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Abstract—The time gap between two successive buses is
called headway in transport systems. In moderate/high frequency
routes, with moderate/small headways, the random perturbations
(traffic conditions, passenger arrivals, etc.), can alter the headway
along the route significantly which possibly leads to bunching
of buses. Two or more (successive) buses may start travelling
together. Bus bunching results in inefficient and unreliable
bus service and is one of the critical problems faced by bus
agencies. Thus it is imperative to reduce the bunching possibilities
(probability). Another important aspect is the expected time
that a typical passenger has to wait before the arrival of its
bus. If one increases the headway, the bunching chances might
reduce, however, may significantly increase the passenger waiting
times. We precisely study this inherent trade-off and derive a bus
schedule optimal for a joint cost related to all the trips, which
is a weighted combination of the two performance measures.

We consider a system with Markovian travel times, fluid
passenger arrivals and derive dynamic headways which control
the bus frequency based on the observed system state. The
observation is a delayed information of the time gaps between
successive bus arrivals at various stops, corresponding to two
earlier (previous to previous) trips. We solve the relevant dynamic
programming equations to obtain near-optimal policies, and
the approximation improves as the load factor reduces. The
near-optimal policy turns out to be linear in previous headway
and the (earlier) bus-inter-arrival times. Using Monte Carlo
based simulations, we demonstrate that the proposed dynamic
policies significantly improve (both) the performance measures, in
comparison with the previously proposed partial dynamic policies
that only depend upon the headways of the previous trips.

Index Terms—Bus bunching; Dynamic programming; Waiting
times; Markov decision process; Delayed information.

I. INTRODUCTION

Public transport plays an important role in any system. We
consider public transport systems like that of buses, trams,
metros, local trains etc, for brevity we refer them as bus
transport systems. In fact in the later cases, bunching (buses
travelling together) is a major issue. Bus agencies desire
to provide the best service to the passengers due to heavy
competition from other transport services and would strive
hard to reduce/eliminate the bunching possibilities.

We consider a bus-transport system, where the buses travel
repeatedly along a fixed route consisting of a fixed number
of stops. Each bus starts at the depot, traverses all the stops
and returns to the depot, while facilitating the transfer of the
(encountered) passengers from their origin to their destination.
Typically successive buses are designed to depart at depot, ac-
cording to a pre-designed time-table. The time period between
two successive bus-departs is referred to as headway (at depot).

The randomness of travel times, load conditions, etc., leads
to random headways at bus stops. These random delays can

lead to bunching of two or more buses; the leading bus can
get delayed excessively due to a large number of passengers
(possibly a random spurt of arrivals) and or due to heavy ran-
dom traffic en-route, and the trailing bus may have relatively
lesser load which can eventually lead to both of them coming
close to each other somewhere along the path.

The larger headways at depot reduce the bus bunching,
but leads to an increase in the passenger waiting times. Thus
one needs to design the headways optimally, to ensure proper
trade-off between these two important performance aspects.
Hence, one needs to design T -successive depot headways
(with (T + 1)-trips), and hence a need for a finite horizon
headway policy. We considered such optimal headway policies
in [1], [7], and those policies depend at maximum on the
headways of the previous trips.

One can do much better if one has access to a better system
state that is influenced by the random fluctuations governing
the system. For example , if one can observe the number of
passengers waiting in various stops (at bus arrival instances)
or an equivalent information in the previous trips, a better
headway policy can be designed using this knowledge. In
this paper we consider that the bus-inter-arrival times between
various stops (of previous trips) are observable, based on
which the headway times of the future trips are decided.

The natural tool to design such policies is the theory of
Markov decision processes ([8]). However in this system,
one will have access only to delayed information: the head-
way decision for the current bus has to be made immediately
after the previous bus departs the depot, the information
related to the previous bus trajectory (no delay) is obviously
not available for this decision epoch. Further one may not
even have the information about some of the trips, previous
to the trip that just started. For notational simplicity we
assume that 1-delay information is available and derive the
optimal policies. One can easily extend this analysis to any
arbitrary delay, we provide some initial suggestions regarding
the same, while, the exact analysis with arbitrary delay would
be considered for future work.

We obtained closed form expressions for an ε-optimal pol-
icy, that is ε-optimal under small load factors. Interestingly the
policy is linear in the previous trip headways and the bus-inter-
arrival times at various stops of the previous trip (information
about which is available). We showed numerically that this
dynamic policy has significant improvement in comparison
with respect to the optimal policy of [1] that dynamically
adapts the headways only based on previous trip headways.
This improvement is significant even for considerable load
factors (upto 0.5). We used Monte-Carlo based simulations to



estimate the two performance measures. Thus one can do much
better, if there is a possibility to observe more intimate details
related to the previous trips. The observation process might
be complicated, but the complexity of the proposed policy is
negligible.

Related literature

Bus bunching is a critical issue faced by bus agencies
and this problem has been thoroughly investigated over past
few decades. dHowever to the best of our knowledge none
of the literature studies the important trade-off between the
bunching chances and the passenger waiting times (see [7]
for details on this observation). Other than [1], [7], none
of the papers study/consider the probability of bunching. As
already mentioned, work in [1], [7] does not consider the fully
dynamic policies.

There is a vast literature that studies other topics related to
bus bunching and we discuss a few of them here. Existing
control strategies are based on ideas like skipping some bus
stops (e.g., [3], [6], [10]), limited boarding (e.g., [4], [5])
or forcibly holding the buses at some stops (e.g., [3], [11],
[4]) etc. Skipping some stops/ holding control at intermediate
bus-stops are not passenger friendly policies. In this paper, we
applied holding control only for the depot.

In [4], authors consider minimizing the total sojourn time
(travel time between the boarding stop and the destination
stop) of all the passengers. In papers like [4], [5], [11], [9],
authors control the error variance between ideal and proposed
schedules when the number of buses and stops increases to
infinity. They assume no bunching. Stochastic models that
optimize the holding times to minimize passenger waiting
times (defined via sum of squared headways), using the
real-time information, are discuused in [2]. They avoid bus
bunching, while maintaining the frequency of the buses as high
as possible for the next few trips. In many scenarios with high
randomness, it is not possible to completely avoid bunching
nor is it possible to adhere to the ideal schedules. In such
scenarios, it is rather important to reduce the probability of
bunching, and we precisely consider this probability. Further
we consider a more realistic definition of the passenger waiting
times: as the time difference between their arrival and the
arrival of their bus.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

We consider a bus-transport system in which the buses
travel in a loop, traversing the given path of M stops and
repeating this for (T + 1) number of trips. We begin with the
description of the details of the system considered and the
required assumptions.

A. Bus travel and (stop) inter-arrival times

Let Sik be the time taken by the k-th bus to travel between
the stops (i − 1) and i. We consider Markovian (correlated)
travel times, between any two stops. To be precise we assume
that

Sik = Sik−1 +W i
k, for any, k ≥ 0, and Si0 = si,

where W i
k is the random difference between two successive

travel times and {si}i are the sojourn times of the first
trip. We assume {W i

k}k are IID (Independent and Identically
distributed) Gaussian random variables with mean 0 and
variance ε2 and this is true for all stops i. Further these are
independent across the stops.

