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Lecture 05
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Previous Lecture:

I Joint distribution of Random Variable

I Marginal PMF and PDF

I Independence of Random Variables

I Correlation of Random Variables

This Lecture:

I Joint distribution of function of RVs

I Moment Generating Functions (MGFs)

I Conditional PMF and PDF

I Markov’s and Chebyshev’s inequalities

I Limit theorems: Law of Large Numbers (LLN)

I Limit theorems: Central Limit Theorem (CLT)



Joint Distribution of Function of Random Variables

Let X1 and X2 are RVs. Define Y1 = g1(X1,X2), Y2 = g2(X1,X2).
What is the joint distribution of (Y1,Y2).

I Example 1: Sum and Difference of Coordinates
Y1 = X1 + X2 and Y2 = X1 − X2

I Example 2: (Cartesian to Polar Coordinates)

Y1 =
√

X 2
1 + X 2

2 and Y2 = tan−1
(
X2
X1

)

F (y1, y2) =

∫∫
(x1,x2)

g1(x1,x2)≤y1
g2(x1,x2)≤y2

f (x1, x2) dx1 dx2
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Joint Distribution Contd...

Assume:

I For given (y1, y2), y1 = g1(x1, x2) and y2 = g2(x1, x2) are
uniquely solvable for x1 and x2,

I g1 and g2 have continuous partial derivatives such that the
Jacobian matrix is non-singular

J(x1, x2) =
∂g1
∂x1

∂g1
∂x2

∂g2
∂x1

∂g2
∂x2

=
∂g1
∂x1

∂g2
∂x2
− ∂g2
∂x1

∂g1
∂x2
6= 0

fY1Y2(y1, y2) =
fX1X2(x1, x2)

|J(x1, x2)|
.

IE605:Engineering Statistics Manjesh K. Hanawal 5



Joint Distribution Contd...

Example: Y1 = g1(X1,X2) = X1 +X2, Y2 = g2(X1,X2) = X1−X2.
where X1 ∼ Exp(λ1), X2 ∼ Exp(λ2) and are independent.
Given (y1, y2), x1 = y1+y2

2 and x2 = y1−y2
2 ,

J(x1, x2) =
1 1
1 −1

= −2

fY (y1, y2) =
fX (x1, x2)

2
=

fX1(x1)fX2(x2)

2
= λ1λ2e

−λ1
(y1+y2)

2
−λ2

(y1−y2)
2

Example 2: (Cartesian to Polar Coordinates)

Y1 =
√
X 2
1 + X 2

2 ,Y2 = tan−1
(
X2
X1

)
, where X1 ∼ N (0, 1) and

X2 ∼ N (0, 1) are independent.
Joint distribution of polar coordinates (Y1,Y2)?

Given (y1, y2), x1 = y1 cos(y2) and x2 = y1 sin(y2) (complete!)
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Moment Generating Functions

Moment Generating Function (MGF) of a random variable
X , denoted φX : R → R+, is defined as

φX (t) = E
(
etX
)

=

{∑∞
i=1 PX (xi )e

txi if X is discrete∫
x fX (x)etxdx if X is continuous.

I φ′X (t) = E
(
XetX

)
→ φ′X (0) = E(X ) (first moment)

I φ′′X (t) = E
(
X 2etX

)
→ φ′′X (0) = E(X 2) (second moment)

I φ
(n)
X (t) = E

(
X netX

)
→ φ

(n)
X (0) = E(X n) (nth moment)

From MGF of a RV all its moment can be generated, specifically,
mean and variance.

Var(X ) = E(X 2)− (E(X ))2

IE605:Engineering Statistics Manjesh K. Hanawal 8



Moment Generating Functions

Moment Generating Function (MGF) of a random variable
X , denoted φX : R → R+, is defined as

φX (t) = E
(
etX
)

=

{∑∞
i=1 PX (xi )e

txi if X is discrete∫
x fX (x)etxdx if X is continuous.

