A.2 of Appendix I).

This is the first time that such an ODE approximation is obtained. Unlike the avail-

able ODE approximations, a second order ODE also approximates the adaptive system

depending on the system parameters.

In Chapter 6, we obtain differentiability of the stationary density of a Markov Chain

with respect to a parameter (which parameterizes the Markov chain) in L2 norm (Theorem

6.2). We used Implicit function theorem to obtain this. In recent years a great deal of

attention has been devoted to the computation of derivatives of performance indicators in

stochastic systems under stationarity. The differentiability of the stationary density (in

L2 norm) allows the computation of derivatives of performance indicators that satisfy the

hypothesis of Lemma 6.2 of Chapter 6. Moreover, the computation of derivatives allows

one to take an additional step and develop optimization procedures for the performance

indicator of interest (e.g., the MSE optimal DFE).
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Future Directions

We compared the blind/semi-blind, CMA, algorithm with training based algorithm using

Information theoretic arguments in Chapter 3. One can try comparing the DD-LMS with

blind/semi-blind CMA (also with training equalizer) using capacity as measure. Using

this one can try understanding when a DD-LMS is better than a CMA. We are currently

working towards this problem.

We considered a block-fading model for the wireless channel, while comparing the

three equalizers. This model only covers a slow fading channel. One can instead compare

the three algorithms after modeling the wireless channel as an AR(2) process.

We obtained an ODE approximation for AR(2) process. Here we assumed the AR

parameters to be fixed. A more general model is obtained by assuming some dynamics for

the AR parameters also. We will attempt getting an ODE approximation for this model

and use it for obtaining a better theoretical tracking performance. Further, we suggested

an ODE approximation for AR(p) process. A higher order AR process better approximates

the wireless channel and hence one can attempt obtaining an ODE approximation for

higher order AR processes.

We showed that the error between the LMS-LE and the instantaneous WF converges

to zero for stable/unstable channels. We also showed that the LMS-LE tracks the WF

for a marginally stable channel (only via some examples, theoretically we could just say

that the error remains bounded). One can try to bring in the concept of degree of

non-stationarity ([36]) in this regard and obtain a better understanding of the tracking

performance. We are currently working towards this.

For an LMS-DFE and DD-LMS-LE tracking an AR(2) process, we obtained an ODE

approximation and used it to draw some interesting conclusions via examples. One can

try concluding the same directly using the ODEs like in the case of an LMS-LE.

One could try extending the DD-LMS-LE result to a DFE (i.e., one can try under-

standing the relation between DD-LMS-DFE attractors and the DFE-WFs).

The ODE approximation we obtained were for finite time intervals. It would be good

to obtain these for the infinite time intervals.
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For comparing blind/semi-blind and training equalizers we considered MIMO fading

channels. Our results for LMS equalizers should also be extended to MIMO systems. We

are currently working on this problem.



Appendix I : ODE approximation of

a General System

We consider the following general system,

Zk+1 = (1− d2)Zk + d2Zk−1 + µH(Zk,Wk), (1)

θk+1 = θk + µH1(Zk, θk, Gk+1), (2)

where equation (1) satisfies all the conditions in A.1–A.3 of Chapter 2 and the equation

(2) satisfies the assumptions B.1–B.4 given in the next para. We will show that the above

equations can be approximated by the solution of the ODE’s,

(1 + d2)
�
Z (t) = h(Z(t)), if d2 ∈ (−1, 1],

d2Z(t)

dt2
= h(Z(t)), if d2 = −1,

d2Z(t)

dt2
+ η1

�
Z (t) = h(Z(t)), if d2 is close to − 1, (3)

�
θ (t) = h1(Z(t), θ(t)), (4)

where the function h1 is defined in the assumptions given below and h(Z) = E[H(Z,W )],

with η1 = 1+d2√
µ

. We use this result to obtain the ODE approximation for an LMS (LE,

DDLE or DFE) tracking an AR(2) process.

We make the following assumptions, which are similar to that in [4]. Let D be an

191
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open subset of Rd.

B.1 There exists a family {PZ,θ} of transition probabilities PZ,θ(G,A) such that, for any

Borel subset A we have

P [Gn+1 ∈ A|Fn] = PZn,θn(Gn,A)

where Fk
4
=σ(θ0, Z0, Z1,W1,W2, · · · ,Wk, G0, G1, · · · , Gk). This in turn implies that

the tuple (Gk, θk, Zk, Zk−1) forms a Markov chain.