The boarding time of (all) the passengers at any stop majorly
constitutes the dwell time of the bus. We assume the following:
A.1: Gated service: Only the passengers that arrived to a stop
before the arrival of the bus can board.
A.2 Parallel boarding and de-boarding: We neglect the time
taken to de-board while computing the dwell times.
A.3 Fluid arrivals and boarding: The number of passengers
arrived to a stop, during a period t equals λt, where λ > 0 is
the arrival rate. More details about this modelling is provided
in the next section. The time taken to board X number of
passengers equals bX , where b > 0 is the boarding rate.

These assumptions are not very restrictive, and are satisfied
by most of the commonly used practices in bus transport sys-
tems. The fluid arrivals can be justified owing to Elementary
Renewal theorem, and because typical (bus) inter-arrival times
at any stop would be significant. Further, usually negligible
number of passengers arrive during the boarding process.

We require the following additional assumptions to obtain
a tractable solution:
A.4 Surplus number of buses: For any trip, there exists a
bus (at depot) to start after the prescribed headway (without
having to wait for the return of the previous buses).

A.5: Order of buses is maintained throughout the journey,
i.e., even if the buses are bunched the next bus will board
and depart the stop after the previous bus. Thus overtaking of
buses does not happen.
A.6: There is no constraint on capacity of the bus.

The system may require one or two additional buses to
satisfy A.4, which is a normal practice to cater for any
eventuality. The systems usually operate with small bunching
probabilities, as such the event in assumption A.5 is a rare
event. Further this is a common practice in Tram, metro, local
train etc., systems. Assumption A.6 can be restrictive, but is a
commonly made assumption in literature and one can consider
relaxation of this for the future work.

Because of the above assumptions, the passengers boarding
a bus in any trip k and at any stop i equals the ones that
arrived during the bus-inter arrival time Iik := Aik − Aik−1,
where Aik is the arrival instance of k-bus at stop i. Thus the
total number of passengers Xi

k waiting at stop i, at bus arrival
instance, equals λIik. Thus the dwell time of k−th bus at stop
i equals1:

V ik = Xi
kb = bλIik = ρIik with ρ := λb. (1)

In the above ρ represents the load factor of the stop2.

1Since bunching is a rare event we neglect the affects of A.5 in this part
of the modelling.

2One can easily consider the case with different load factors at different
stops, for notational simplicity we consider the same load factor at all stops.



Let hk be the headway between (k − 1)-th and k-th bus at
depot. Then the inter-arrival times are given by:

I1
k =

(
hk + S1

k

)
− S1

k−1 = hk +W 1
k for first stop, similarly

Iik = hk +
∑

1≤j≤i

Sjk +
∑

1≤j<i

V jk −

∑
j≤i

Sjk−1 +
∑
j<i

V jk−1


= hk +

∑
1≤j≤i

W j
k + ρ

∑
1≤j<i

(
Ijk − I

j
k−1

)
for any stop i. (2)

The last equality follows by fluid arrival and gated service
assumptions as in (1).

III. MARKOV DECISION PROCESS (MDP)

A. Decision epochs, State and Action spaces

When the (k−1)-th bus leaves the depot, the system needs
to determine the headway for the k-th bus. A decision at this
decision epoch, can depend upon the available system state. As
already mentioned, we only have delayed information about
the previous bus trajectories, to be precise that of (k − 2)-th
bus. At (k − 1)-th bus departure (decision epoch), we have
access to the following state (see equation (2)):

Yk = (hk−1, {Ijk−2}1≤j≤M ), (3)

the depot-headway of the previous bus and the inter-bus-
arrival times at various stops. It is easy to observe that the
random vector sequence {Yk}k forms a Markov Chain, whose
evolution depends upon the headway (of the current trip that
needs to be decided) and the previous state and hence is a
controlled chain.

1) Initial trips (t0, h0): Initial trips usually have light load
conditions (passenger arrival rates) and are subjected to small
variations in traffic, load conditions. We assume that the buses
operate during these initial trips (say t0 of them) at some
fixed headway h0. We consider controlling the depot-headway
starting3 from trip t0 + 2, and to keep the notations simple,
we refer (t0 + 2 +k)-th trip by index k. Alternatively one can
consider controlling the buses starting from the first trip as in
our previous paper ([1]).

B. Performance measures

1) Passenger waiting times: The waiting time of a typical
passenger is the time gap between its arrival instance at the
stop and the arrival instance of its bus (to the stop). Let W i

n,k

be the waiting time of the n-th passenger that boards the k-
th bus at stop i. The customer average of the waiting times
corresponding to trip k and stop i equal (e.g., [1], [7]):

w̄ik ,
W̄ i
k

Xi
k

with W̄ i
k :=

Xik∑
n=1

W i
n,k.

3The expressions derived in the next section for 1-delay information are
valid only if the load factor (ρ) remains the same for the previous trip also
(Lemma 2-3). Hence we make this simplifying assumption. Similarly for d-
delay information one requires that load factors remain the same for previous
d trips. If required one can easily extend the analysis to varying load factors,
and that may be considered in future.

Fluid approximation/arrivals: The passengers are assumed
to arrive at regular intervals (of length 1/λ), with λ large.
The waiting time of the first passenger during bus inter-arrival
period (Iik) is approximately4 W i

1,k ≈ Iik, that of the second
passenger is approximately W i

2,k ≈ Iik− 1/λ and so on. Thus
as λ → ∞, the following (observe it is a Riemann sum)
converges:

W̄ i
k

λ
=

1

λ

λIik∑
n=0

(
Iik −

n

λ

)
→
∫ Iik

0

(Iik − x)dx =
(Iik)2

2
. (4)

Thus for large λ,

w̄ik ≈
Iik
2

because W̄ i
k ≈ λ

(Iik)2

2
and Xi

k ≈ λIik. (5)

We refer this approximation throughout, as the fluid approxi-
mation.

The trip average of the waiting times is given by:

1

T

T∑
k=1

M∑
i=1

E[w̄ik] =
1

T

T∑
k=1

M∑
i=1

E[Iik]

2
,

which is one of the components to be optimized. By Lemma
2 (Appendix), the conditional expectation given the state Yk
and the depot-headway decision hk equals (see (3)):

E
[
Iik

∣∣∣Yk, hk]=hk(1 + ρ)i−1 − hk−1(i− 1)ρ(1 + ρ)i−2

+

i−2∑
j=1

Ijk−2(i− j − 1)ρ2(1 + ρ)i−j−2 for any k ≥ 1. (6)

2) Bunching probability: Starting from the depot, the buses
travel on a single route with some headway (time gap between
successive arrivals to the same location) between successive
buses. If these headways were maintained constant thought
their journey, the successive buses would not meet each other.
However, because of variability in load/traffic conditions, the
above is not always true. A bus can get delayed (to some
stop) significantly because of the random fluctuations. The
delayed bus has larger number of passengers to board and
hence is further delayed for the next stop. The trailing bus has
lesser number of passengers and hence departs early from the
stop. This continues in the subsequent stops, and there is a
possibility of the headway between the two buses becoming
zero. This is called bus bunching.