I φ′X (t) = E
(
XetX

)
→ φ′X (0) = E(X ) (first moment)

I φ′′X (t) = E
(
X 2etX

)
→ φ′′X (0) = E(X 2) (second moment)

I φ
(n)
X (t) = E

(
X netX

)
→ φ

(n)
X (0) = E(X n) (nth moment)

From MGF of a RV all its moment can be generated, specifically,
mean and variance.

Var(X ) = E(X 2)− (E(X ))2

IE605:Engineering Statistics Manjesh K. Hanawal 9



Properties of MGF

I MGF of sum of independent RVs: (X1,X2, . . . ,Xn) are
independent, then

φX1+X2...+Xn(t) =
n∏

i=1

φXi
(t)

I MGF uniquely determines the distributions
one-to-one correspondence between the MGF and distribution.

Distribution MGF φ(t)

Ber(p) pet + (1− p)

Bin(n, p) (pet + (1− p))n

Geo(n, p) pet

1−(1−p)et

Poi(λ) eλ(e
t−1)

Distribution MGF φ(t)

Uni(a, b) ebt−eat
t(b−a)

Exp(λ) λ
λ−t

N (µ, σ2) exp{µt + t2σ2

2 }
Gamma(n, λ)

(
λ
λ−t

)n
Characteristic function: ΦX (t) = E(e jtX ), where j =

√
−1

(always exists).
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Conditional PMF

X1 and X2 are discrete with joint PMF P(X1 = x1,X2 = x2). We
may want to know about X2 = x2 given that X1 = x1
I Conditional PMF is defined as

PX2|X1
(x2|x1) = P(X2 = x2|X1 = x1) =

P(X2 = x2,X1 = x1)

P(X1 = x1)

I Conditional CDF is FX2|X1
(x2|x1) =

∑
x≤x2 PX2|X1

(x |x1)

I Conditional Expectation:

E(X2|X1 = x1) =
∑
x

xPX2|X1
(x |x1)

Example:
P(X1,X2) X2 = 2 X2 = 4 X2 = 5
X1 = 1 .1 .05 .2
X1 = 2 .1 .1 .15
X1 = 3 .15 .1 0.05

PX2|X1
(4|1) =

E(X2|X1 = 1) =
PX2|X1

(5|2) =
E(X2|X1 = 2) =
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Conditional PDF

X1 and X2 are jointly continuous with PDF f (X1 = x1,X2 = x2).
We may want to know PDF of X2 = x2 given that X1 = x1
I Conditional PDF is defined as

fX2|X1
(x2|x1) =

fX1X2(x1, x2)

fX1(x1)

I Conditional Expectation:

E(X2|X1 = x1) =

∫
x
xfX2|X1

(x |x1)dx

Example: X = (X1,X2) are jointly continuous with PDF given by

fX (x1, x2) =

{
c(1 + x1x2) if 2 ≤ x1 ≤ 3, 1 ≤ x2 ≤ 2

0 otherwise

Find fX2|X1
(x2|2.5) and E(X2|X1 = 2.5).
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Markov’s Inequality

Let X is a non-negative RV. For any a > 0

P(X ≥ a) ≤ E(X )

a

Useful when a ≥ E(X ).

X = X1{X<a} + X1{X≥a}

=⇒ E(X ) = E
(
X1{X<a}

)
+ E

(
X1{X≥a}

)
≥ 0 + aE

(
1{X≥a}

)
= aP(X ≥ a)
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Chebyshev’s Inequality

For any RV X and d > 0

P(|X − E(X )| ≥ d) ≤ Var(X )

d2

|X − E(X )| is non-negative. We apply Markov inequality on it.

P(|X − E(X )| ≥ d) = P(|X − E(X )|2 ≥ d2)

≤
E
(
|X − E(X )|2

)
d2

=
Var(X )

d2

Chebyshev’s inequlity bounds ’deviation’ of a RV around its mean.
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Application of Markov and Chebyshev’s inequality
Factory output: Suppose a factory produce a certain number of items
each week. The number of items produced is random due to uncertainty
in availability raw material. Suppose that the factory produce on an
average 500 items every week.

