IE605: Engineering Statistics
 Lecture 06

Manjesh K. Hanawal

Previous Lecture:

- Joint distribution of function of RVs
- Moment Generating Functions (MGFs)
- Conditional PMF and PDF
- Markov's and Chebyshev's inequalities
- Limit theorems: Law of Large Numbers (LLN)
- Limit theorems: Central Limit Theorem (CLT)

This Lecture:

- Exponential Family of Distributions
- Population and Random Sampling
- sample mean, variance and standard deviation
- Sampling from Normal distribution

Parametric Distributions

Discrete Case:

Distribution	PMF: $P(i)$
$\operatorname{Ber}(p)$	$p^{i}(1-p)^{1-i}, i=0,1$
$\operatorname{Bin}(n, p)$	$\binom{n}{i} p^{i}(1-p)^{n-i}, 0 \leq i \leq n$
$G e o(p)$	$(1-p)^{i-1} p, i \geq 1$
$\operatorname{Poi}(\lambda)$	$\frac{e^{-\lambda} \lambda^{i}}{i!}, i \geq 0$

Continuous Case:

Distribution	PDF $f(x)$
Uni (a, b)	$\frac{1}{(b-a)}, x \in(a, b)$
$\operatorname{Exp}(\lambda)$	$\lambda e^{-\lambda x}, \forall x>0$
$\mathcal{N}\left(\mu, \sigma^{2}\right)$	$\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}, \forall x$
Rayleigh (σ)	$\frac{x}{\sigma^{2}} e^{-x^{2} / 2 \sigma^{2}}, \forall x>0$

Gamma Distributions

Gamma Distribution:
$X \sim \operatorname{Gamma}(\alpha, \lambda)$ for $\alpha, \lambda>0$

$$
f_{X}(x)= \begin{cases}\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} & \text { for } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

where α is the shape parameter and λ is the scale parameter.

Example: Model occurrence of earthquakes in time and magnitude.
Significance: When $\alpha=n$ for some positive integer, then $\sum_{i=1}^{n} X_{i} \sim \operatorname{Gamma}(n, \lambda)$ where X_{i} s are i.i.d. with $X_{i} \sim \operatorname{Exp}(\lambda)$.

Special cases of Gamma distributions: Chi Square

- Gamma(1/2, 1/2):chi-squared distribution with 1 degrees of freedom denoted χ_{1}^{2}. Set $\alpha=1 / 2$ and $\lambda=1 / 2$

$$
f_{X}(x)= \begin{cases}\frac{1}{\sqrt{2 \pi}} \frac{e^{-x / 2}}{\sqrt{x}} & \text { for } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

If $U \sim \mathcal{N}(0,1), U^{2} \sim \operatorname{Gamma}(1 / 2,1 / 2)$

- Gamma($n / 2,1 / 2$) :chi-squared distribution with n degrees of freedom denoted χ_{n}^{2}. Set $\alpha=n / 2$ and $\lambda=1 / 2$

$$
f_{X}(x)= \begin{cases}\frac{(1 / 2)^{n / 2}}{\Gamma(n / 2)} x^{n / 2-1} e^{-x / 2} & \text { for } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

$\left(U_{1}, U_{2}, \ldots, U_{n}\right)$ are i.i.d. Now let $U_{i} \sim \mathcal{N}(0,1)$. Then $\sum_{i=1}^{n} U_{i}^{2} \sim \chi_{n}^{2}=\operatorname{Gamma}(n / 2,1 / 2)$. If $U_{i} \sim \operatorname{Exp}(1 / 2)$, then $\sum_{i=1}^{n} U_{i} \sim \operatorname{Gamma}(n, 1 / 2)$.

Beta distributions

Beta Distribution: $X \sim \operatorname{Beta}(a, b)$ for $a, b>0$

$$
f_{X}(x)= \begin{cases}\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} x^{a-1}(1-x)^{b-1} & \text { for } x \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

when $a=b=1, X$ is uniform on $[0,1]$.

significance: Useful in Bayesian Statistics.

