
IE605: Engineering Statistics

Lecture 04: Introduction to Probability

Manjesh K. Hanawal



Previous Lecture:

I Distribution of functions of random variable

I Generate RVs with a given distribution

This Lecture:

I Joint distributed Random Variable

I Marginal PMF and PDF

I Independence of Random Variables

I Correlation of Random Variables



Jointly Distributed Random Variables

Let RVs X = (X1,X2,X3, . . . ,Xm) are defined on the same Ω.

Joint CDF of X is a map FX : Rm → [0, 1] given by

FX (x1, x2, . . . , xm) = P(X1 ≤ x1,X2 ≤ x2, . . . ,Xm ≤ xm).

Example 1: n coins tossed X = (X1,X2, . . . ,Xn), where Xi is
outcome of ith coin. We may be interested in finding
P(X1 = 1,X2 = 0,X3 = 0, . . . ,Xn = 1)

Example : Portfolio Management
X = (X1,X2, . . . ,Xn), where Xi is the
amount invested in ith share/stock. C
is the amount available.

∑n
i=1 Xi = C .
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Marginal Densities

I For two variables: FX (x1, x2) = P(X1 ≤ x1,X2 ≤ x2).
FX1(x1) = lim

x2→∞
FX (x1, x2) and FX2(x2) = lim

x1→∞
FX (x1, x2)

I FX1(x1) and FX2(x2) are marginal CDF of X1 and X2

Discrete RVs:

I If X1 and X2 are both discrete, we can define joint PMF as
PX (x1, x2) = P(X1 = x1,X2 = x2) and

∑
x1,x2

PX (x1, x2) = 1.
PX1(x1) =

∑
x2
P(X1 = x1,X2 = x2), similarly for PX2(x2)

I PX1(x1) and PX2(x2) are marginal PMF of X1 and X2

Example: X = (X1,X2) where X1 ∈ {1, 2, 3} and X2 ∈ {2, 4, 5}
with joint PMF given by

P(X1,X2) X2 = 2 X2 = 4 X2 = 5
X1 = 1 .1 .05 .2
X1 = 2 .1 .1 .15
X1 = 3 .15 .1 0.05

PX1(1) = PX2(2) =
PX1(2) = PX2(4) =
PX1(3) = PX2(5) =
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Continuous Case

We say X = (X1,X2,X3, . . . ,Xm) are jointly continuous if
∃ fX : Rm → R such that for any (x1, x2, . . . , xm) ∈ Rm

FX (x1, . . . , xm) =

∫ x1

∞
. . .

∫ xm

∞
fX (y1, y2, . . . , ym)dy1dy2 . . . dym.

fX is called the joint PDF of X

Example 1: Weather Report
X = (X1,X2), where X1 denote
the humidity level and X2 is the
temperature.

Example 2: Healthcare
X = (X1,X2), where X1 denote
blood sugar level and X2 could
be BMI.
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Continuous case contd.

I If X1 and X2 are jointly continuous with PDF fX∫∞
−∞

∫∞
−∞ fX (x1, x2)dx1dx2 = 1.

I Define fX1(x1) =
∫∞
−∞ fX (x1, x2)dx1, similarly for fX2(x2)

I fX1(x1) and fX2(x2) are marginal PDF of X1 and X2

Example: X = (X1,X2) is jointly continuous with PDF given by

fX (x1, x2) =

{
c(1 + x1x2) if 2 ≤ x1 ≤ 3, 1 ≤ x2 ≤ 2

0 otherwise

What is fX1(x1)?
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Independence of RVs

X := (X1,X2, . . . ,Xm) are independent if its joint CDF is
such that for all xi ∈ R, i = 1, 2 . . . ,m,

FX (x1, x2, . . . xm) = FX1(x1)FX2(x2) . . .FXm(xm)

This simplifies to for the case of two RVs as

I Discrete case: PX (x1, x2) = PX1(x1)PX2(x2)

I Continuous case: fX (x1, x2) = fX1(x1)fX2(x2)

I For independent RVs it is enough to specify their marginal
PMF/PDF.
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Independence of RVs contd..

