IE605: Engineering Statistics

Lecture 04: Introduction to Probability

Manjesh K. Hanawal

Previous Lecture:

- Distribution of functions of random variable
- Generate RVs with a given distribution

This Lecture:

- Joint distributed Random Variable
- Marginal PMF and PDF
- Independence of Random Variables
- Correlation of Random Variables

Jointly Distributed Random Variables

Let RVs $X = (X_1, X_2, X_3, \dots, X_m)$ are defined on the same Ω .

Joint CDF of X is a map $F_X : \mathbb{R}^m \to [0, 1]$ given by

 $F_X(x_1, x_2, \ldots, x_m) = P(X_1 \le x_1, X_2 \le x_2, \ldots, X_m \le x_m).$

Jointly Distributed Random Variables

Let RVs $X = (X_1, X_2, X_3, \dots, X_m)$ are defined on the same Ω .

Joint CDF of X is a map $F_X : \mathbb{R}^m \to [0, 1]$ given by

 $F_X(x_1, x_2, \ldots, x_m) = P(X_1 \le x_1, X_2 \le x_2, \ldots, X_m \le x_m).$

Example 1: *n* coins tossed $X = (X_1, X_2, ..., X_n)$, where X_i is outcome of *i*th coin. We may be interested in finding $P(X_1 = 1, X_2 = 0, X_3 = 0, ..., X_n = 1)$

Jointly Distributed Random Variables

Let RVs $X = (X_1, X_2, X_3, \dots, X_m)$ are defined on the same Ω .

Joint CDF of X is a map $F_X : \mathbb{R}^m \to [0, 1]$ given by

 $F_X(x_1, x_2, \ldots, x_m) = P(X_1 \leq x_1, X_2 \leq x_2, \ldots, X_m \leq x_m).$

Example 1: *n* coins tossed $X = (X_1, X_2, ..., X_n)$, where X_i is outcome of *i*th coin. We may be interested in finding $P(X_1 = 1, X_2 = 0, X_3 = 0, ..., X_n = 1)$

Example : Portfolio Management $X = (X_1, X_2, ..., X_n)$, where X_i is the amount invested in *i*th share/stock. *C* is the amount available. $\sum_{i=1}^{n} X_i = C$.

Marginal Densities

- For two variables: $F_X(x_1, x_2) = P(X_1 \le x_1, X_2 \le x_2)$. $F_{X_1}(x_1) = \lim_{x_2 \to \infty} F_X(x_1, x_2)$ and $F_{X_2}(x_2) = \lim_{x_1 \to \infty} F_X(x_1, x_2)$
- F_{X1}(x1) and $F_{X2}(x_2)$ are marginal CDF of X1 and X2

Marginal Densities

- For two variables: $F_X(x_1, x_2) = P(X_1 \le x_1, X_2 \le x_2)$. $F_{X_1}(x_1) = \lim_{x_2 \to \infty} F_X(x_1, x_2)$ and $F_{X_2}(x_2) = \lim_{x_1 \to \infty} F_X(x_1, x_2)$
- F_{X1}(x1) and $F_{X2}(x_2)$ are marginal CDF of X1 and X2

Discrete RVs:

▶ If X_1 and X_2 are both discrete, we can define joint PMF as $P_X(x_1, x_2) = P(X_1 = x_1, X_2 = x_2)$ and $\sum_{x_1, x_2} P_X(x_1, x_2) = 1$. $P_{X_1}(x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)$, similarly for $P_{X_2}(x_2)$

• $P_{X_1}(x_1)$ and $P_{X_2}(x_2)$ are marginal PMF of X_1 and X_2

Marginal Densities

- For two variables: $F_X(x_1, x_2) = P(X_1 \le x_1, X_2 \le x_2)$. $F_{X_1}(x_1) = \lim_{x_2 \to \infty} F_X(x_1, x_2)$ and $F_{X_2}(x_2) = \lim_{x_1 \to \infty} F_X(x_1, x_2)$
- F_{X1}(x1) and $F_{X2}(x_2)$ are marginal CDF of X1 and X2

Discrete RVs:

If X₁ and X₂ are both discrete, we can define joint PMF as P_X(x₁, x₂) = P(X₁ = x₁, X₂ = x₂) and ∑_{x1,x2} P_X(x₁, x₂) = 1. P_{X1}(x₁) = ∑_{x2} P(X₁ = x₁, X₂ = x₂), similarly for P_{X2}(x₂)
 P_{X1}(x₁) and P_{X2}(x₂) are marginal PMF of X₁ and X₂
 Example: X = (X₁, X₂) where X₁ ∈ {1, 2, 3} and X₂ ∈ {2, 4, 5} with joint PMF given by