Bus bunching increases the waiting times of passengers,
further and more importantly wastes the capacity of the
trailing buses. Thus the system becomes inefficient. The larger
depot headway times decreases the chances of bunching but,
however, increases the passenger waiting times. Thus one
needs an optimal trade-off.

The bunching probability is the probability that a bus ar-
rives to a stop before the departure of the previous bus. It is
easy to verify that this is the probability that the dwell time

4The residual passenger inter-arrival times at bus-arrival epochs get negli-
gible as λ→∞.



θj =
ρ2

2

M∑
i=j+2

(i− j − 1)(1 + ρ)i−j−2, θ :=
1

2

M∑
i=1

(1 + ρ)i−1 =
(1 + ρ)M − 1

2ρ
, θ̄ :=

ρ

2

M∑
i=1

(i− 1)(1 + ρ)i−2

ψj = ρ2
(

(1 + ρ)M−2−j(M − j + ρ)1j<M−1 +1j=M−1

)
ψ := (1 + ρ)M−1, ψ̄ := ρ(M + ρ)(1 + ρ)M−2

ω2 = ε2
(

M∑
j=1

(1 + ρ)2(M−j) +

M−1∑
j=1

ρ2(1 + ρ)2(M−1−j)[M − j + 1 + ρ]2 + ρ2

)

ηT−k =
(θ + ηT−k+1)ψ̄

ψ
− θ̄ −

M∑
j=1

(1 + ρ)j−1γjT−k+1, aT−k = ω

√
−2 log

(
(θ + ηT−k+1)

√
2πω

ψα

)
,

γjT−k =
(θ + ηT−k+1)

ψ
ψj −

(
θj + ρ

M−1∑
i=j+1

(1 + ρ)i−1−jγiT−k+1

)
1j<M−1,

δT−k =
(θ + ηT−k+1)aT−k

ψ
+ α [1− Φ (aT−k)] + δT−k+1.

TABLE I: Notations and constants

of (k − 1)-th bus, V ik−1 given by (1) is greater than the inter
arrival time between (k − 1) and k-th buses, Iik given by (2):

P iBk = P (V ik−1 > Iik) = P (Iik − ρIik−1 < 0). (7)

We consider optimizing the bunching probability of the last
stop, as this stop experiences maximum variations. Condi-
tioned on Yk, hk the value IMk −ρIMk−1 is Gaussian distributed
(see (2)) and from Lemma 3 of Appendix, we have for any
k ≥ 1 (constants are given in Table I):

Pφ
(
IMk − ρIMk−1 < 0

∣∣∣Yk, hk)
= 1− Φ

ψhk − ψ̄hk−1 +

M−1∑
j=1

ψjIMk−2

 ,

Φ(x) :=

∫ x

−∞

1√
2πω2

exp

(
−t2

2ω2

)
dt, (8)

where Φ is the cdf of a normal random variable with mean 0
and variance ω2:

C. The MDP problem

Let φ = (d1 · · · , dT ) be any Markov policy, in that dk(y)
represents the depot headway for the k-th bus if the system
observes the state y. We choose a headway in the range [0, h̄]
for some h̄ < ∞. The expected values of the above two
cost components depend upon the policy φ and the initial
trajectories specified by (t0, h0) (see sub-section III-A1). To be
more specific, given (t0, h0) one has probabilistic description
of the system state Y1. Let Eφt0,h0

represent the expectation
given the policy and the initial conditions, at times we omit
the subscript and superscript to keep notations simple. We
have multi-objective (two) optimization and a natural way is
to optimize the following weighted combination of the two
costs (6), (8):

J(φ;h0, t0) =

T∑
k=1

Eφ
[
w̄ik

]
+ αPφ

(
IMk − ρIMk−1 < 0

∣∣∣Yk, hk)
=

T∑
k=1

Eφt0,h0
[r(Yk, hk)] with

r(Yk, hk) =

M∑
i=1

E[Iik|Yk, hk] + αPφ
(
IMk − ρIMk−1 < 0

∣∣∣Yk, hk)
= hkθ − hk−1θ̄ +

M−2∑
j=1

θjIjk−2

+α

[
1− Φ

(
ψkhk − ψ̄khk−1 +

M−1∑
j=1

ψjkI
j
k−2

)]
,

where α > 0 is the trade-off factor and the constants are in
Table I. Our objective is to obtain a policy that optimizes the
following for any given (t0, h0):

v(t0, h0) := inf
φ
J(φ; t0, h0).

It is easy to verify that the above value function equals:

v(t0, h0) = Et0,h0
[v(Y1)] ,

and this can be solved by solving the MDP problem for any
given initial condition y1 = (h0, {Ij−1}j), i.e., by deriving the
value function v(y1) for any y1 (e.g., [8]).

IV. OPTIMAL POLICIES

The optimal policy is obtained by solving dynamic pro-
gramming (DP) equations using backward induction. The DP
equations, for any k < T are given by ([8]):

vk(Yk) = inf
hk∈[0,h̄]

{rk(Yk, hk) + E [vk+1(Yk+1)|Yk, hk]} ,

vT+1(YT+1) = 0.

From the trip wise running costs (6)-(8), these equations are
rewritten as (constants are given in Table I):
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Fig. 1: Comparison between Partial dynamic
and Dynamic policies.

Configuration Bunching probability Waiting times
Dynamic Partial Dynamic Partial

ε = 0.3, ρ = 0.3, α big 1.95e-02 2.1e-02 18.42 25.29
ε = 0.3, ρ = 0.3, α small 1.52e-01 1.51e-01 11.33 14.01

ε = 0.4, ρ = 0.3, α big 1.78e-02 1.77e-02 24.41 34.15
ε = 0.4, ρ = 0.3, α small 1.36e-01 1.37e-01 14.85 18.95

ε = 0.2, ρ = 0.5, α big 2.64e-01 2.66e-01 144.23 185.81
ε = 0.2, ρ = 0.5, α small 6.54e-02 6.51e-02 242.68 380.01

TABLE II: Performance for various configurations with Initial trip details:
ρ0 = 0.2, h0 = 100, t0 = 12 and the controlled trip details: M = 10
T = 36 sj = 10 λ = 200.

vk(Yk) = inf
hk∈[0,h̄]

{
hkθ − hk−1θ̄ +

M−2∑
j=1

θjIjk−2

+α

[
1− Φ

(
ψhk − ψ̄hk−1 +

M−1∑
j=1

ψjIjk−2

)]}
. (9)

One can derive optimal policies by solving these DP equations
and there are many known numerical techniques to do the
same (e.g., [8]). In the following we derive the structure of
near optimal policies (closed form expressions) for the case
with small load factors:

Theorem 1. Assume T > M + 1. We define the coefficients
{ηk}k, {γjk}k,j and {ak}k backward recursively: first set
ηT+1 = 0, δT+1 = 0, γjT+1 = 0 for all 1 ≤ j ≤ M and
then set the rest of them as in Table I. There exists a ρ̄ > 0,
such5 that for all ρ ≤ ρ̄:

α >
(θ + ηT−k)

√
2πω

ψ
and θ + ηT−k > 0, for all k ≥ 0. (10)

Further for all such ρ, the following is an ε-optimal policy6

with7 ε = O(ρ):

h∗T−k(YT−k) = max
{

0, min
{
h̄, hucT−k(YT−k)

}}
, (11)

hucT−k(YT−k) :=
1

ψ

[
ψ̄hT−k−1 −

M−1∑
j=1

IjT−k−2ψ
j + aT−k

]
.

