IE605: Engineering Statistics

Lecture 02: Introduction to Probability

Manjesh K. Hanawal

Previous Lecture:

- Sample Space and Events
- Axioms of probability
- Conditional probability
- Independence of probability
- Baye's formula

This Lecture:

- Random Variable (RVs)
- Discrete and Continuous RVs
- Cumulative density functions (CDFs)
- Probability Density functions (PDFs)
- Examples of discrete RVs
- Examples of Continuous RVs

Random Variables

In most experiments we would be interested in some function of outcomes and not the out come itself.

- Example 1: Tossing two coins We may be interested in the number of heads appeared. If we want at least one head, (H, H) and (H, T) are same
- Example 2: Rolling of two dice We may be interested in sum of the two outcomes and of the value of outcomes. If we want the sum to be 6 all $(1,5),(5,1),(2,4),(4,2),(3,3)$ are same
- Example 3: Marks. You may be interested in what grades/points you receive and not the exact marks you score.

>90	$\mathrm{AA}(10)$
$75-90$	$\mathrm{AB}(9)$
$65-75$	$\mathrm{BB}(8)$

Random Variable Contd..

Roughly, random variable (X) is a real function on sample space

$$
X: \Omega \rightarrow \mathbb{R}
$$

Note: Formal definition of RV requires its inverse map to be measurable, but we do not go into this!

Example: Consider repeated throw of a coin. Your interest is in the number of tosses it takes to get head for the first time. How do you define a random value?

Probability of Random Variable

For any point $x \in \mathbb{R}$ and subset $\mathcal{A} \in \mathcal{R}$

- $\{X=x\}=\{w \in \Omega: X(w)=x\} \subset \Omega$
- $\{X \in \mathcal{A}\}=\{w \in \Omega: X(w) \in \mathcal{A}\} \subset \Omega$.

We can assign probabilities to these events.

- $P(\{X=x\})=P_{X}(x)$
- $P(\{X \in \mathcal{A}\})=P_{X}(\mathcal{A})$.

Example: Rolling two dice: Let X is the random variable which denotes the sum of the outcomes.

- $P_{X}(5)=$
- $P_{X}(\{4,5\})=$

Discrete vs Continuous RVs

Possible values taken by a random variable can be finite, countable or uncountable values.

- Discrete RV: Values taken are finite or countable
- Sum of outcomes in rolling of two dice. $X \in\{2,3, \ldots, 11,12\}$
- Number of tosses till head appears. $X \in\{1,2,3, \ldots$,
- Continuous RV: Values taken are uncountable (to be made precise!)
- Temperature of a room in Mumbai. $X \in[0,40]$
- Height of a person in cms. $X \in[50,200]$
- Price of a share. $X \in\left[p_{\text {min }}, p_{\text {max }}\right]$.

Cumulative Density function (CDF)

- CDF of a random variable X is a function $F_{X}: \mathbb{R} \rightarrow[0,1]$, defined for any $x \in \mathbb{R}$ as

$$
F_{X}(x)=P_{X}((-\infty, x])=P(X \leq x)
$$

- $F_{X}(x)$ denotes the probability that random variables takes value less than or equal to x
Example A random variable X takes values 1,2,3 with probabilities $P_{X}(1)=\frac{1}{2}, P_{X}(2)=\frac{1}{3}, P_{X}(3)=\frac{1}{6}$

$$
F_{X}(x)=\left\{\begin{array}{lll}
0 & \text { if } & x<1 \\
1 / 2 & \text { if } & 1 \leq x<2 \\
5 / 6 & \text { if } & 2 \leq x<3 \\
1 & \text { if } & 3 \leq x
\end{array}\right.
$$

Properties of CDF

Properties of CDF: For any random variable X

- $F_{x}(x)$ is non-decreasing in x
- $\lim _{x \rightarrow \infty} F_{X}(x)=1$
- $\lim _{x \rightarrow-\infty} F_{X}(x)=0$
- $F_{X}(\cdot)$ is right continuous

Sketch:

- for any $x<y . F(x)=P(X \leq x) \leq P(X \leq y)=F(y)$
- X is finite! All values included as $X \rightarrow \infty$. None as $X \rightarrow-\infty$

All probability question about X can be answered from its CDF

- $P(x<X \leq y)=P(X \leq y)-P(X \leq x)=F(y)-F(x)$
- $P(X<x)=\lim _{h \rightarrow 0^{+}} F(x-h)$. (h is decreasing to 0$)$.
- $P(X<x)$ need not be equal to $P(X \leq x)=F(x)$ (right continuous!).