B.2 For any compact subset Q of D, there exist constants C1, q1 such that for all (Z, θ) ∈

D we have

|H1(Z, θ,G)| ≤ C1(1 + |G|q1).

B.3 There exists a function h1 on D, and for each θ, Z ∈ D a function νZ,θ(.) such that

(a) h1 is locally Lipschitz on D.

(b) (I − Pθ,Z)νθ,Z(G) = H1(θ, Z,G)− h1(θ, Z).

(c) For all compact subsets Q of D, there exist constants C3, C4, q3, q4 and λ ∈

[0.5, 1], such that for all θ, Z, θ
′
, Z

′ ∈ Q

i. |νθ,Z(G)| ≤ C3(1 + |G|q3),

ii. |Pθ,Zνθ,Z(G)− Pθ′ ,Z′νθ′ ,Z′ (G)| ≤ C4 (1 + |G|q4)
∣∣(θ, Z)− (θ

′
, Z

′
)
∣∣λ.

B.4 For any compact set Q in D and for any q > 0, there exists a µq(Q) <∞, such that

for all n,G, A = (Z, θ) ∈ Rd

EG,A {I(θk, Zk ∈ Q, k ≤ n) (1 + |Gn+1|q)} ≤ µq(Q) (1 + |G|q) ,

where EG,A represents the expectation taken with G0, θ0, Z0,= G,Z, θ.

Let Z(t, t0, Z), θ(t, t0, θ) represent the solutions of the ODE’s (3), (4) with initial con-

ditions Z(t0) = Z, θ(t0) = θ. For second order ODEs, the additional initial condition is
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given by
�
Z (t0) = 0. Let Q1 and Q2 be any two compact subsets of D, such that Q1 ⊂ Q2

and we can choose a T > 0 such that, there exist an δ0 > 0 satisfying

d ((Z(t, 0, Z), θ(t, 0, θ)), Qc
2) ≥ δ0, (5)

for all (Z, θ) ∈ Q1 and all t, 0 ≤ t ≤ T.

We prove Theorem A.1, following the approach used in [4] and using the ODE ap-

proximations of Chapter 2.

Theorem A.1 Assume, E|H(Z,W )|4 ≤ C1(Q) for all Z in any given compact set Q of

D. Also assume A.1–A.3 of Chapter 2 and B.1–B.4. Furthermore, pick compact sets Q1,

Q2, and positive constants T , δ0 satisfying (5). Then for all δ ≤ δ0 and for any initial

condition G, with Z−1 = Z0 = Z,
�
Z (t0) = 0 (whenever Z(., ., .) is solution of a second

order ODE), and θ0 = θ,

PG,Z,θ

 sup
1≤k≤b T

µα c
|(Zk, θk)− (Z(kµα, 0, Z), θ(kµ, 0, θ))| ≥ δ

→ 0

as µ → 0 uniformly for all Z, θ ∈ Q1. If Z(., ., .) is solution of a first order ODE then

α = 1 and otherwise 1/2.

Proof : For d2 ∈ (−1, 1], the proof is presented in Appendix II.

With d2 = −1, following the steps as in the above case and using Theorem 2.2 of

Chapter 2, we can show that the general system ((1), (2)) is approximated by the ODEs

((3), (4)) (we are not repeating those steps here).

With d2 close to −1, the theorem follows by following the steps as in the case of

d2 ∈ (−1, 1] and using Theorem 2.3 of Chapter 2. �

Now we replace the assumption B.3.c.ii with the following

B.3.c.ii′ : EG,A{
∣∣Pθk,Zk,νθk,Zk,(Gk)− Pθk,Zk,νθk−1,Zk−1,(Gk)

∣∣2 I(k < τ(Q))} ≤ C4 (1 + |G|q4)µλ.

This result is used for approximating an LMS-DFE in Chapter 7.
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Theorem A.2 Assume, E|H(Z,W )|4 ≤ C1(Q) for all Z in any given compact set Q

of D. Also assume A.1–A.3 of Chapter 2 and B.1–B.4 after replacing the assumption

B.3.c.ii with B.3.c.ii′. Furthermore, pick compact sets Q1, Q2, and positive constants T ,

δ0 satisfying (5). Then for all δ ≤ δ0 and for any initial condition G, with Z−1 = Z0 = Z,
�
Z (t0) = 0 (whenever Z(., ., .) is solution of a second order ODE), and θ0 = θ,

PG,Z,θ

 sup
1≤k≤b T

µα c
|(Zk, θk)− (Z(kµα, 0, Z), θ(kµ, 0, θ))| ≥ δ

→ 0

as µ → 0 uniformly for all Z, θ ∈ Q1. If Z(., ., .) is solution of a first order ODE then

α = 1 and otherwise 1/2.