$P(X_1, X_2)$	$X_2 = 2$	$X_2 = 4$	$X_2 = 5$
$X_1 = 1$.1	.05	.2
$X_1 = 2$.1	.1	.15
$X_1 = 3$.15	.1	0.05

$$P_{X_1}(1) = P_{X_2}(2) = P_{X_1}(2) = P_{X_2}(4) = P_{X_1}(3) = P_{X_2}(5) =$$

Manjesh K. Hanawal

Continuous Case

We say
$$X = (X_1, X_2, X_3, ..., X_m)$$
 are **jointly continuous** if
 $\exists f_X : R^m \to R$ such that for any $(x_1, x_2, ..., x_m) \in \mathbb{R}^m$
 $F_X(x_1, ..., x_m) = \int_{\infty}^{x_1} ... \int_{\infty}^{x_m} f_X(y_1, y_2, ..., y_m) dy_1 dy_2 ... dy_m$.

 f_X is called the **joint PDF** of X

Continuous Case

We say
$$X = (X_1, X_2, X_3, ..., X_m)$$
 are **jointly continuous** if
 $\exists f_X : R^m \to R$ such that for any $(x_1, x_2, ..., x_m) \in \mathbb{R}^m$
 $F_X(x_1, ..., x_m) = \int_{\infty}^{x_1} ... \int_{\infty}^{x_m} f_X(y_1, y_2, ..., y_m) dy_1 dy_2 ... dy_m$.

 f_X is called the **joint PDF** of X

Example 1: Weather Report $X = (X_1, X_2)$, where X_1 denote the humidity level and X_2 is the temperature.

Example 2: Healthcare $X = (X_1, X_2)$, where X_1 denote blood sugar level and X_2 could be BMI.

Continuous case contd.

- ▶ If X_1 and X_2 are jointly continuous with *PDF* f_X $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_X(x_1, x_2) dx_1 dx_2 = 1.$
- Define $f_{X_1}(x_1) = \int_{-\infty}^{\infty} f_X(x_1, x_2) dx_1$, similarly for $f_{X_2}(x_2)$
- $f_{X_1}(x_1)$ and $f_{X_2}(x_2)$ are marginal PDF of X_1 and X_2

Continuous case contd.

Example: $X = (X_1, X_2)$ is jointly continuous with PDF given by

$$f_X(x_1, x_2) = \begin{cases} c(1 + x_1 x_2) & \text{if } 2 \le x_1 \le 3, 1 \le x_2 \le 2\\ 0 & \text{otherwise} \end{cases}$$

What is $f_{X_1}(x_1)$?

Independence of RVs

 $X := (X_1, X_2, \dots, X_m)$ are independent if its joint CDF is such that for all $x_i \in \mathbb{R}, i = 1, 2 \dots, m$,

$$F_X(x_1, x_2, \ldots x_m) = F_{X_1}(x_1)F_{X_2}(x_2) \ldots F_{X_m}(x_m)$$

This simplifies to for the case of two RVs as

- Discrete case: $P_X(x_1, x_2) = P_{X_1}(x_1)P_{X_2}(x_2)$
- Continuous case: $f_X(x_1, x_2) = f_{X_1}(x_1)f_{X_2}(x_2)$
- For independent RVs it is enough to specify their marginal PMF/PDF.

Independence of RVs contd..

Example: *n* coins tossed: $X = (X_1, X_2, ..., X_n)$, where $X_i \sim Ber(p_i)$ and X_i s are independent. $P(X_1 = x_1, X_2 = x_2..X_n = x_n) = P_{X_1}(x_1) \times P_{X_1}(x_1) \times ... \times P_{X_n}(x_n)$.

Special Case: If $p_i = p$, $\sum_{i=1}^n X_i \sim Bin(n, p)$.

Property of Independent RVs $(X_1, X_2, ..., X_n)$ are independent $\implies E(X_1X_2, \times ..., X_n) = E(X_1)E(X_2)...E(X_n)$

Let $X = (X_1, X_2, ..., X_n)$ are independent and each random variable has the same distribution, then $(X_1, X_2, ..., X_n)$ are said to be **independent and identically distributed (i.i.d.)**.

For i.i.d distributed random variables, we just need to specify one common distribution!

Manjesh K. Hanawal

Covariance of RVs

Covariance of random variable X_1 and X_2 is defined as $Cov(X_1, X_2) = E((X_1 - E(X_1))(X_2 - E(X_2)))$

- $Cov(X_1, X_2) = E(X_1X_2) E(X_1)E(X_2)$
- If X_1 and X_2 are independent $Cov(X_1, X_2) = 0$
- ▶ What does |Cov(X₁, X₂)| > 0 indicates?

Covariance of RVs

Covariance of random variable X_1 and X_2 is defined as $Cov(X_1, X_2) = E((X_1 - E(X_1))(X_2 - E(X_2)))$

- $Cov(X_1, X_2) = E(X_1X_2) E(X_1)E(X_2)$
- If X_1 and X_2 are independent $Cov(X_1, X_2) = 0$
- ▶ What does $|Cov(X_1, X_2)| > 0$ indicates?

 X_1 and X_2 are defined as indicators of two events A and B

$$X_1 = \begin{cases} 1 & \text{if } A \text{ occurs} \\ 0 & \text{otherwise} \end{cases} \qquad X_2 = \begin{cases} 1 & \text{if } B \text{ occurs} \\ 0 & \text{otherwise} \end{cases}$$

Covariance of RVs

Covariance of random variable X_1 and X_2 is defined as $Cov(X_1, X_2) = E((X_1 - E(X_1))(X_2 - E(X_2)))$

•
$$Cov(X_1, X_2) = E(X_1X_2) - E(X_1)E(X_2)$$

- ▶ If X_1 and X_2 are independent $Cov(X_1, X_2) = 0$
- What does $|Cov(X_1, X_2)| > 0$ indicates?

 X_1 and X_2 are defined as indicators of two events A and B

$$X_1 = \begin{cases} 1 & \text{if } A \text{ occurs} \\ 0 & \text{otherwise} \end{cases} \qquad X_2 = \begin{cases} 1 & \text{if } B \text{ occurs} \\ 0 & \text{otherwise} \end{cases}$$

$$Cov(X_1, X_2) = P(X_1 = 1, X_2 = 1) - P(X_1 = 1)P(X_2 = 1)$$

$$Cov(X_1, X_2) > 0 \iff P(X_1 = 1, X_2 = 1) > P(X_1 = 1)P(X_2 = 1)$$

$$\iff \frac{P(X_1 = 1, X_2 = 1)}{P(X_2 = 1)} > P(X_1 = 1)$$

$$\iff P(X_1 = 1 | X_2 = 1) > P(X_1 = 1)$$

$$Maniesh K. Hanawal = 17$$

IE605

Properties of Covariance

- ► |Cov(X₁, X₂)| > 0 indicates that occurrence or nonoccurence of X₂ improves knowledge of X₁ and they are correlated.
- Cov(X₁, X₂) > 0 is an indication that when X₁ increases X₂ also increases and vice versa.
- Cov(X₁, X₂) < 0 is an indication that when X₁ decreases X₂ also decreases and vice versa.

Properties of Covariance

- ► |Cov(X₁, X₂)| > 0 indicates that occurrence or nonoccurence of X₂ improves knowledge of X₁ and they are correlated.
- Cov(X₁, X₂) > 0 is an indication that when X₁ increases X₂ also increases and vice versa.
- ► Cov(X₁, X₂) < 0 is an indication that when X₁ decreases X₂ also decreases and vice versa.

(Verify!)

Fundamental Theorems of Probability

let X_1, X_2, X_3, \ldots be a sequence of RVs all defined on the same Ω . Assume they are i.i.d with mean $E(X_1)$ and $= Var(X_1)$. Define $S_n = \sum_{i=1}^n X_i$ for all $n \ge 1$.

Law of Large Numbers:
$$\lim_{n \to \infty} \frac{S_n}{n} = E(X_1)$$

Central Limit Theorem: $\lim_{n \to \infty} \frac{S_n - nE(X_1)}{\sqrt{nVar(X_1)}} \equiv \mathcal{N}(0, 1)$

Example 1: X_i 's are i.i.d with $X_i \sim Exp(\lambda)$. Then $\lim_{n \to \infty} \frac{S_n}{n} = \lambda$ Example 2: X_i 's are i.i.d with $X_i \sim Poi(\lambda)$. Then $\lim_{n \to \infty} \frac{S_n}{n} = \lambda$

Confidence Interval

In real life we will have only finite samples.

- Let $\mu = E(X_1)$ and $\hat{\mu} = \frac{S_n}{n}$ (estimate). $|\hat{\mu} \mu| \neq 0$
- ▶ We would like to know $|\hat{\mu} \mu| > \epsilon$ for some $\epsilon > 0$

$$P(|\hat{\mu} - \mu| > \epsilon) \le 2\exp(-n\epsilon^2)$$

$$2\exp(-n\epsilon^2) = \delta \implies n = \frac{1}{\epsilon^2}\log(\delta/2)$$
$$2\exp(-n\epsilon^2) = \delta \implies \epsilon = \sqrt{\frac{1}{n}\log(\delta/2)}$$

End!