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Introduction

I In real world problems exhibit inherent randomness

I In modeling real-world problems, we need to take into account
possible variations (randomness)

I This is done by allowing the models to be probabilistic

I Data observed from real world problems represents their
behavior/property/nature

I We want to build models that describes the observed data

I Probability models helps us systematically capture variations
in the data and gives rules for consistent reasoning
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Outline

I Sample Space and Events

I Axioms of Probability

I Conditional Probability

I Independent Events

I Baye’s formula
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Sample Space and Events

Consider an experiment whose outcomes are not predictable in
advance. Examples: Coin toss, throw of dice, stock prices,
weather, demand for goods, arrival of customer

Definition (Sample Space)

Possible outcomes of an experiment is known as sample
space. We denote it as Ω.

Definition (Event)

Any subset of the sample space is known as an event.

Analysis of an random experiment begins by defining its outcome.
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Examples

1. Example 1: (Flipping a coin) Ω = {H,T}
2. Example 2: (Rolling a dice) Ω = {1, 2, 3, 4, 5, 6}
3. Example 3: (Flipping two coins)

Ω = {(H,H), (H,T ), (T ,H), (T ,T )}
4. Example 4: (Rolling two dice)

Ω =



(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)


5. Example 4: (Temperature of a room) Ω = [a, b] for some real

values a, b.
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Examples contd.

1. Example 1: (Flipping a coin) E = {H} or E = {T} or
E = {H,T}

2. Example 2: (Rolling a dice) E = {2, 4, 6} or E = {1, 3, 5} or
E = {3, 6}

3. Example 3: (Flipping two coins) E = {(H,H), (H,T )} or
E = {(T ,H), (T ,T )} or, ...

4. Example 4: (Rolling two dice)
E = {(1, 4), (4, 1), (2, 3), (3, 2)} (sum of outcome is 5) ,
E = {(1, 5), (5, 1), (2, 4), (4, 2), (3, 3)} (sum of outcome is 6)

5. Example 4: (Temperature of a room) E = [c , d ] for
a ≤ c , d ≤ b.
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Operations on Events

Consider an experiment with sample space Ω and events E and F .

I We say event E occurs when outcome of the experiment lies
in E . In rolling dice problem if E = {1, 4, 6}, event E occurs
if face of the dice throws 1, 4 or 6.

I Complement: E c = Ω\E . E ∪ E c = Ω and E ∩ E c = ∅.
I Union: E ∪ F consists of all elements in E and F . G = E ∪ F

occurs if E or F occurs

I Intersection: E ∩ F consists of elements belonging to both E
and F . G = E ∩ F occurs only if both E and F occur

I Mutually Exclusive: If there is no common element between
E and F , E ∩F = ∅, i.e., then E and F are mutually exclusive.

I For any sequence of events E1,E2, ...., ∪∞i=1Ei and ∩∞i=1Ei ,
denote their union and intersection, respectively
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Probability of Events

In a random experiment we want to know/assign ’likelihood’ of
each event. This is done by defining probabilities. Intuitively,
probability should satisfy some basic properties given by following
axioms:

I Non-negativity: P(E ) ≥ 0 for all E ⊂ Ω

I Normalization: P(Ω) = 1

I (Finite) additivity For mutually exclusive events E1 and E2,
P(E1 ∪ E2) = P(E1) + P(E2). (to be extended)
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Consequences of Axioms

I P(E ) ≤ 1 for all E ⊂ Ω
I Claim: A ⊂ B =⇒ P(A) ≤ P(B)

B = A ∪ (B\A) =⇒ P(B) = P(A) + P(B\A)
(as B and B\A are mutually exclusive Axiom 3 applied)
As P(B\A) ≥ 0, Axiom 1 applies and the claim holds.

I P(E ∪ F ∪ G ) =
P(E ) + P(F ) + P(G )− P(EF )− P(EG )− P(FG ) + P(EFG )

I For any E ,F ⊂ Ω, P(E ∪ F ) = P(E ) + P(F )− P(E ∩ F )

E ∪ F = E ∪ (F\(E ∩ F ))

=⇒ P(E ∪ F ) = P(E ) + P(F\(E ∩ F ))(Axiom 3)

P(E ∪ F ) = P(E ) + P(F )− P(E ∩ F )
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Extending Finite Additivity Property

Example: Ω = {1, 2, 3, . . .} and P(i) = 1/2i for all i ∈ Ω.
What is the probability of finding an even number?

Is P a valid probability function. Sanity check

I 0 ≤ P(i) ≤ 1 for all i ∈ Ω

I P(Ω) =
∑∞

i=1 1/2i = 1
2

(
1

1−1/2

)
= 1

We are interested in event E = {2, 4, 8, 10, . . .} = ∪∞i=1{2i}
P(E ) = P(2) + P(4) + P(6) + . . . =

∑∞
i=1 P({2i})

We added infinitely many (countable) events!

Extended Axiom 3: For a sequence of mutually exclusive
events E1,E2,E3, . . . defined on the same sample space

P(E1 ∪ E2 ∪ E3 . . .) = P(E1) + P(E2) + P(E3) + . . .
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Additive property for uncountable case?

Continuous case:: Ω = {(x , y), 0 ≤ x , y ≤ 1}
I We know P(Ω) = 1

I P(Ω) =
∑

0≤x ,y≤1
P(x , y). For any (x , y), P(x , y) = 0. Hence

P(Ω) = 0. A contradiction!

Additivity axiom applies to finite and ’countable’ number
events not to uncountable number of events!
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Interpretation of Probability

I Frequentist view
I Probability of an event is the fraction of times it appears

I In coin tossing: P(H) = number of times head appears
total number of trials when

number of trials is repeated indefinitely.