The expected value function (for any k, YT−k−1, hT−k−1)
equals:

E[vT−k(YT−k)|YT−k−1, hT−k−1] = E

[
ηT−khT−k−1

−
M−1∑
j=1

IjT−k−2γ
j
T−k + δT−k

∣∣∣∣YT−k−1, hT−k−1

]
+O(ρ).

5There was a small error in the version submitted to CDC, the second
condition was forgotten in equation (10).

6The cost under this policy is within ε radius of the optimal cost.
7Big O notation: f = O(ρ), as ρ → 0, implies f(ρ) ≤ Cρ for some

constant C > 0, for all ρ sufficiently small.

Proof: The details are in Appendix. �
Thus the ε-optimal policy is affine linear in the previous trip

headway and the bus-inter-arrival times. By the above theorem,
the policy well approximates the optimal one, as ρ the load
factor reduces. We will notice that the policy works well even
for nominal load factors (in some examples upto ρ = 0.5) in
the next section.

V. NUMERICAL ANALYSIS

A. Partial Dyanmic policies ([1])

As already mentioned, in our previous work in [1], we de-
rive policies that depend only on previous headways. We refer
them as ‘partial-dynamic’ policies, as they do not consider
the random component of the system state Yk. It is obvious
that one can improve with the ‘fully’ dynamic policies of
Theorem 1. In this section, we study the extent of improvement
provided by the extra information. Towards this we reproduce
the optimal policies of [1], for the purpose of completion. For
all load factor ρ ≤ ρ̄ (for some ρ̄ > 0, the optimal policy is
given by (hT−k := [hT−k−1, hT−k−2 · · ·hT−k−M ]):

h∗T−k(hT−k) =

[
−

M∑
l=1

hT−k−lψ
p
l + ap∗

]
, with (12)

ap∗ =
σMM

(1 + ρ)M−1

√√√√−2 log

(
M
√

2πσMM
2(1− ρ)α

)
. (13)

ψpl =
1

(1 + ρ)M−1

(
(−1)l

(
M − 1

l

)
ρl(1 + ρ)M−1−l

−(−1)l−1

(
M − 1

l − 1

)
ρl(1 + ρ)M−l1l>0

)
.

The constant σMM is available in [1].

B. Experiments

We conduct many Monte Carlo based simulations to com-
pare the proposed dynamic policies with the partial dynamic
policies of [1]. We basically generate several sample paths of
transport system trajectories, where each sample path is gen-
erated using a sample of the random walking times between



the stops and the random passenger arrivals at various stops
for all the T -trips. We dispatch the buses according to one
of the two policies for different values of trade-off factors α
and obtain the estimates of the bunching probability and the
average passenger waiting times using the sample means.

In Figure 1, we plot the estimates of average passenger
waiting times versus the estimates of the bunching probability
for different values of α and for both the policies. The details
of the experiment are mentioned in the figure itself. We
notice a significant improvement with fully dynamic policies.
The curve of bunching probability versus expected waiting
time obtained with fully dynamic policy is placed well below
that with partial dynamic policies. This implies that one can
simultaneously improve both the performance measures, when
one has access to the more information about the system state.
We conducted many more experiments and the observations
are similar.

In Table II we consider various system configurations,
which is described in the first column. We choose different
values of α for the two policies such that the bunching prob-
abilities are almost equal (under both the policies) and these
values are reported in next two columns. We then tabulate the
corresponding average passenger waiting times in the last two
columns. These are the estimates averaged across all the T
trips. The different configurations span across different levels
of traffic variability (ε), different load factors during control-
lable trips (ρ) and or different level of α/trade-off factors. In
all the configurations, we notice a good improvement with
fully dynamic policies. Since α were chosen such that the
bunching probabilities of both the policies are almost equal,
one can study the improvement via the improvement in average
passenger waiting times. We observe that improvements are in
the range of 21% to 44%.

Extension to arbitrary delays
We think one can easily extend this analysis to arbitrarily

delayed information, i.e., for the case when the observation
is d-delayed we have, Yk = (hk−1, hk−2 · · · , hk−d, {Ijk−d}j)
with 1 ≤ d < M . Basically the Lemmas 2-3 can easily
be extended and we think the rest of the proof can be
completed. We would consider this in the immediate future.
We conjecture the following would be an ε-optimal policy for
some appropriate coefficients {ψ̄r}, {ψj} and {aT−k}:
h∗T−k(yT−k) = min

{
h̄,max

{
0,

d∑
r=1

ψ̄rhT−k−r −
M−d∑
j=1

IjT−k−d−1ψ
j + aT−k

}}
.

Note that the above matches with the partial dynamic policy
of [1] reproduced in (12) as well as the fully dynamic policy
(11) proposed in this paper. It would be further interesting to
consider the case where one has partial information (only for
some stops) related to some (delayed) trips.

VI. CONCLUSIONS

Unlike the popular models considered in literature, we
directly studied the inherent trade-off between the two most

important aspects of any bus transport system, the bunching
possibilities and the passenger waiting times. Further, we
formulated a Markov decision processes based problem to
derive optimal (depot) dispatch (i.e., headway) policies that
depend upon the random state observed at various bus stops
of the previous trips. The observation is that of the time gaps
between arrivals of the successive buses at the same stop.

We consider systems with Markovian travel times, fluid
passenger arrivals and with delayed (one delay) information.
The objective function optimized is the sum of a weighted
combination of the two performance measures, corresponding
to all the trips of the given session. We obtained a near-
optimal dynamic policy for small load factors by solving the
corresponding finite horizon dynamic programming equations,
using backward induction. This policy is linear in previous trip
headway and the bus-inter-arrival times corresponding to the
earlier trips. We conducted Monte-Carlo based simulations to
plot the estimates of the average passenger waiting times and
the bunching probability for various trade off factors. We also
observed that the proposed dynamic policy performs signif-
icantly better than the previously proposed partial dynamic
policies of [1]. These partial dynamic policies depend only
upon the headways of the previous trips.
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VII. APPENDIX

Lemma 2. The conditional expectation of inter arrival times
given the state Yk (from (3)) and hk equals:
E
[
Iik

∣∣∣Yk, hk] = (1 + ρ)i−1hk − (i− 1)ρ(1 + ρ)i−2hk−1

+

i−2∑
j=1

(i− j − 1)ρ2(1 + ρ)i−j−2Ijk−2. � (14)

Proof: From equation (2), the inter arrival times are Gaus-
sian distributed. The proof is based on mathematical induction.
We begin with i = 1, From equation (2),

I1
k = hk +W 1

k , and henceE
[
I1
k

∣∣∣Yk, hk] = hk.

