IE605: Engineering Statistics

Lecture 04: Introduction to Probability

Manjesh K. Hanawal

Previous Lecture:

- Distribution of functions of random variable
- Generate RVs with a given distribution

This Lecture:

- Joint distributed Random Variable
- Marginal PMF and PDF
- Independence of Random Variables
- Correlation of Random Variables

Jointly Distributed Random Variables

Let RVs $X=\left(X_{1}, X_{2}, X_{3}, \ldots, X_{m}\right)$ are defined on the same Ω.
Joint CDF of X is a map $F_{X}: \mathbb{R}^{m} \rightarrow[0,1]$ given by
$F_{X}\left(x_{1}, x_{2}, \ldots, x_{m}\right)=P\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}, \ldots, X_{m} \leq x_{m}\right)$.

Jointly Distributed Random Variables

Let $\mathrm{RVs} X=\left(X_{1}, X_{2}, X_{3}, \ldots, X_{m}\right)$ are defined on the same Ω.
Joint CDF of X is a map $F_{X}: \mathbb{R}^{m} \rightarrow[0,1]$ given by

$$
F_{X}\left(x_{1}, x_{2}, \ldots, x_{m}\right)=P\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}, \ldots, X_{m} \leq x_{m}\right)
$$

Example 1: n coins tossed $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, where X_{i} is outcome of i th coin. We may be interested in finding $P\left(X_{1}=1, X_{2}=0, X_{3}=0, \ldots, X_{n}=1\right)$

Jointly Distributed Random Variables

Let $\operatorname{RVs} X=\left(X_{1}, X_{2}, X_{3}, \ldots, X_{m}\right)$ are defined on the same Ω.
Joint CDF of X is a map $F_{X}: \mathbb{R}^{m} \rightarrow[0,1]$ given by

$$
F_{X}\left(x_{1}, x_{2}, \ldots, x_{m}\right)=P\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}, \ldots, X_{m} \leq x_{m}\right)
$$

Example 1: n coins tossed $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, where X_{i} is outcome of i th coin. We may be interested in finding

$$
P\left(X_{1}=1, X_{2}=0, X_{3}=0, \ldots, X_{n}=1\right)
$$

Example: Portfolio Management $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, where X_{i} is the amount invested in ith share/stock. C is the amount available. $\sum_{i=1}^{n} X_{i}=C$.

Marginal Densities

- For two variables: $F_{X}\left(x_{1}, x_{2}\right)=P\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}\right)$.
$F_{X_{1}}\left(x_{1}\right)=\lim _{x_{2} \rightarrow \infty} F_{X}\left(x_{1}, x_{2}\right)$ and $F_{X_{2}}\left(x_{2}\right)=\lim _{x_{1} \rightarrow \infty} F_{X}\left(x_{1}, x_{2}\right)$
- $F_{X_{1}}\left(x_{1}\right)$ and $F_{X_{2}}\left(x_{2}\right)$ are marginal CDF of X_{1} and X_{2}

Marginal Densities

- For two variables: $F_{X}\left(x_{1}, x_{2}\right)=P\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}\right)$.
$F_{X_{1}}\left(x_{1}\right)=\lim _{x_{2} \rightarrow \infty} F_{X}\left(x_{1}, x_{2}\right)$ and $F_{X_{2}}\left(x_{2}\right)=\lim _{x_{1} \rightarrow \infty} F_{X}\left(x_{1}, x_{2}\right)$
- $F_{X_{1}}\left(x_{1}\right)$ and $F_{X_{2}}\left(X_{2}\right)$ are marginal CDF of X_{1} and X_{2}

Discrete RVs:

- If X_{1} and X_{2} are both discrete, we can define joint PMF as

$$
P_{X}\left(x_{1}, x_{2}\right)=P\left(X_{1}=x_{1}, X_{2}=x_{2}\right) \text { and } \sum_{x_{1}, x_{2}} P_{X}\left(x_{1}, x_{2}\right)=1 .
$$

$P_{X_{1}}\left(x_{1}\right)=\sum_{X_{2}} P\left(X_{1}=x_{1}, X_{2}=x_{2}\right)$, similarly for $P_{X_{2}}\left(x_{2}\right)$

- $P_{X_{1}}\left(x_{1}\right)$ and $P_{X_{2}}\left(x_{2}\right)$ are marginal PMF of X_{1} and X_{2}

Marginal Densities

- For two variables: $F_{X}\left(x_{1}, x_{2}\right)=P\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}\right)$.
$F_{X_{1}}\left(x_{1}\right)=\lim _{x_{2} \rightarrow \infty} F_{X}\left(x_{1}, x_{2}\right)$ and $F_{X_{2}}\left(x_{2}\right)=\lim _{x_{1} \rightarrow \infty} F_{X}\left(x_{1}, x_{2}\right)$
- $F_{X_{1}}\left(x_{1}\right)$ and $F_{X_{2}}\left(x_{2}\right)$ are marginal CDF of X_{1} and X_{2}