Exponential families

A family of $\mathrm{pdf} / \mathrm{pmf}$ is exponential family if

$$
f(x \mid \theta)=h(x) c(\theta) \exp \left\{\sum_{i=1}^{k} w_{i}(\theta) t_{i}(x)\right\}
$$

- $h(x) \geq 0$ for all x and $c(\theta) \geq 0$
- $w_{i}(\theta)$ are real valued function of θ (cannot depend on x)
- $t_{i}(x)$ are real valued function of x (cannot depend on θ)

Discrete distributions

- Binomial
- Poisson
- Negative Binomial

Continuous distributions

- Gaussian
- Gamma
- Beta

Binomial as Exponential family

Fix n. Binomial family parameterized by $p=(0,1)$

$$
\begin{aligned}
P(x \mid p) & =\binom{n}{x} p^{\times}(1-p)^{n-x} \\
& =\binom{n}{x} e^{x \log p} e^{(n-x) \log (1-p)} \\
& =\binom{n}{x} e^{x \log p+(n-x) \log (1-p)}
\end{aligned}
$$

Set $\theta=p$. Define:
$-c(\theta)=1, \quad h(x)= \begin{cases}\binom{n}{x} & \text { for } x=0,1, \ldots, n \\ 0 & \text { otherwise }\end{cases}$

- $w_{1}(\theta)=\log p, w_{2}(\theta)=\log (1-p)$
- $t_{1}(x)=x, t_{2}(x)=n-x$

$$
P(x \mid \theta)=h(x) c(\theta) \exp \left\{w_{1}(\theta) t_{1}(x)+w_{2}(\theta) t_{2}(x)\right\}
$$

Gaussian as Exponential family

$\mathcal{N}\left(\mu, \sigma^{2}\right)$ is parameterized by $\mu \in \mathcal{R}$ and $\sigma^{2}>0$.

$$
\begin{aligned}
f\left(x \mid\left(\mu, \sigma^{2}\right)\right) & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}\right\} \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{x^{2}}{2 \sigma^{2}}-\frac{\mu^{2}}{2 \sigma^{2}}+\frac{x \mu}{\sigma^{2}}\right\} \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{\mu^{2}}{2 \sigma^{2}}\right\} \exp \left\{-\frac{x^{2}}{2 \sigma^{2}}+\frac{x \mu}{\sigma^{2}}\right\}
\end{aligned}
$$

Set $\theta=\left(\mu, \sigma^{2}\right)$. Define

- $c(\theta)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{\mu^{2}}{2 \sigma^{2}}\right\} . h(x)=1$ for all x
- $w_{1}(\theta)=\frac{1}{2 \sigma^{2}}, w_{2}(\theta)=\frac{\mu}{\sigma^{2}}$
- $t_{1}(x)=-x^{2}, t_{2}(x)=x$

$$
f(x \mid \theta)=h(x) c(\theta) \exp \left\{t_{1}(x) w_{1}(\theta)+t_{2}(x) w_{2}(\theta)\right\}
$$

Gamma as Exponential family

$\operatorname{Gamma}(\alpha, \lambda)$ is parametrized bt α and λ.

$$
\begin{aligned}
f(x \mid(\alpha, \lambda)) & =\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} \\
& =\frac{\lambda^{\alpha}}{\Gamma(\alpha)} e^{(\alpha-1) \log x} e^{-\lambda x}
\end{aligned}
$$

Set $\theta=(\alpha, \lambda)$. Define

- $c(\theta)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)}, h(x)=1$ for all x
- $w_{1}(\theta)=(\alpha-1), w_{2}(\theta)=-\lambda$
- $t_{1}(x)=\log x, t_{2}(x)=x$

$$
f(x \mid \theta)=h(x) c(\theta) \exp \left\{w_{1}(\theta) t_{1}(x)+w_{2}(\theta) t_{2}(x)\right\}
$$