Example: n coins tossed: X = (X1,X2, . . . ,Xn), where
Xi ∼ Ber(pi ) and Xi s are independent.
P(X1 = x1,X2 = x2..Xn = xn) = PX1(x1)× PX1(x1)× ..× PXn(xn).

Special Case: If pi = p,
∑n

i=1 Xi ∼ Bin(n, p).

Property of Independent RVs (X1,X2, . . . ,Xn) are independent
=⇒ E (X1X2,× . . . ,Xn) = E (X1)E (X2) . . .E (Xn)

Let X = (X1,X2, . . . ,Xn) are independent and each random
variable has the same distribution, then (X1,X2, . . . ,Xn) are
said to be independent and identically distributed (i.i.d.).

For i.i.d distributed random variables, we just need to specify one
common distribution!
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Covariance of RVs

Covariance of random variable X1 and X2 is defined as
Cov(X1,X2) = E

(
(X1 − E (X1))(X2 − E (X2))

)
I Cov(X1,X2) = E (X1X2)− E (X1)E (X2)
I If X1 and X2 are independent Cov(X1,X2) = 0
I What does |Cov(X1,X2)| > 0 indicates?

X1 and X2 are defined as indicators of two events A and B

X1 =

{
1 if A occurs

0 otherwise
X2 =

{
1 if B occurs

0 otherwise

Cov(X1,X2) = P(X1 = 1,X2 = 1)− P(X1 = 1)P(X2 = 1)

Cov(X1,X2) > 0 ⇐⇒ P(X1 = 1,X2 = 1) > P(X1 = 1)P(X2 = 1)

⇐⇒ P(X1 = 1,X2 = 1)

P(X2 = 1)
> P(X1 = 1)

⇐⇒ P(X1 = 1|X2 = 1) > P(X1 = 1)
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Properties of Covariance

I |Cov(X1,X2)| > 0 indicates that occurrence or nonoccurence
of X2 improves knowledge of X1 and they are correlated.

I Cov(X1,X2) > 0 is an indication that when X1 increases X2

also increases and vice versa.

I Cov(X1,X2) < 0 is an indication that when X1 decreases X2

also decreases and vice versa.

I Cov(X1,X1) = Var(X1)

I Cov(X1,X2) = Cov(X2,X1)

I Cov(aX1,X2) = aCov(X1,X2)

I Cov(X1 + X2,X3) = Cov(X1,X3) + Cov(X2,X3)

(Verify!)
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Fundamental Theorems of Probability

let X1,X2,X3, . . . be a sequence of RVs all defined on the same Ω.
Assume they are i.i.d with mean E (X1) and = Var(X1). Define
Sn =

∑n
i=1 Xi for all n ≥ 1.

Law of Large Numbers: lim
n→∞

Sn
n

= E (X1)

Central Limit Theorem: lim
n→∞

Sn − nE (X1)√
nVar(X1)

≡ N (0, 1)

Example 1: Xi ’s are i.i.d with Xi ∼ Exp(λ). Then lim
n→∞

Sn
n

= λ

Example 2: Xi ’s are i.i.d with Xi ∼ Poi(λ). Then lim
n→∞

Sn
n

= λ
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Confidence Interval

I In real life we will have only finite samples. .

I Let µ = E (X1) and µ̂ = Sn
n (estimate). |µ̂− µ| 6= 0

I We would like to know
∣∣µ̂− µ| > ε for some ε > 0

P (|µ̂− µ| > ε) ≤ 2 exp(−nε2)

2 exp(−nε2) = δ =⇒ n =
1

ε2
log(δ/2)

2 exp(−nε2) = δ =⇒ ε =

√
1

n
log(δ/2)
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End!
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