Discrete RVs:

- If X_{1} and X_{2} are both discrete, we can define joint PMF as

$$
P_{X}\left(x_{1}, x_{2}\right)=P\left(X_{1}=x_{1}, X_{2}=x_{2}\right) \text { and } \sum_{x_{1}, x_{2}} P_{X}\left(x_{1}, x_{2}\right)=1 .
$$

$$
P_{X_{1}}\left(x_{1}\right)=\sum_{X_{2}} P\left(X_{1}=x_{1}, X_{2}=x_{2}\right), \text { similarly for } P_{X_{2}}\left(x_{2}\right)
$$

- $P_{X_{1}}\left(x_{1}\right)$ and $P_{X_{2}}\left(x_{2}\right)$ are marginal PMF of X_{1} and X_{2}

Example: $X=\left(X_{1}, X_{2}\right)$ where $X_{1} \in\{1,2,3\}$ and $X_{2} \in\{2,4,5\}$ with joint PMF given by

$P\left(X_{1}, X_{2}\right)$	$X_{2}=2$	$X_{2}=4$	$X_{2}=5$
$X_{1}=1$.1	.05	.2
$X_{1}=2$.1	.1	.15
$X_{1}=3$.15	.1	0.05

$$
\begin{array}{ll}
P_{X_{1}}(1)= & P_{X_{2}}(2)= \\
P_{X_{1}}(2)= & P_{X_{2}}(4)= \\
P_{X_{1}}(3)= & P_{X_{2}}(5)=
\end{array}
$$

Continuous Case

We say $X=\left(X_{1}, X_{2}, X_{3}, \ldots, X_{m}\right)$ are jointly continuous if $\exists f_{X}: R^{m} \rightarrow R$ such that for any $\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in \mathbb{R}^{m}$

$$
F_{X}\left(x_{1}, \ldots, x_{m}\right)=\int_{\infty}^{x_{1}} \ldots \int_{\infty}^{x_{m}} f_{X}\left(y_{1}, y_{2}, \ldots, y_{m}\right) d y_{1} d y_{2} \ldots d y_{m}
$$

f_{X} is called the joint PDF of X

Continuous Case

We say $X=\left(X_{1}, X_{2}, X_{3}, \ldots, X_{m}\right)$ are jointly continuous if
$\exists f_{X}: R^{m} \rightarrow R$ such that for any $\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in \mathbb{R}^{m}$

$$
F_{X}\left(x_{1}, \ldots, x_{m}\right)=\int_{\infty}^{x_{1}} \ldots \int_{\infty}^{x_{m}} f_{X}\left(y_{1}, y_{2}, \ldots, y_{m}\right) d y_{1} d y_{2} \ldots d y_{m}
$$

f_{X} is called the joint PDF of X

Example 1: Weather Report $X=\left(X_{1}, X_{2}\right)$, where X_{1} denote the humidity level and X_{2} is the temperature.

Example 2: Healthcare $X=\left(X_{1}, X_{2}\right)$, where X_{1} denote blood sugar level and X_{2} could be BMI.

Continuous case contd.

- If X_{1} and X_{2} are jointly continuous with PDF f_{X} $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}=1$.
- Define $f_{X_{1}}\left(x_{1}\right)=\int_{-\infty}^{\infty} f_{X}\left(x_{1}, x_{2}\right) d x_{1}$, similarly for $f_{X_{2}}\left(x_{2}\right)$
- $f_{X_{1}}\left(x_{1}\right)$ and $f_{X_{2}}\left(x_{2}\right)$ are marginal PDF of X_{1} and X_{2}

Continuous case contd.

- If X_{1} and X_{2} are jointly continuous with PDF f_{X}

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}=1
$$

- Define $f_{X_{1}}\left(x_{1}\right)=\int_{-\infty}^{\infty} f_{X}\left(x_{1}, x_{2}\right) d x_{1}$, similarly for $f_{X_{2}}\left(x_{2}\right)$
- $f_{X_{1}}\left(x_{1}\right)$ and $f_{X_{2}}\left(x_{2}\right)$ are marginal PDF of X_{1} and X_{2}

Example: $X=\left(X_{1}, X_{2}\right)$ is jointly continuous with PDF given by

$$
f_{X}\left(x_{1}, x_{2}\right)= \begin{cases}c\left(1+x_{1} x_{2}\right) & \text { if } 2 \leq x_{1} \leq 3,1 \leq x_{2} \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

What is $f_{X_{1}}\left(x_{1}\right)$?