Random Sampling

- Samples are used to obtain information about large populations by examining only a small fraction. Examples
- Who will win the polls?
- Will there be demand for a new car
- How many pay taxes
- Health of people
- How to sample for better results
- Do random sampling for unbiased (to be made precise) results

Random Variables $X_{1}, X_{2}, \ldots, X_{n}$ are called random samples of size n from population $f(x)$ if they are i.i.d with common distribution with $f(x)$.
if $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ are samples from population $f(x)$

$$
f\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} f\left(x_{i} \mid \theta\right)
$$

Sampling with and without replacement

With replacement

- After sampling, the sample is put back before the next sample is drawn randomly.
- Each sample comes from a new fresh experiment
- sampling with replacements gives i.i.d samples (random sample)
Without replacement
- After sampling, the sample is not put back, before the next sample is drawn randomly.
- sampling with replacements can give identical samples but not independent.

Statistic of Random Samples

- When a sample $X_{1}, X_{2}, \ldots, X_{n}$ is drawn, we would be interested in some summary of values
- Any well defined summary may be expressed as a function $T\left(X_{1}, X_{2}, \ldots, X_{n}\right)$

The random variable/vector $Y=T\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is called statistic. The distribution of the statistic Y is called the sampling distribution of Y.

Often used statistics

- Sample mean: $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$
- Sample variance: $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$
- Sample standard deviation: $S=\sqrt{S^{2}}$
we will denote the observed values as \bar{x}, s^{2}, s, respectively.

Properties of statistics \bar{X} and S^{2}

$X_{1}, X_{2}, \ldots, X_{n}$ is random sample from a population with mean μ and variance σ^{2}

- $\mathbb{E}(\bar{X})=\mu$

$$
\mathbb{E}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(X_{i}\right)=\mu
$$

- $\operatorname{Var}(\bar{X})=\sigma^{2} / n$

$$
\begin{aligned}
\operatorname{Var}(\bar{X}) & =\operatorname{Cov}(\bar{X}, \bar{X})=\operatorname{Cov}\left(\frac{1}{n} \sum X_{i}, \frac{1}{n} \sum X_{j}\right) \\
& =\mathbb{E}\left(\left(\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)\right)\left(\frac{1}{n} \sum_{j=1}^{n}\left(X_{j}-\mu\right)\right)\right) \\
& =\frac{1}{n^{2}} \sum_{i=1}^{n} \mathbb{E}\left(\left(X_{i}-\mu\right)^{2}\right)=\frac{\sigma^{2}}{n}
\end{aligned}
$$

$\underset{\text { IE605: Engineering }}{\mathbb{E}}\left(S_{\text {Statisicics }}^{2} \sigma^{2}\right.$

$$
\begin{aligned}
\mathbb{E}\left(S^{2}\right) & =\mathbb{E}\left(\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right) \\
& =\frac{1}{n-1} \mathbb{E}\left(\sum_{i=1}^{n}\left(X_{i}+\mu-\mu-\bar{X}\right)^{2}\right) \\
& =\frac{1}{n-1} \mathbb{E}\left(\sum_{i}\left(\left(X_{i}-\mu\right)^{2}+(\bar{X}-\mu)^{2}-2\left(X_{i}-\mu\right)(\bar{X}-\mu)\right)\right) \\
& =\frac{1}{n-1}\left(\sum_{i} \operatorname{Var}\left(X_{i}\right)+\sum_{i} \operatorname{Var}(\bar{X})-\frac{2}{n} \sum_{i} \mathbb{E}\left(\left(X_{i}-\mu\right)^{2}\right)\right) \\
& =\frac{1}{n-1}\left(n \sigma^{2}+n \frac{\sigma^{2}}{n}-\frac{2}{n} n \sigma^{2}\right)=\frac{1}{n-1}\left(n \sigma^{2}-\sigma^{2}\right)=\sigma^{2}
\end{aligned}
$$