Assume the result (equation (14)) is true for i = n, and
consider i = n+ 1. Again from (2)

In+1
k = hk +

∑
1≤j≤n+1

W j
k + ρ

∑
1≤j<n+1

(
Ijk − I

j
k−1

)
,

= Wn+1
k + (1 + ρ)Ink − ρInk−1 and then

E
[
In+1
k

∣∣∣Yk, hk]
= (1 + ρ)E

[
Ink

∣∣∣Yk, hk]− ρE [Ink−1

∣∣∣Yk, hk]
= (1 + ρ)

{
(1 + ρ)n−1hk − (n− 1)ρ(1 + ρ)n−2hk−2

+

n−2∑
j=1

(n− j − 1)ρ2(1 + ρ)n−j−2Ijk−2

}
−ρ
{

(1 + ρ)n−1hk−1 − ρ
n−1∑
j=1

(1 + ρ)n−1−jIjk−2

}
= (1 + ρ)nhk − nρ(1 + ρ)n−1hk−1

+

n−1∑
j=1

(n− j)ρ2(1 + ρ)n−j−1Ijk−2.

Hence lemma is verified for i = n+ 1. �

Lemma 3. For any 2 ≤ i ≤M we have:
I
i
k − ρI

i
k−1

= (1 + ρ)i−1hk − (i+ ρ)ρ(1 + ρ)i−2hk−1 +
∑i
j=1(1 + ρ)i−jW j

k

−
∑i
j=1

(
(i− j + 1 + ρ)ρ(1 + ρ)i−j−11j<i + ρ1j=i

)
W j
k−1

+
∑i−1
j=1

(
ρ2(1 + ρ)i−2−j(i− j + ρ)1j<i−1 + ρ21j=i−1

)
Ijk−2. (15)

The bunching probability of (k − 1) and k-th bus at stop i
given the state Yk (from (3))and hk equals:

P
(
I
i
k − ρI

i
k−1 < 0

∣∣Yk, hk) = 1− Φ

ψhk − ψ̄hk−1 +

i−1∑
j=1

ψ
j
I
j
k−1

 ,

where the constants are given in Table I. �

Proof: From the equation (2), the inter arrival times are
Gaussian distributed. The proof is based on mathematical
induction. We begin with i = 2, and from equation (2),
I2
k − ρI2

k−1 = hk +W 1
k +W 2

k + ρ(I1
k − I1

k−1)

−ρ
(
hk−1 +W 1

k−1 +W 2
k−1 + ρ(I1

k−1 − I1
k−2)

)
,

= (1 + ρ)hk + (1 + ρ)W 1
k +W 2

k

−(2 + ρ)ρhk−1 − (2 + ρ)ρ.W 1
k−1 − ρW 2

k−1 + ρ2I1
k−2.

Hence the lemma is verified for i = 1. Assuming the result
is true for i = n, i.e., the equation (15) is true for all i ≤ n,
we prove the result for i = n+ 1. One can write easily from
(2),

In+1
k = Wn+1

k + (1 + ρ)Ink − ρInk−1.

Hence,

I
n+1
k − ρIn+1

k−1

= W
n+1
k + (1 + ρ)I

n
k − ρI

n
k−1 − ρ

(
W
n+1
k−1 + (1 + ρ)I

n
k−1 − ρI

n
k−2

)
= (1 + ρ)I

n
k +W

n+1
k − (2 + ρ)ρI

n
k−1 − ρW

n+1
k−1 + ρ

2
I
n
k−2

= (1 + ρ)(I
n
k − ρI

n
k−1) +W

n+1
k − ρ2

I
n
k−1 − ρW

n+1
k−1 + ρ

2
I
n
k−2,

I
n
k−1 = (1 + ρ)

n−1
hk−1

+

n∑
j=1

(1 + ρ)
n−j

W
j
k−1 − ρ

n−1∑
j=1

(1 + ρ)
n−1−j

I
j
k−2.

From the above equations, one can prove the hypothesis easily
for i = n+ 1. �

Proof of Theorem 1: Condition (10) can be proved in
exactly similar lines as in [1, Lemma 5]. Note here that the
coefficients are defined in a deterministic manner (do not
depend upon any random variables) and hence this proof is
easy, when one follows similar logic as in [1, Lemma 5].

The rest of proof is based on backward mathematical
induction. We begin with k = 0. Then the corresponding DP
equations are (see Table I, and equation (9)),

vT (YT ) = min
hT∈[0,h̄]

rT (hT , YT ),

= min
hT∈[0,h̄]

{
hT θ − hT−1θ̄ +

M−2∑
j=1

θjIjT−2

+α

[
1− Φ

(
ψhT − ψ̄hT−1 +

M−1∑
j=1

ψjIjT−2

)] }
.

The above optimization of rT is like the objective function
of Theorem 6. By this theorem, the optimal policy and value
function are respectively8:

h∗T (YT ) =


h̄ on ĀT
0 on AT
1
ψ

[
ψ̄hT−1 −

∑M−1
j=1 IjT−2ψ

j + aT
]
, on AcT

AT :=

{
−
M−1∑
j=1

ψjIjT−2 < −aT − ψ̄hT−1

}
,

ĀT =

{
−
M−1∑
j=1

ψjIjT−2 > h̄ψ − aT − ψ̄hT−1

}
and

with constants, e.g., aT , ηT , γjT , as in Table I and

8In the CDC paper, the negative sign in left hand terms of the sets ĀT and
AT is missing.



vT (YT )=



h̄θ − hT−1θ̄ +
∑M−2
j=1 θjIjT−2

+α
[
1− Φ

(
ψh̄− ψ̄hT−1 +

∑M−1
j=1 ψjIjT−2

)]
on ĀT

−hT−1θ̄ +
∑M−2
j=1 θjIjT−2

+α
[
1− Φ

(
−ψ̄hT−1 +

∑M−1
j=1 ψjIjT−2

)]
on AT

ηThT−1 −
∑M−1
j=1 IjT−2γ

j
T + δT , on, AcT ,

(16)

with AT := AT ∪ ĀT . Further for any YT−1, and hT−1:

EYT−1, hT−1
:= E

[
vT (YT ); AT

∣∣∣∣YT−1, hT−1

]
= EYT−1,hT−1

[
ηThT−1 −

M−1∑
j=1

IjT−2γ
j
T + δT ; AT

]
+ ΓT−1,

with, ΓT−1 :=EYT−1,hT−1

[
h̄θ − hT−1θ̄ +

M−2∑
j=1

θ
j
I
j
T−2 (17)