Independence of RVs

$X:=\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ are independent if its joint CDF is such that for all $x_{i} \in \mathbb{R}, i=1,2 \ldots, m$,

$$
F_{X}\left(x_{1}, x_{2}, \ldots x_{m}\right)=F_{X_{1}}\left(x_{1}\right) F_{X_{2}}\left(x_{2}\right) \ldots F_{X_{m}}\left(x_{m}\right)
$$

This simplifies to for the case of two RVs as

- Discrete case: $P_{X}\left(x_{1}, x_{2}\right)=P_{X_{1}}\left(x_{1}\right) P_{X_{2}}\left(x_{2}\right)$
- Continuous case: $f_{X}\left(x_{1}, x_{2}\right)=f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right)$
- For independent RVs it is enough to specify their marginal PMF/PDF.

Independence of RVs contd..

Example: n coins tossed: $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, where $X_{i} \sim \operatorname{Ber}\left(p_{i}\right)$ and X_{i} s are independent.
$P\left(X_{1}=x_{1}, X_{2}=x_{2} . . X_{n}=x_{n}\right)=P_{X_{1}}\left(x_{1}\right) \times P_{X_{1}}\left(x_{1}\right) \times . . \times P_{X_{n}}\left(x_{n}\right)$.
Special Case: If $p_{i}=p, \sum_{i=1}^{n} X_{i} \sim \operatorname{Bin}(n, p)$.
Property of Independent $\mathrm{RVs}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ are independent

$$
\Longrightarrow E\left(X_{1} X_{2}, \times \ldots, X_{n}\right)=E\left(X_{1}\right) E\left(X_{2}\right) \ldots E\left(X_{n}\right)
$$

Let $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ are independent and each random variable has the same distribution, then $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ are said to be independent and identically distributed (i.i.d.).

For i.i.d distributed random variables, we just need to specify one common distribution!

Covariance of RVs

Covariance of random variable X_{1} and X_{2} is defined as $\operatorname{Cov}\left(X_{1}, X_{2}\right)=E\left(\left(X_{1}-E\left(X_{1}\right)\right)\left(X_{2}-E\left(X_{2}\right)\right)\right)$

- $\operatorname{Cov}\left(X_{1}, X_{2}\right)=E\left(X_{1} X_{2}\right)-E\left(X_{1}\right) E\left(X_{2}\right)$
- If X_{1} and X_{2} are independent $\operatorname{Cov}\left(X_{1}, X_{2}\right)=0$
- What does $\left|\operatorname{Cov}\left(X_{1}, X_{2}\right)\right|>0$ indicates?

Covariance of RVs

Covariance of random variable X_{1} and X_{2} is defined as

$$
\operatorname{Cov}\left(X_{1}, X_{2}\right)=E\left(\left(X_{1}-E\left(X_{1}\right)\right)\left(X_{2}-E\left(X_{2}\right)\right)\right)
$$

- $\operatorname{Cov}\left(X_{1}, X_{2}\right)=E\left(X_{1} X_{2}\right)-E\left(X_{1}\right) E\left(X_{2}\right)$
- If X_{1} and X_{2} are independent $\operatorname{Cov}\left(X_{1}, X_{2}\right)=0$
- What does $\left|\operatorname{Cov}\left(X_{1}, X_{2}\right)\right|>0$ indicates?
X_{1} and X_{2} are defined as indicators of two events A and B

$$
X_{1}=\left\{\begin{array}{ll}
1 & \text { if } A \text { occurs } \\
0 & \text { otherwise }
\end{array} \quad X_{2}= \begin{cases}1 & \text { if } B \text { occurs } \\
0 & \text { otherwise }\end{cases}\right.
$$

Covariance of RVs

Covariance of random variable X_{1} and X_{2} is defined as

$$
\operatorname{Cov}\left(X_{1}, X_{2}\right)=E\left(\left(X_{1}-E\left(X_{1}\right)\right)\left(X_{2}-E\left(X_{2}\right)\right)\right)
$$

- $\operatorname{Cov}\left(X_{1}, X_{2}\right)=E\left(X_{1} X_{2}\right)-E\left(X_{1}\right) E\left(X_{2}\right)$
- If X_{1} and X_{2} are independent $\operatorname{Cov}\left(X_{1}, X_{2}\right)=0$
- What does $\left|\operatorname{Cov}\left(X_{1}, X_{2}\right)\right|>0$ indicates?
X_{1} and X_{2} are defined as indicators of two events A and B

$$
\begin{aligned}
& X_{1}=\left\{\begin{array}{ll}
1 & \text { if } A \text { occurs } \\
0 & \text { otherwise }
\end{array} \quad X_{2}= \begin{cases}1 & \text { if } B \text { occurs } \\
0 & \text { otherwise }\end{cases} \right. \\
& \operatorname{Cov}\left(X_{1}, X_{2}\right)=P\left(X_{1}=1, X_{2}=1\right)-P\left(X_{1}=1\right) P\left(X_{2}=1\right) \\
& \operatorname{Cov}\left(X_{1}, X_{2}\right)>0 \Longleftrightarrow P\left(X_{1}=1, X_{2}=1\right)>P\left(X_{1}=1\right) P\left(X_{2}=1\right) \\
& \Longleftrightarrow \frac{P\left(X_{1}=1, X_{2}=1\right)}{P\left(X_{2}=1\right)}>P\left(X_{1}=1\right) \\
& \Longleftrightarrow P\left(X_{1}=1 \mid X_{2}=1\right)>P\left(X_{1}=1\right)
\end{aligned}
$$

Properties of Covariance

- $\left|\operatorname{Cov}\left(X_{1}, X_{2}\right)\right|>0$ indicates that occurrence or nonoccurence of X_{2} improves knowledge of X_{1} and they are correlated.
- $\operatorname{Cov}\left(X_{1}, X_{2}\right)>0$ is an indication that when X_{1} increases X_{2} also increases and vice versa.
- $\operatorname{Cov}\left(X_{1}, X_{2}\right)<0$ is an indication that when X_{1} decreases X_{2} also decreases and vice versa.

Properties of Covariance

- $\left|\operatorname{Cov}\left(X_{1}, X_{2}\right)\right|>0$ indicates that occurrence or nonoccurence of X_{2} improves knowledge of X_{1} and they are correlated.
- $\operatorname{Cov}\left(X_{1}, X_{2}\right)>0$ is an indication that when X_{1} increases X_{2} also increases and vice versa.
- $\operatorname{Cov}\left(X_{1}, X_{2}\right)<0$ is an indication that when X_{1} decreases X_{2} also decreases and vice versa.
- $\operatorname{Cov}\left(X_{1}, X_{1}\right)=\operatorname{Var}\left(X_{1}\right)$
- $\operatorname{Cov}\left(X_{1}, X_{2}\right)=\operatorname{Cov}\left(X_{2}, X_{1}\right)$
- $\operatorname{Cov}\left(a X_{1}, X_{2}\right)=a \operatorname{Cov}\left(X_{1}, X_{2}\right)$
- $\operatorname{Cov}\left(X_{1}+X_{2}, X_{3}\right)=\operatorname{Cov}\left(X_{1}, X_{3}\right)+\operatorname{Cov}\left(X_{2}, X_{3}\right)$
(Verify!)

Fundamental Theorems of Probability

let $X_{1}, X_{2}, X_{3}, \ldots$ be a sequence of $R V$ s all defined on the same Ω. Assume they are i.i.d with mean $E\left(X_{1}\right)$ and $=\operatorname{Var}\left(X_{1}\right)$. Define $S_{n}=\sum_{i=1}^{n} X_{i}$ for all $n \geq 1$.

$$
\text { Law of Large Numbers: } \lim _{n \rightarrow \infty} \frac{S_{n}}{n}=E\left(X_{1}\right)
$$

Central Limit Theorem: $\lim _{n \rightarrow \infty} \frac{S_{n}-n E\left(X_{1}\right)}{\sqrt{n \operatorname{Var}\left(X_{1}\right)}} \equiv \mathcal{N}(0,1)$
Example 1: X_{i} 's are i.i.d with $X_{i} \sim \operatorname{Exp}(\lambda)$. Then $\lim _{n \rightarrow \infty} \frac{S_{n}}{n}=\lambda$
Example 2: X_{i} 's are i.i.d with $X_{i} \sim \operatorname{Poi}(\lambda)$. Then $\lim _{n \rightarrow \infty} \frac{S_{n}}{n}=\lambda$

Confidence Interval

- In real life we will have only finite samples. .
- Let $\mu=E\left(X_{1}\right)$ and $\hat{\mu}=\frac{S_{n}}{n}$ (estimate). $|\hat{\mu}-\mu| \neq 0$
- We would like to know $|\hat{\mu}-\mu|>\epsilon$ for some $\epsilon>0$

$$
\begin{gathered}
P(|\hat{\mu}-\mu|>\epsilon) \leq 2 \exp \left(-n \epsilon^{2}\right) \\
2 \exp \left(-n \epsilon^{2}\right)=\delta \Longrightarrow n=\frac{1}{\epsilon^{2}} \log (\delta / 2) \\
2 \exp \left(-n \epsilon^{2}\right)=\delta \Longrightarrow \epsilon=\sqrt{\frac{1}{n} \log (\delta / 2)}
\end{gathered}
$$

End!