PMF and PDF

Probability Mass Function (PMF) of a Discrete RV

- Let discrete random varaible takes values $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$
- $\left\{P\left(x_{i}\right), i=1,2, \ldots\right\}$ is called PMF of $X . \sum_{i} P\left(x_{i}\right)=1$.
- $P\left(x_{i}\right)$ is the mass assigned to point x_{i}

Probability Density Function (PDF)

Random variable X is continuous if there exists a nonnegative function $f_{X}: \mathbb{R} \rightarrow \mathbb{R}_{+}$such that for any $\mathcal{A} \in \mathbb{R}$

$$
P_{X}(\mathcal{A})=\int_{x \in \mathcal{A}} f_{X}(x) d x
$$

f_{X} is called the PDF function of X. Properties of PDF:

- $f_{x}(\cdot)$ is such that $\int_{-\infty}^{\infty} f_{X}(x) d x=P_{X}(X \in(-\infty, \infty))=1$
- $\mathcal{A}=[a, b], P(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) d x$.
- If $a=b, P(X=a)=\int_{a}^{a} f_{X}(x) d x=0$. Probability that a continuous random value assuming a particular value is zero!

PDF properties continued

- $F_{X}(x)=P(X \leq x)=\int_{\infty}^{x} f_{X}(x) d x \Longrightarrow \frac{d}{d x} F_{X}(x)=f(x)$
- $\mathcal{A}=\{a-\epsilon / 2, a+\epsilon / 2\}$ for some small $\epsilon>0$ $P(a-\epsilon / 2 \leq X \leq a+\epsilon / 2)=\int_{a-\epsilon / 2}^{a+\epsilon / 2} f_{X}(x) d x \sim \epsilon f_{X}(a) . f_{X}(a)$ is a measure of how likely random variable X will be near a.

Commonly Used Distributions

Discrete RVs

- Bernoulli
- Geometric
- Binomial
- Poisson
- Hypergeometric

Continuous RVs:

- Uniform
- Exponential
- Gaussian
- Rayleigh
- Gamma

Discrete RVs

Bernoulli, $X \sim \operatorname{Ber}(p), p \in[0,1]$

- X takes binary values, i,e., $\{0,1\}$
- PMF: $P(X=1)=p$ and $P(X=0)=1-p$
- Examples: coin toss, any experiments involving binary values

Binomial, $X \sim \operatorname{Bin}(n, p), p \in(0,1], n \in \mathbb{N}$

- X takes value in $\{0,1,2,3, \ldots, n\}$
- PMF: $P(X=i)=\binom{n}{i} p^{i}(1-p)^{n-i}$, for $0 \leq i \leq n$
- Examples: Number of success in independent trials. What is the probability that 3 samples are classified correctly out of 5 ?

Discrete RVs Contd...

Geometric, $X \sim \operatorname{Geo}(p), p \in(0,1]$

- X takes value in $\{1,2,3,4, \ldots\}$
- PMF: $P(X=i)=(1-p)^{i-1} p$ for all $i \geq 1$
- Examples: Number of trials till success in independent trials. How many times I invest till profit is made?

Poisson, $X \sim \operatorname{Poi}(\lambda), \lambda \geq 0$

- X takes value in $\{0,1,2,3,4, \ldots\}$
- PMF: $P(X=i)=\frac{e^{-\lambda} \lambda^{i}}{i!}$ for all $i \geq 0$
- Examples: Used for counting. How many people visited a mall/airport/cinema today? How many cars on road today?

Continuous RVs

Uniform, $X \sim \operatorname{Unif}(a, b), a, b \in \mathbb{R}$

- X takes value in $[a, b]$

$$
f_{X}(x)= \begin{cases}1 /(b-a) & \text { if } x \in[a, b] \\ 0 & \text { otherwise }\end{cases}
$$

- Example: Height, weight, temperature. Often used when we do not have prior information.

Exponential, $X \sim \operatorname{Exp}(\lambda), \lambda>0$

- X takes value in $[0, \infty)$

$$
f_{X}(x)= \begin{cases}\lambda \exp (-\lambda x) & \text { if } x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

- Example: Used to model life times. Time before a bulb fails. Time before the next customer/item arrives.

Continuous RVs contd.

Gaussian, $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right), \mu \in \mathbb{R}, \sigma>0$

- X takes value in $(-\infty, \infty)$
- PDF:

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-(x-\mu)^{2} / 2 \sigma^{2}\right\}, \text { for } x \in(-\infty, \infty)
$$

- Examples: Error and Noise modeling.

Rayleigh, $X \sim \operatorname{Rayleigh}\left(\sigma^{2}\right), \sigma>0$

- X takes value in $(0, \infty)$
- PDF:

$$
f_{X}(x)= \begin{cases}\left(x / \sigma^{2}\right) \exp \left\{-r^{2} /\left(2 \sigma^{2}\right)\right\} & \text { if } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

- Example: Envelop of noise. $X_{1} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ and $X_{2} \sim \mathcal{N}\left(0, \sigma^{2}\right)$, Then $X=\sqrt{X_{1}^{2}+X_{2}^{2}} \sim \operatorname{Rayleigh}\left(\sigma^{2}\right)$, under some conditions (independence)

Other distributions

- Uniform distribution on finite set of elements
- Gamma (rainfall accumulated in a reservoir)
- Weibull (reliability and survival analysis)
- Laplace (speech recognition to model priors on DFT)

Expectation and Variances

Expectation: Many times, instead of actual value of experiment, we would be interested in expected/average/mean value. Expectation of random variable X is denoted as $E(X)$.

Discrete random variable X	Continuous random variable X
PMF $\left\{P_{X}\left(x_{i}\right), i=1,2, \ldots\right\}$	PDF f_{X}
$E(X)=\sum_{i=1}^{\infty} x_{i} P_{X}\left(x_{i}\right)$	$E(X)=\int_{-\infty}^{\infty} x f_{X}(x) d x$

Variance: How value of random variable varies around its mean. We measure variance, denoted $\operatorname{Var}(X)$, as

$$
\operatorname{Var}(X)=E\left[(X-E(X))^{2}\right]=\left\{\begin{array}{l}
\sum_{i=1}^{\infty}\left(x_{i}-E(X)\right)^{2} P_{X}\left(x_{i}\right) \text { discrete } \\
\int_{-\infty}^{\infty}(x-E(X))^{2} f_{X}(x) d x \text { continuous }
\end{array}\right.
$$

Summary of Expectation and Variance of Distributions

Random Variable $X \sim$	Mean $E[X]$	$\operatorname{Variance} \operatorname{Var}(X)$
$\operatorname{Ber}(p)$	p	$p(1-p)$
$\operatorname{Bin}(n, p)$	$n p$	$n p(1-p)$
$\operatorname{Geo}(n, p)$	$1 / p$	$(1-p) / p^{2}$
$\operatorname{Poi}(\lambda)$	λ	λ
$\operatorname{Uni}(a, b)$	$(a+b) / 2$	$(b-a)^{2} / 12$
$\operatorname{Exp}(\lambda)$	$1 / \lambda$	$1 / \lambda^{2}$
$\mathcal{N}\left(\mu, \sigma^{2}\right)$	μ	σ^{2}
$\operatorname{Rayleigh}\left(\sigma^{2}\right)$	$\sigma \sqrt{\pi / 2}$	$\sigma^{2}(1-\pi / 2)$
$\operatorname{Gamma}(n, \lambda)$	n / λ	n / λ^{2}