I Probabilities are interpreted as
I Description of beliefs
I Preference of events
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Role of probability and Statistics In Data Science

Probability and Statistics provide framework for inferring and
analyzing uncertain outcomes

I consistent inference

I consistent reasoning

I prediction and decision in uncertain environments
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Conditional Probability

I Many time we would like to know probability of an event
given that another event has occurred.

I For any pair of events E ,F , probability of event E given that
event F occurs is denoted as P(E |F ) and defined as

P(E |F ) =
P(E ∩ E )

P(F )
.

I Conditional probability is well defined if P(F ) > 0.

Example: In rolling a fair dice example, what is the probability that
an observed outcome is even given that it is divisible by 3?
We have E = {2, 4, 6} and F = {3, 6}.
P(E |F ) = P(EF )/P(F ) = P({6})/P({3, 6}) = 1/2.
Examples: If it rains, what is the chance it be be sunny? If enemy
airfract intrudes, what is the chances that our radar will miss it.
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Conditional Probability

I Many time we would like to know probability of an event
given that another event has occurred.

I For any pair of events E ,F , probability of event E given that
event F occurs is denoted as P(E |F ) and defined as

P(E |F ) =
P(E ∩ E )

P(F )
.

I Conditional probability is well defined if P(F ) > 0.

Example: In rolling a fair dice example, what is the probability that
an observed outcome is even given that it is divisible by 3?
We have E = {2, 4, 6} and F = {3, 6}.
P(E |F ) = P(EF )/P(F ) = P({6})/P({3, 6}) = 1/2.
Examples: If it rains, what is the chance it be be sunny? If enemy
airfract intrudes, what is the chances that our radar will miss it.
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Independence of Two Events

I Two event are ”independent” if occurrence of one event does
not provide any information about the other

I Example, P(E |F ) = P(E ) and P(F |E ) = P(E ). Uncertainity
of one remains the same, even after observing the other.

I From conditional probability this implies that
P(E ∩ F ) = P(E )P(F ). Formally,

Definition: Two event E and F are independent if

P(E ∩ F ) = P(E )P(F ).

I If two events are not independent, then they are dependent.
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Example of dependent and Independent set
Example 1: Rolling of two fair dice. Event E denotes the sum of
outcomes is 6 and event F denotes the outcome of first dice is 4.
E = {(1, 5), (5, 1), (2, 4), (4, 2), (6, 6)},
I F = {(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)}
I P(E ∩ F ) = P({4, 2}) = 1/36,P(E ) = 5/36,P(F ) = 1/6.
I P(E ∩ F ) 6= P(E )P(F ). Hence E and F are dependent.
I If first outcome is 4, we have some hope of getting the sum 6
I if the first outcome is not 4, say 6, we do not have any hope.
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Example of dependent and Independent set
Example 1: Rolling of two fair dice. Event E denotes the sum of
outcomes is 7 and event F denotes the outcome of first dice is 4.
E = {(1, 6), (6, 1), (2, 5), (5, 2), (3, 4), (4, 3)},
I F = {(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)}
I P(E ∩ F ) = P({4, 3}) = 1/36,P(E ) = 1/6,P(F ) = 1/6.
I P(E ∩ F ) = P(E )P(F ). Hence E and F are independent.
I If first outcome is 4, we have some hope of getting the sum 7
I if first outcome is not 4, the amount of hope is the same.
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Independence of Collection of Events

I Intuitively, a collection of events are independent if occurrence
of any of them have no effect on the probability of occurrence
of other events. Formally,

Definition (Independence of Events)

A finite set of events E1,E2,E3, . . . ,En are independent
if any subset E1′ ,E2′ , . . .Er ′ , where r ′ ≤ n,

P(E1′ ∩ E2′ ∩ . . . ∩ Er ′) = P(E1′)P(E2′) . . . ,P(Er ′)

I Number of conditions to check Independence of n > 2 events
is
(n
2

)
+
(n
3

)
. . . ,

(n
n

)
= 2n − n. Exponential in n!
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Pairwise Independence

I A weaker notion independence of collection of events is
pairwise independence

Definition (Pairwise independence)

A finite set of events E1,E2,E3, . . . ,En are pairwise
independent if for any pair (i , j) such that 1 ≤ i , j ≤ n
and i 6= j

P(Ei ∩ Ej) = P(Ei )P(Ej)

I For pairwise independence, only need check
(n
2

)
conditions.

Quadratic in n!
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Total Probability Law
For any sets E and F

E = (E ∩ F ) ∪ (E ∩ F c)

=⇒ P(E ) = P(E ∩ F ) + P(E ∩ F c) (Axiom 3)

P(E ) = P(E |F )P(F ) + P(E |F c)P(F c)

Total Probability Law: For any mutually exclusive sets
F1,F2, . . . ,Fn, P(E ) =

∑n
i=1 P(E |Fi )P(Fi )
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Baye’s Formula

Suppose E has occured and we are interested in determining which
one of the Fj has occurred

P(Fj |E ) =
P(E∩Fj )
P(E) =

P(E |Fj )P(Fj )∑n
i=1 P(E |Fi )P(Fi )

Example: Assume that the symptoms mild fever (F1), body ache
(F2), high fever (F3), cold and cough (F4) occur with probabilities
P(F1) = .2,P(F2) = 0.1,P(F3) = 0.5 and P(F4) = 0.2.
Conditional probabilities of these causing Corona infection (E ) are
given as P(E |F1) = .5,P(E |F2) = .2,P(E |F3) = .7,P(E |F4) = .3.
If a person is tested positive for Corona, what is the probability
that the patient had mild fever (asymptomatic).
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