Proof : This theorem is similar to Theorem A.1. The only change being that assumption

B.3(c)ii is replaced with B.3(c)ii′.

Only the proof of Lemma A.1, of Appendix II changes because of the change in the

above assumption. Here equation (9) is directly given by the new Assumption B.3.c.ii′

and hence the statement of Lemma A.1 gets modified as,

EU2
1 ≤ Kµλ (1 + |G|s) .

This does not alter the proof of the theorem. �

Appendix II

Proof of Theorem A.1:

If the adaptation (1) does not contain the term Zk−1, then we can combine the two

adaptations as a single vector and consider the single adaptation and provide convergence

to a combined ODE. Here things are not straight forward as the equation (1) contains

Zk−1. But by modifying the proof given in Benveniste et al. [1] at a few places, we will

show that the equations (1), (2) can be approximated by the solution of the required
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system of the ODE’s. The proof also uses the intermediate results given in Theorem 2.1

of Chapter 2.

The expectations are with respect to G,Z, θ and we use a simpler notation E in place

of EG,Z,θ.

All the terms like εk, αk, τ etc, used in Theorem 2.1 will also be used here once again

for the AR process with the same meaning and the equivalent terms for the equalizer are

defined as ε1k, α1k, τ1 etc.

Define τ1 = inf{n ≤
⌊

T
µ

⌋
: (θn, Zn) ∈ Qc

2}, tn = nµ. Let θ(t) denote solution θ(t, 0, θ)

with Z(0) = Z. Then from equation (4), using Taylor series expansion and assumption

B.3 a,

θ(tk+1) = θ(tk) + µh1(Z(tk), θ(tk))− α1k,

where |α1k| ≤ B1µ
2, for some finite constant B1(Q2). Define the error process,

ε1n
4
= θn+1 − θn − µh1(Zn, θn)

= µ [H1(Zn, θn, Gn+1)− h1(Zn, θn)] .

Then for any k < τ1,

θk − θ(tk) = θk−1 − θ(tk−1) + µ [h1(Zk−1, θk−1)− h1(Z(tk−1), θ(tk−1))]

+ε1k−1 + α1k−1.

Replacing θk−1 − θ(tk−1) by the previous equation again and continuing we get,

θk − θ(tk) = θ0 − θ(0) + µ

k−1∑
i=0

[h1(Zi, θi)− h1(Z(ti), θ(ti))]

+
k−1∑
i=0

ε1i + α1i.
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Using assumption B.3 and the bound on α1k, we get on the set 1 ≤ k < τ1,

|θk − θ(tk)| ≤ µB2

k−1∑
i=0

|(θi, Zi)− (θ(ti), Z(ti))|+

∣∣∣∣∣
k−1∑
i=0

ε1i

∣∣∣∣∣+ kB1µ
2,

where once again the constant B2 depends upon Q2. All the constants introduced hence-

forth will depend upon the compact set Q2, but we will not mention that repeatedly. Now

combining with step (2.16) of Theorem 2.1, for any 2 ≤ k ≤ T
µ

on the set 1 ≤ k < τ1,

|(θk, Zk)− (θ(tk), Z(tk))| = |θk − θ(tk)|+ |Zk − Z(tk)|

≤ K1|(θ1, Z1)− (θ(t1), Z(t1))|+K2|(θ2, Z2)− (θ(t2), Z(t2))|

+µB3

k−1∑
i=2

|(θi, Zi)− (θ(ti), Z(ti))|+ U + U1 +K3µT,

where K1 = max{ 2a1

1+d2
, µB2}, K2 = max{ 2a2

1+d2
, µB2}, K3 = max{ 2L

1+d2
, B1}, B3 =

max{2L1(Q2)
1+d2

, B2} (a1, a2, L1(Q2), L and U are defined in step (2.16) of Theorem 2.1) and

U1 is defined by,

U1 = sup
m≤T

µ

1{m < τ1}

∣∣∣∣∣
m−1∑
i=0

ε1i

∣∣∣∣∣ .

Using the upper bound (2.13) of Theorem 2.1,

|(θ1, Z1)− (θ(t1), Z(t1))| = |θ1 − θ(t1)|+ |Z1 − Z(t1)|

≤ µM1.

Using Lemma 2.1 on the set {1 ≤ k < τ1} for any k, with 1 ≤ k ≤ T
µ
,

|(θk, Zk)− (θ(tk), Z(tk))| ≤ [U + U1 +K3µT + µM1]e
{K1+K2+TB3}.
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Hence,

sup
k<τ1

|(θk, Zk)− (θ(tk), Z(tk))|2 ≤ 4[U2 + U2
1 +K2

3µ
2T 2 + µ2M2

1 ]

e2{K1+K2+TB3}.

We will show below in Lemma A.1 that EU2
1 ≤ K

√
µ(1 + |G|s). Thus, using the bound

obtained on U in Theorem 2.1,

E

[
sup

1≤k<τ1

|(θk, Zk)− (θ(tk), Z(tk))|2
]
≤ B

√
µ(1 + |G|s),

where constant B depends upon Q2, d2, T . Then the theorem follows by Chebyshev’s

inequality for all δ < δ0 (Once again the logic applied in the last step of Theorem 2.1 has

to be used here). �

Lemma A.1 There exist constants K, s such that, EU2
1 ≤ K

√
µ(1 + |G|s).

Proof : This almost follows from Proposition 7, p.228 of [4], when θ is replaced with (θ, Z)

and their assumptions are replaced with Assumptions B.1–B.4 and when γk = µ for all k.

The only change that needs to be made is in proving Lemma 3 on page 225 in [4], where

we need to get a bound on E|Zk − Zk−1|4.

Towards this end, define the adaptive equation,

Z
′

k = Z
′

k−1 + µ
H(Z

′

k−1,Wk)

1 + d2

,

using same Wk as in (1), such that its trajectory converges to the ODE (3). Then for any

k < τ1,

|Zk − Zk−1| ≤ |Zk − Z
′

k|+ |Z ′

k − Z
′

k−1|+ |Zk−1 − Z
′

k−1|

≤ |Zk − Z(tk)|+ |Z ′

k − Z(tk)|+ |Z ′

k − Z
′

k−1|

+ |Zk−1 − Z(tk−1)|+ |Z ′

k−1 − Z(tk−1)|.

Therefore, using the steps as in Theorem 2.1 and using, the extra assumption E|H(Z,W )|4 ≤
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C1(Q2) for all Z ∈ Q2, the Lemma A.2 and the fact that Z
′

k can also be approximated

with the same ODE solution Z(tk) we get,

E[ 1{k < τ1}|Zk − Zk−1|4] ≤ Nµ. (6)

In the steps to follow, we use the notations and constants in [1], except that, we use ε
(2)
1k

in place of ε
(2)
k (defined on page 222 of [4]) and (θ, Z) in place of θ. Let φ(.) be a C2

function of θ into R with bounded second derivatives (We will be using φ(.) as one of the

co-ordinate functions for θ). With ψθ,Z(G) = φ
′
(θ)Pθ,Zνθ,Z(G),

ε
(2)
1k

4
= µ

[
ψθk,Zk,(Gk)− ψθk−1,Zk−1,(Gk)

]
= µφ

′
(θk)

[
Pθk,Zk,νθk,Zk,(Gk)− Pθk−1,Zk−1,νθk−1,Zk−1,(Gk)

]
+µ
(
φ
′
(θk)− φ

′
(θk−1)

)
Pθk−1,Zk−1,νθk−1,Zk−1,(Gk).

Lemma 3 of [4] is proved if we show that, for some positive constants K
′
and s

′
, and for

all m, EG,Z,θ

{∑m∧τ1−1
k=1 |ε(2)

k |
}2

≤ K
′√
µ(1 + |G|s

′
.

Towards this end, we will first get an upper bound for the second term of ε
(2)
1k on the

set {k < τ1}. Choose M2 <∞ such that supθ |φ
′′
(θ)| ≤M2. Then,

∣∣∣φ′(θk)− φ
′
(θk−1)

∣∣∣ ≤M2|θk − θk−1|.

From equation (2), using B.2

|θk − θk−1|2 ≤ N3µ
2(1 + |Gk|2q1), (7)

where N3 depends upon C1. Using B.3 and B.4 on the set {k < τ1},

|Pθk−1,Zk−1,νθk−1,Zk−1,(Gk)| = |EGk,Zk−1,θk−1

(
νZk−1,θk−1

(G1)
)
|

≤ C3EGk,θk−1,Zk−1,(1 + |G1|q3)

≤ C3µq3(Q2)(1 + |Gk|q3).
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Therefore using B.4 again,

EG,Z,θ

∣∣∣ 1{k < τ1}
(
φ
′
(θk)− φ

′
(θk−1)

)
Pθk−1,Zk−1,νθk−1,Zk−1,(Gk)