I What is the probability that production this week is at least 1000?
Let number of items produced is X . We want P(X ≥ 1000). From
Markov Inequality

P(X ≥ 1000) ≤ 500

1000
= 0.5

I If Var(X ) = 100, what is the probability that production this week
is between 400 and 600? We want
P(400 < X < 600) = P(|X − E(X )| < 100). From Chebyshev’s
inequality

P(|X − E(X )| ≥ 100) ≤ 100

1002
=

1

100
Hence

P(|X − E(X )| < 100) = 1− P(|X − E(X )| ≥ 100) ≥ 99

100
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Limit Theorems: Law of Large Numbers (LLN)
Let X1,X2,X3, . . . be a sequence of i.i.d. RVs with common mean
µ = E (X1). Define Sn =

∑n
i=1 Xi for all n ≥ 1.

LLN: lim
n→∞

Sn
n

= E (X1) with probability 1.

Consider an event E in an experiment. The experiment is repeated
infinitely. For each trial i define RV Xi

Xi =

{
1 if event E occurs

0 otherwise

I Sn =
∑n

i=1 Xi , counts the number of time E occurs

I Sn/n gives fraction of time E occurs

I From LLN lim
n→∞

Sn
n

= E(X1) = P(E )

I Fraction of time event E occurs is its probability
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LLN Contd..

Examples

1. Xi ’s are i.i.d with Xi ∼ Exp(λ). Then lim
n→∞

Sn
n

=
1

λ

2. Xi ’s are i.i.d with Xi ∼ Poi(λ). Then lim
n→∞

Sn
n

= λ

3. Xi ’s are i.i.d with some unknown mean. lim
n→∞

Sn
n

gives the
mean.

LLN for parameter estimation.

I In real life we will have only finite samples. .

I We can use µ̂n = Sn
n as an (estimate) of µ.

I For finite n, |µ̂n − µ| 6= 0. limn→∞ |µ̂n − µ| = 0
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Limit Theorem: Central Limit Theorem (CLT)

Let X1,X2,X3, . . . be a sequence of i.i.d. RVs with common mean
µ = E (X1) and σ2 = Var(X ). Define Sn =

∑n
i=1 Xi for all n ≥ 1.

CLT: lim
n→∞

Sn − nµ√
nσ2

≡ N (0, 1) in distributions.

For any a ∈ R.

P

(
Sn − nµ√

nσ2
≤ a

)
≈
∫ a

−∞

e−x
2/2

√
2π

dx = Φ(a).

I Φ(·) is the CDF of N (0, 1).

I Φ(a) + Φ(−a) = 1 for all a (symmetry of N (0, 1))

I Φ(·) tables are used.
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CLT Contd..

P

(
Sn − nµ√

nσ2
≤ a

)
=P

(
Sn
n
− µ ≤ a

√
σ2

n

)

= P

(
µ̂n − µ ≤ a

√
σ2

n

)
≈ Φ(a).

Example: 100 i.i.d. samples are available of an experiments with
variance 5 and unknown mean. What is the probability that error
in estimate mean (µ̂n) is no more that 0.1.

I Unknown mean is µ. We want P (−0.1 ≤ µ̂100 − µ ≤ 0.1).

P (−0.1 ≤ µ̂100 − µ ≤ 0.1)

= P (µ̂100 − µ ≤ 0.1)− P (µ̂100 − µ ≤ −0.1)

≈ Φ
(

0.1
√

20
)
− Φ

(
−0.1

√
20
)

= 2Φ
(

0.1
√

20
)
− 1
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Number of Samples Required

Suppose we want the estimation error to be smaller than ε > 0

P (|µ̂n − µ| ≤ ε) ≈ 2Φ

(
ε
√

n/σ2
)
− 1.

add we want this probability to be smaller than δ. Then we set

2Φ

(
ε
√

n/σ2
)
− 1 = δ

=⇒
√
n ≈ σ

ε
Φ−1

(
δ + 1

2

)
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