+α

1− Φ

ψh̄− ψ̄hT−1 +

M−1∑
j=1

ψ
j
I
j
T−2

 ; ĀT

]

+EYT−1,hT−1

[
− hT−1θ̄ +

M−2∑
j=1

θ
j
I
j
T−2

+α

1− Φ

−ψ̄hT−1 +

M−1∑
j=1

ψ
j
I
j
T−2

 ;AT

]

−EYT−1,hT−1

ηThT−1 −
M−1∑
j=1

I
j
T−2γ

j
T + δT ; AT

 ,
where by Lemma 5 (from Table I, ρ factors out from some
coefficients ({ψj , γjT }j), others are bounded uniformly in ρ):

|ΓT−1| ≤ βT−1(YT−1, hT−1) with (18)

βT−1(YT−1, hT−1) := ρ

∣∣∣∣∣∑
j

cjT I
j
T−3

∣∣∣∣∣+ ρ

∣∣∣∣∣∑
j

ujT I
j
T−3

∣∣∣∣∣
+ρchThT−1 + cT ρ.

The coefficients in the definition of βT−1 are appropriately
defined, converge to finite constants as ρ → 0 and do not
depend upon YT−1 or hT−1 (see Table I, equation (17)). Thus
in all, for any YT−1, and hT−1 (from (16)) we have:

E[vT (YT )|YT−1, hT−1] = ΓT−1(YT−1, hT−1) (19)

+EYT−1,hT−1

[
ηThT−1 −

M−1∑
j=1

IjT−2γ
j
T + δT

]
.

Clearly βT−1 = O(ρ), policy (11) is optimal for all YT and
so the result is true for k = 0. Now we will prove the result
for k = 1. Using DP equations

vT−1(YT−1) = inf
hT−1∈[0,h̄]

J(hT−1;YT−1) with (20)

J(hT−1;YT−1) := rT−1(hT−1, YT−1) + E[vT (YT )|YT−1, hT−1].

Fix YT−1. By Lemma 4, and equation (19) the objective
function J(·) can be split and rewritten as:

J(hT−1) = J̃(hT−1) + ΓT−1(YT−1, hT−1) with (21)

J̃(hT−1) := hT−1(θ + ηT )− hT−2

θ̄ +

M−1∑
j=1

(1 + ρ)
j−1

γ
j
T


+

M−2∑
j=1

θj + ρ

M−1∑
i=j+1

(1 + ρ)
i−1−j

γ
i
T

 I
j
T−3

−α

1− Φ

ψhT−1 − ψ̄hT−2 +

M−1∑
j=1

ψ
j
I
j
T−3

+ δT .

The function J̃(·) is like the objective function of Theo-
rem 6. By this theorem, the optimal policy and the optimal
objective function,

ṽT−1(YT−1) := inf
0≤hT−1≤h̄

J̃(hT−1(YT−1)), (22)

respectively equal:

h̃
∗
T−1(YT−1) =


h̄ on ĀT−1

0 on AT−1
1
ψ

[
ψ̄hT−2 −

∑M−1
j=1 IjT−3ψ

j + aT−1

]
, on AcT−1

AT−1 := AT−1 ∪ ĀT−1,

AT−1 :=

−
M−1∑
j=1

ψ
j
I
j
T−3 < −aT−1 − ψ̄hT−2


ĀT−1 =

−
M−1∑
j=1

ψ
j
I
j
T−3 > ψh̄− aT−1 − ψ̄hT−2

 ,

with constants, e.g., aT−1, ηT−1, γjT−1, as in Table I and

ṽT−1(YT−1) =



h̄(θ + ηT )− hT−2

(
θ̄ +

∑M−1
j=1 (1 + ρ)j−1γjT

)
+
∑M−2
j=1

(
θj + ρ

∑M−1
i=j+1(1 + ρ)i−1−jγiT

)
IjT−3

−α
[
1− Φ

(
ψh̄− ψ̄hT−2 +

∑M−1
j=1 ψjIjT−3

)]
+ δT

on ĀT−1

−hT−2

(
θ̄ +

∑M−1
j=1 (1 + ρ)j−1γjT

)
+
∑M−2
j=1

(
θj + ρ

∑M−1
i=j+1(1 + ρ)i−1−jγiT

)
IjT−3

−α
[
1− Φ

(
−ψ̄hT−2 +

∑M−1
j=1 ψjIjT−3

)]
+ δT

on AT−1

ηT−1hT−2 −
∑M−1
j=1 IjT−3γ

j
T−1 + δT−1, on ĀcT−1.

Further from (20)-(22) and (18), for any YT−1

vT−1(YT−1)≤ inf
0≤hT−1≤h̄

J̃(hT−1(YT−1))

+ sup
0≤hT−1≤h̄

|ΓT−1(hT−1)| ,

≤ ṽT−1(YT−1) + ε, (23)

with

ε := sup
0≤hT−1≤h̄

βT−1(hT−1, YT−1).

= ρ

∣∣∣∣∣∑
j

cjT I
j
T−3

∣∣∣∣∣+ ρ

∣∣∣∣∣∑
j

ujT I
j
T−3

∣∣∣∣∣+ ρchT h̄+ cT ρ.

Again using (19)-(21) we have:
vT−1(YT−1) ≤

(
J̃(h̃∗T−1(YT−1)) + ΓT−1(h̃∗T−1(YT−1))

)
+ε− ΓT−1(h̃∗T−1(YT−1))

≤ J(h̃∗T−1(YT−1)) + 2ε.



Thus h̃∗T−1(YT−1) is an ε-optimal policy (note ε = O(ρ))
for any YT−1 and thus (11) is true for k = 1.

Further as in the previous step (i.e., step with k = 0) one
can write (e.g., once again P (AT−1) = O(ρ), and so on)

E[ṽT−1(YT−1)|YT−2, hT−2]

= EYT−2,hT−2

[
ηT−2hT−2 −

∑M−1
j=1 IjT−3γ

j
T−1 + δT−1

]
+ Γ̃T−2,

where Γ̃T−2 can be upper-bounded like in (18). Define

ΓT−2 := EYT−2,hT−2 [vT−1(YT−1)− ṽT−1(YT−1)|YT−2, hT−2]

+Γ̃T−2



and note that9 |ΓT−2| ≤ ε+
∣∣∣Γ̃T−2

∣∣∣ .
Recall Γ̃T−2 can be upper-bounded like in (18) and using Lemma 5, it is easy to verify the following:

|ΓT−2| ≤ βT−1(YT−2, hT−2) where

βT−1(YT−2, hT−2) = ρ

∣∣∣∣∣∑
j

cjT−1I
j
T−4

∣∣∣∣∣+ ρ

∣∣∣∣∣∑
j

ujT−1I
j
T−4

∣∣∣∣∣
+ρchT−1hT−2 + cT−1ρ,

for appropriate coefficients that converge to finite constants as ρ → 0 and which do not depend upon YT−2 or hT−2. This
completes the proof for k = 1.