∣∣∣2
≤ µ2M2

2N3C
2
3µq3(Q2)

2EG,Z,θ

[
1{k < τ1}

(
1 + |Gk|2q3+2q1

)]
≤ N4µ

2(1 + |G|s1), (8)

for appropriate constants N4, s1. Once again, using assumption B.3 and equation (7), we

have

∣∣Pθk,Zk,νθk,Zk,(Gk)− Pθk−1,Zk−1,νθk−1,Zk−1,(Gk)
∣∣2

≤ C2
4 |(θk, Zk, )− (θk−1, Zk−1, )|2λ(1 + |Gk|2q4)

≤ C2
4N3µ

2λ(1 + |Gk|2q1+λ2q4) + C2
4 |Zk − Zk−1|2λ(1 + |Gk|2q4).

Using Cauchy Schwartz inequality and since 4λ ≤ 4,

(
EG,Z,θ

[
1{k < τ1}|Zk − Zk−1|2λ(1 + |Gk|2q4)

])2
≤ E[ 1{k < τ1}|Zk − Zk−1|4λ]EG,Z,θ[ 1{k < τ1}(1 + |Gk|4q4)]

≤ N5E[ 1{k < τ1}|Zk − Zk−1|4](1 + |G|4q4) ≤ N5µ(1 + |G|4q4).

Therefore,

EG,Z,θ

[
1{k < τ1}|Zk − Zk−1|2λ(1 + |Gk|2q4)

]
≤ N6

√
µ(1 + |G|2q4).

Thus as 2λ ≥ 1,

EG,Z,θ

[
1{k < τ1}

∣∣Pθk,Zk,νθk,Zk,(Gk)− Pθk−1,Zk−1,νθk−1,Zk−1,(Gk)
∣∣2]

≤ N7
√
µ(1 + |G|2q4+2q1). (9)
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Using (8), (9) we finally get for any m ≤ T
µ
,

EG,Z,θ

{
m∧τ1−1∑

k=1

|ε(2)
k |

}2

≤ EG,Z,θ

{
m∑

k=1

|ε(2)k | 1{k < τ1}

}2

≤ m
m∑

k=1

EG,Z,θ

{
|ε(2)k | 1{k < τ1}

}2

≤ m2µ2√µ N8(1 + |G|s
′

)

≤ N8T
2√µ(1 + |G|s

′

) ≤ K
′√
µ(1 + |G|s

′

),

where the constant s
′
= max{2q1 + 2q4, 2q1 + 2q3}. �

Lemma A.2 For some constant Ñ <∞,

E|U|4 ≤ Ñµ.

Proof: For proving the lemma, we need to deviate from Step 2 of Theorem 2.1 only

at the point, where Doob’s martingale inequality is applied to Kk. We neglect constants(
1− [−d2]

i+1
)

in the following arguments to simplify the steps. The same logic holds

even if the constants are included and only the constant will vary.

We once again apply Doob’s martingale inequality and obtain,

E

{
sup
k≤m

|Kk|4
}
≤ N1 sup

k≤m
E|Km|4,

for some constant N1. Thus we have,

E|U|4 ≤ N1 sup
k≤T

µ

E|Kk|4

a
= N1 sup

k≤T
µ

k−1∑
i=1

E | 1{i < τ}εi|4

+N2 sup
k≤T

µ

k−1∑
j,i=1,j 6=i

E
[
1{j < τ, i < τ} |εi|2 |εj|2

]
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+N3 sup
k≤T

µ

k−1∑
j,i=1,j 6=i

E
[
1{j < τ, i < τ}εTj εiεTi εj

]
+N4 sup

k≤T
µ

k−1∑
l,j,i=1,l 6=j 6=i6=l

E
[
1{j < τ, i < τ, l < τ} |εi|2 εTj εl

]
+N5 sup

k≤T
µ

k−1∑
l,j,i=1,l 6=j 6=i6=l

E
[
1{j < τ, i < τ, l < τ}εTl εiεTi εj

]
b

≤ Ñ1µ
3T + Ñ2µ

2T 2 + Ñ3µ
2T 2 +N4µT

3 +N5µT
3

where the equality a follows, as for any j1 6= j2 6= j3 6= j4 just like in Step 2 of Theorem

2.1,

E
[
1{j1 < τ, j2 < τ, j3 < τ, j4 < τ}εTj1εj2ε

T
j3
εj4
]

= 0.

Inequality b holds by Assumption A.2 and because E|H(Z,W )|4 ≤ C1(Q2) for all Z ∈ Q2.

�
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