- $\mathbb{E}(\bar{X})=\mu$: Statistic \bar{X} is unbiased estimator of μ
- $\mathbb{E}\left(S^{2}\right)=\sigma^{2}$: Statistic S^{2} is unbiased estimator of σ^{2}

Sampling from Gaussian distribution

$X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from population $\mathcal{N}\left(\mu, \sigma^{2}\right)$.
Then, \bar{X} and S^{2} are such that

- \bar{X} has a $\mathcal{N}\left(\mu, \sigma^{2} / n\right)$ distribution
- \bar{X} and S^{2} are independent
- $(n-1) S^{2} / \sigma^{2}$ has chi-square distribution with $n-1$ degree of freedom, i.e, $\sim \operatorname{Gamma}((n-1) / 2,1 / 2)$.

Proof: workout!

Student's t-distributions

Random sample $X_{1}, X_{2}, \ldots X_{n}$ is drawn form population $\mathcal{N}\left(\mu, \sigma^{2}\right)$

- $\frac{\bar{X}-\mu}{\sigma^{2} / n} \sim \mathcal{N}(0,1)$
- If σ^{2} is known $\frac{\bar{X}-\mu}{\sigma^{2} / n}$ can infer μ as it is the only unknown
- In most cases σ^{2} is not known. How to infer about μ ?
- G.S. Gosset (published under pseudonym student) introduced

$$
\frac{\bar{X}-\mu}{S / \sqrt{n}}
$$

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from $\mathcal{N}\left(\mu, \sigma^{2}\right)$. Then the quantity $(\bar{X}-\mu) /(S / \sqrt{n})$ has Student's t - distribution with $n-1$ degrees of freedom.

$$
\frac{\bar{X}-\mu}{S / \sqrt{n}}=\frac{(\bar{X}-\mu) /(\sigma / \sqrt{n})}{\sqrt{S^{2} / \sigma^{2}}}
$$

- Define $U=(\bar{X}-\mu) /(\sigma / \sqrt{n})$ and $V=(n-1) S^{2} / \sigma^{2}$
- $U \sim \mathcal{N}(0,1)$ and $V \sim \chi_{n-1}^{2}$ (chi-squared with $n-1$ degree of freedom)
- Random variables U and V are independent (check!)
- The distibution of $\frac{U}{\sqrt{V / n-1}}$ gives student's t-distribution

PDF of Student's t-distribution

- t_{p} denotes Student's t-distribution with p degrees of freedom
- If $X \sim t_{p}$, for all $-\infty<x<\infty$

$$
f_{X}(x)=\frac{\Gamma\left(\frac{p-1}{2}\right)}{\Gamma\left(\frac{p}{2}\right)} \frac{1}{\sqrt{p \pi}} \frac{1}{\left(1+\frac{t^{2}}{p}\right)^{\frac{p+1}{2}}}
$$

- Special case. Set $p=1$ (corresponding to $n=2$ samples)

$$
f_{X}(x)=\frac{1}{\pi} \frac{1}{1+t^{2}} \quad \text { (Cauchy Distribution) }
$$

Derivation of Student's t-distribution

- $U \sim \mathcal{N}(0,1)$ and $V \sim \chi_{n-1}^{2}$
- Joint distribution of (U, V) for all $-\infty<u<\infty$ and $v>0$

$$
f_{U V}(u, v)=\frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} \frac{(1 / 2)^{\frac{n-1}{2}}}{\Gamma\left(\frac{n-1}{2}\right)} v^{\frac{n-1}{2}-1} e^{-v / 2}
$$

- Define transformation $X=\frac{U}{\sqrt{V /(n-1)}}$ and $Y=V$.
- Find Joint distribution $f_{X Y}(x, y)$
- Find marginal $f_{X}(x)$