The rest of the proof is completed using induction, assume the result is true for k = n. Now we will prove the result for
k = n+ 1. Using DP equations

vT−n−1(YT−n−1) = inf
hT−n−1∈[0,h̄]

J(hT−n−1;YT−n−1) with (24)

J(hT−n−1;YT−n−1) := rT−n−1(hT−n−1, YT−n−1) + E[vT (YT−n)|YT−n−1, hT−n−1].

Fix YT−n−1. By Lemma 4, the objective function J(·) can be split and rewritten as:

J(hT−n−1) = J̃(hT−n−1) + ΓT−n−1(YT−n−1, hT−n−1) with (25)

J̃(hT−n−1) := hT−n−1(θ + ηT−n)− hT−n−2

θ̄ +

M−1∑
j=1

(1 + ρ)j−1γjT−n

+

M−2∑
j=1

θj + ρ

M−1∑
i=j+1

(1 + ρ)i−1−jγiT−n

 IjT−n−3

−α

1− Φ

ψhT−n−1 − ψ̄hT−n−2 +

M−1∑
j=1

ψjIjT−n−3

+ δT−n.

The function J̃(·) is like the objective function of Theorem 6. By this theorem, the optimal policy and the optimal objective
function,

ṽT−n−1(YT−n−1) := inf
0≤hT−n−1≤h̄

J̃(hT−n−1(YT−n−1)), (26)

respectively equal:

h̃∗T−n−1(YT−n−1) =


h̄ on ĀT−n−1

0 on AT−n−1
1
ψ

[
ψ̄hT−n−2 −

∑M−1
j=1 IjT−n−3ψ

j + aT−n−1

]
, on AcT−n−1

AT−n−1 := AT−n−1 ∪ ĀT−n−1, AT−n−1 :=

−
M−1∑
j=1

ψjIjT−n−3 < −aT−n−1 − ψ̄hT−n−2


ĀT−n−1 =

−
M−1∑
j=1

ψjIjT−n−3 > ψh̄− aT−n−1 − ψ̄hT−n−2

 ,

with constants, e.g., aT−n−1, ηT−n−1, γjT−n−1, as in Table I and

9
It is clear from (21) that

J(hT−1) = J̃(hT−1) + ΓT−1(YT−1, hT−1)

≥ J̃(hT−1)− |ΓT−1(YT−1, hT−1)|
≥ J̃(hT−1)− sup

hT−1∈[0,h̄]

|ΓT−1(YT−1, hT−1)|,

so, vT−1(YT−1) ≥ ṽT−1(YT−1)− sup
hT−1∈[0,h̄]

|ΓT−1(YT−1, hT−1)|

≥ ṽT−1(YT−1)− ε,

and hence from (23), |vT−1 − ṽT−1| ≤ ε.



ṽT−n−1(YT−n−1) =



h̄(θ + ηT−n)− hT−n−2

(
θ̄ +

∑M−1
j=1 (1 + ρ)j−1γjT−n

)
+
∑M−2
j=1

(
θj + ρ

∑M−1
i=j+1(1 + ρ)i−1−jγiT−n

)
IjT−n−3

−α
[
1− Φ

(
ψh̄− ψ̄hT−n−2 +

∑M−1
j=1 ψjIjT−n−3

)]
+ δT−n

on ĀT−n−1

−hT−n−2

(
θ̄ +

∑M−1
j=1 (1 + ρ)j−1γjT−n

)
+
∑M−2
j=1

(
θj + ρ

∑M−1
i=j+1(1 + ρ)i−1−jγiT−n

)
IjT−n−3

−α
[
1− Φ

(
−ψ̄hT−n−2 +

∑M−1
j=1 ψjIjT−n−3

)]
+ δT−n

on AT−n−1

ηT−n−1hT−n−2 −
∑M−1
j=1 IjT−n−3γ

j
T−n−1 + δT−n−1, on ĀcT−n−1.

Further from (24)-(26) and (18), for any YT−n−1

vT−n−1(YT−n−1) ≤ inf
0≤hT−n−1≤h̄

J̃(hT−n−1(YT−n−1)) + sup
0≤hT−n−1≤h̄

|ΓT−n−1(hT−n−1)| ,

≤ ṽT−n−1(YT−n−1) + ε with (27)
ε := sup

0≤hT−n−1≤h̄
βT−n−1(hT−n−1, YT−n−1).

= ρ

∣∣∣∣∣∣
∑
j

cjT−nI
j
T−n−3

∣∣∣∣∣∣+ ρ

∣∣∣∣∣∣
∑
j

ujT−nI
j
T−n−3

∣∣∣∣∣∣+ ρchT−nh̄+ cT−nρ.

vT−n−1(YT−n−1) ≤
(
J̃(h̃∗T−n−1(YT−n−1)) + ΓT−n−1(h̃∗T−n−1(YT−n−1))

)
+ ε− ΓT−n−1(h̃∗T−n−1(YT−n−1))

≤ J(h̃∗T−n−1(YT−n−1)) + 2ε.

Thus h̃∗T−n−1(YT−n−1) is an ε-optimal policy (note ε = O(ρ)) for any YT−n−1 and thus (11) is true for k = n+ 1.
Further as in the previous step (i.e., step with k = 0) one can write (e.g., once again P (AT−n−1) = O(ρ), and so on)

E[ṽT−n−1(YT−n−1)|YT−n−2, hT−n−2] = EYT−n−2,hT−n−2

ηT−n−2hT−n−2 −
M−1∑
j=1

IjT−n−3γ
j
T−n−1 + δT−n−1

+ Γ̃T−n−2,

where Γ̃T−n−2 can be upper-bounded like in (18). Define

ΓT−n−2 := EYT−n−2,hT−n−2
[vT−n−1(YT−n−1)− ṽT−n−1(YT−n−1)|YT−n−2, hT−n−2] + Γ̃T−n−2

and note that

|ΓT−n−2| ≤ ε+
∣∣∣Γ̃T−n−2

∣∣∣ .
Using the above definition we have:

E[vT−n−1(YT−n−1)|YT−n−2, hT−n−2] = EYT−n−2,hT−n−2

ηT−n−2hT−n−2 −
M−1∑
j=1

IjT−n−3γ
j
T−n−1 + δT−n−1

+ ΓT−n−2.

Recall Γ̃T−n−2 can be upper-bounded like in (18) and using Lemma 5, it is easy to verify the following:

|ΓT−n−2| ≤ βT−n−1(YT−n−2, hT−n−2) where

βT−n−1(YT−n−2, hT−n−2) = ρ

∣∣∣∣∣∣
∑
j

cjT−n−1I
j
T−n−4

∣∣∣∣∣∣+ ρ

∣∣∣∣∣∣
∑
j

ujT−n−1I
j
T−n−4

∣∣∣∣∣∣+ ρchT−n−1hT−n−2 + cT−n−1ρ,



for appropriate coefficients that converge to finite constants as ρ → 0 and which do not depend upon YT−n−2 or hT−n−2.
This completes the proof for k = n+ 1. �

Lemma 4. For any k ≥ 1, YT−k and hT−k

J̃(hT−k, YT−k) = rT−k(hT−k, YT−k)

+EYT−k,hT−k

[
ηT−k+1hT−k −

M−1∑
j=1

IjT−k−1γ
j
T−k+1 + δT−k+1

]
.

Proof: The coefficients are defined recursively to satisfy the above, and it can be verified using Table I. �

Lemma 5. For any k ≥ 1, YT−k, hT−k and the coefficients

P

(
AT−k+1

∣∣∣∣YT−k, hT−k) ≤ 2 exp(−(C/ρ)2 + C/ρ), (28)

E

[∣∣∣∣∣∑
j

cjI
j
T−k+1

∣∣∣∣∣
∣∣∣∣YT−k, hT−k

]
≤ |
∑
j

ccjIjT−k|+ cchhT−k + cc,

E

[∑
j

cjI
j
T−k+1

∣∣∣∣YT−k, hT−k
]
≤ |
∑
j

ccjIjT−k|+ cchhT−k + cc. (29)

where the coefficients on the right hand side are appropriately defined. Note that the upper bound in (28) is clearly O(ρ). �

Proof: For (28), it suffices to prove the result for the following probability for any C > 0:

pA := P

∑
j

ējIjT−k−1 >
C

ρ

∣∣∣∣YT−k, hT−k


Let

µ :=
∑
j

ejIjT−k−1 + ehhT−k = E

∑
j

ējIjt−2

∣∣∣∣YT−1, hT−1


represent the conditional mean. Thus we need to prove that for a Gaussian random with mean µ the above implication:

pA =

∫ ∞
C/ρ

exp

(
− (t− µ)2

2ω2

)
dt√
2πω2

=

∫ ∞
(C/ρ−µ)/ω

exp

(
− t

2

2

)
dt√
2π

≤ 2 exp

(
− (C/ρ− µ)2

w2

)
= 2 exp(−(C/ρ)2) exp(−µ2 + 2µC/ρ) ≤ 2 exp(−(C/ρ)2 + C/ρ).

For (29), first observe that
∑
j cjI

j
T−k+1 conditioned on (YT−k, hT−k) is a Gaussian random variable and let its conditional

expected value be:

µ̃ = E

∑
j

cjI
j
T−k+1

∣∣∣∣YT−k, hT−k


and note further that µ̃ is linear in (YT−k, hT−k). Let ω be the corresponding variance. Using the above definitions (without
loss of generality when µ̃ > 0),

E

∣∣∣∣∣∣
∑
j

cjI
j
T−k+1

∣∣∣∣∣∣
∣∣∣∣YT−k, hT−k

 =

∫ ∞
−∞
|t| exp

(
− (t− µ̃)2

2ω2

)
dt√
2πω2

=

∫ ∞
−∞
|t+ µ̃| exp

(
− t2

2ω2

)
dt√
2πω2

≤ 2

∫ ∞
0

t exp

(
− t2

2ω2

)
dt√
2πω2

+ µ̃. �



Theorem 6. Let g be function of the following type:

g(h,Y) = z̄h− ẑh−1 +

M−2∑
j=1

Ij z̄j + α

1− Φ

hz̃ − ˆ̃zh−1 +

M−1∑
j=1

z̃jIj

+ δ with Y = [h−1, I
1, I2, . . . , IM ],

with z̄ > 0, α > 0 and z̃ > 0. Consider the following optimization problem:

g∗(Y) := min
h∈[0,h̄]

g(h,Y) and h∗ := arg min
h
g(h,Y).

Then there exists an unique optimizer to this problem and the optimizer is given by:

h∗ =


0 if ˆ̃zh−1 −

∑M−1
j=1 Ij z̃j < −a

h̄ if h̄z̃ − ˆ̃zh−1 +
∑M−1
j=1 Ij z̃j < a

1
z̃

[
ˆ̃zh−1 −

∑M−1
j=1 Ij z̃j + a

]
, with a :=

√
−2 log

(
z̄
√

2π
z̃α

)
else.

(30)

Further,

g∗(Y) =


g(0,Y) if ˆ̃zh−1 −

∑M−1
j=1 Ij z̃j < −a

g(h̄,Y) if h̄z̃ − ˆ̃zh−1 +
∑M−1
j=1 Ij z̃j < a

ˆ̃zh−1 −
∑M−1
j=1 Ijψ̃j + δ∗ else, with

ψ̃j =
z̃j z̄ − z̄j z̃

z̃
, δ∗ = α [1− Φ (a)] +

z̄a

z̃
+ δ.

Proof: Consider the objective function and for notational simplicity rename h−1 as I0 and −ẑ := z̄0 and −ˆ̃z := z̃0 and
consider

g∗(Y) = min
h∈[0,h̄]

z̄h+

M−2∑
j=0

Ij z̄j + α

1− Φ

hz̃ +

M−1∑
j=0

z̃jIj

+ δ

 . (31)

Let h∗ be the optimal policy for equation (31), i.e.,

h∗ ∈ arg min(g(Y)), and either

⇒ d

dhM
(g(Y))

∣∣∣
h=h∗

= 0 or h∗ is on the boundary

The first derivative is given by:

d

dhM
(g(Y)) = z̄ − α√

2π
exp

−
(
hz̃ +

∑M−1
j=0 z̃jIj

)2

2

 z̃.

When α < z̄
√

2π
z̃ , the first derivative is always positive and hence the optimizer is at lower boundary, i.e., h∗ = 0. Otherwise,

there exists a zero of the derivative as below (with a as defined in hypothesis (30)):hz̃ +

M−1∑
j=0

z̃jIj

2

= a2, i.e., ⇒ hz̃ +

M−1∑
j=0

z̃jIj = a

If the LHS is bigger than a for all positive h (i.e., if
∑M−1
j=0 z̃jIj > a), then the derivative is positive for all h ≥ 0, hence

again h∗ = 0. On the other hand if

h̄z̃ +

M−1∑
j=0

z̃jIj < a,

then the derivative is negative for all h ∈ [0, h̄], and hence h∗ = h̄. For the rest of the cases (i.e., when a−h̄z̃ <
∑M−1
j=0 z̃jIj < a)

we have the interior optimizer

h∗ =
a−

∑M−1
j=0 z̃jIj

z̃
,



as the second derivative (at such h∗) is positive.
Substituting the above, the optimal objective function (when interior point is optimal) equals:

g∗(Y) = h∗z̄ +

M−2∑
j=0

Ij z̄j + α

1− Φ

h∗z̃ +

M−1∑
j=0

Ij z̃j

+ δ

=

M−1∑
j=0

Ij
z̃j z̄ − z̄j z̃

z̃
+
z̄a

z̃
+ α (1− Φ (a)) + δ

=

M−1∑
j=0

Ijψ̃j + δ∗, where,

{ψ̃j}, and δ∗ are as defined in hypothesis. �


