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Previous Lecture:

I Joint distribution of function of RVs

I Moment Generating Functions (MGFs)

I Conditional PMF and PDF

I Markov’s and Chebyshev’s inequalities

I Limit theorems: Law of Large Numbers (LLN)

I Limit theorems: Central Limit Theorem (CLT)

This Lecture:

I Exponential Family of Distributions

I Population and Random Sampling

I sample mean, variance and standard deviation

I Sampling from Normal distribution



Parametric Distributions

Discrete Case:

Distribution PMF: P(i)

Ber(p) pi (1− p)1−i , i = 0, 1

Bin(n, p)
(n
i

)
pi (1− p)n−i , 0 ≤ i ≤ n

Geo(p) (1− p)i−1p, i ≥ 1

Poi(λ) e−λλi

i! , i ≥ 0

Continuous Case:

Distribution PDF f (x)

Uni(a, b) 1
(b−a) , x ∈ (a, b)

Exp(λ) λe−λx , ∀x > 0

N (µ, σ2) 1√
2πσ2

e−(x−µ)2/2σ2
,∀x

Rayleigh(σ) x
σ2 e
−x2/2σ2

, ∀x > 0
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Gamma Distributions

Gamma Distribution:
X ∼ Gamma(α, λ) for α, λ > 0

fX (x) =

{
λα

Γ(α)x
α−1e−λx for x > 0

0 otherwise,

where α is the shape parameter and λ is the scale parameter.
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Example: Model occurrence of earthquakes in time and magnitude.
Significance: When α = n for some positive integer, then∑n

i=1 Xi ∼ Gamma(n, λ) where Xi s are i.i.d. with Xi ∼ Exp(λ).
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Special cases of Gamma distributions: Chi Square

I Gamma(1/2, 1/2):chi-squared distribution with 1 degrees of
freedom denoted χ2

1. Set α = 1/2 and λ = 1/2

fX (x) =

{
1√
2π

e−x/2
√
x

for x > 0

0 otherwise,

If U ∼ N (0, 1), U2 ∼ Gamma(1/2, 1/2)

I Gamma(n/2, 1/2) :chi-squared distribution with n degrees of
freedom denoted χ2

n. Set α = n/2 and λ = 1/2

fX (x) =

{
(1/2)n/2

Γ(n/2) xn/2−1e−x/2 for x > 0

0 otherwise,

(U1,U2, . . . ,Un) are i.i.d. Now let Ui ∼ N (0, 1). Then∑n
i=1 U

2
i ∼ χ2

n = Gamma(n/2, 1/2). If Ui ∼ Exp(1/2), then∑n
i=1 Ui ∼ Gamma(n, 1/2).
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Beta distributions

Beta Distribution:
X ∼ Beta(a, b) for a, b > 0

fX (x) =

{
Γ(a+b)

Γ(a)Γ(b)x
a−1(1− x)b−1 for x ∈ [0, 1]

0 otherwise,

when a = b = 1, X is uniform on [0, 1].
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significance: Useful in Bayesian Statistics.
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Exponential families

A family of pdf/pmf is exponential family if

f (x |θ) = h(x)c(θ) exp

{
k∑

i=1

wi (θ)ti (x)

}

I h(x) ≥ 0 for all x and c(θ) ≥ 0

I wi (θ) are real valued function of θ (cannot depend on x)

I ti (x) are real valued function of x (cannot depend on θ)

Discrete distributions

I Binomial

I Poisson

I Negative Binomial

Continuous distributions

I Gaussian

I Gamma

I Beta
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Binomial as Exponential family

Fix n. Binomial family parameterized by p = (0, 1)

P(x |p) =

(
n

x

)
px(1− p)n−x

=

(
n

x

)
ex log pe(n−x) log(1−p)

=

(
n

x

)
ex log p+(n−x) log(1−p)

Set θ = p. Define:

I c(θ) = 1, h(x) =

{(n
x

)
for x = 0, 1, . . . , n

0 otherwise

I w1(θ) = log p,w2(θ) = log(1− p)

I t1(x) = x , t2(x) = n − x

P(x |θ) = h(x)c(θ) exp{w1(θ)t1(x) + w2(θ)t2(x)}
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Gaussian as Exponential family

N (µ, σ2) is parameterized by µ ∈ R and σ2 > 0.

f (x |(µ, σ2)) =
1√

2πσ2
exp

{
−(x − µ)2

2σ2

}
=

1√
2πσ2

exp

{
− x2

2σ2
− µ2

2σ2
+

xµ

σ2

}
=

1√
2πσ2

exp

{
− µ2

2σ2

}
exp

{
− x2

2σ2
+

xµ

σ2

}
Set θ = (µ, σ2). Define

I c(θ) = 1√
2πσ2

exp
{
− µ2

2σ2

}
. h(x) = 1 for all x

I w1(θ) = 1
2σ2 ,w2(θ) = µ

σ2

I t1(x) = −x2, t2(x) = x

f (x |θ) = h(x)c(θ) exp{t1(x)w1(θ) + t2(x)w2(θ)}
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Gamma as Exponential family

Gamma(α, λ) is parametrized bt α and λ.

f (x |(α, λ)) =
λα

Γ(α)
xα−1e−λx

=
λα

Γ(α)
e(α−1) log xe−λx

Set θ = (α, λ). Define

I c(θ) = λα

Γ(α) , h(x) = 1 for all x

I w1(θ) = (α− 1),w2(θ) = −λ
I t1(x) = log x , t2(x) = x

f (x |θ) = h(x)c(θ) exp{w1(θ)t1(x) + w2(θ)t2(x)}
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Random Sampling

I Samples are used to obtain information about large
populations by examining only a small fraction. Examples
I Who will win the polls?
I Will there be demand for a new car
I How many pay taxes
I Health of people

I How to sample for better results

I Do random sampling for unbiased (to be made precise) results

Random Variables X1,X2, . . . ,Xn are called random samples
of size n from population f (x) if they are i.i.d with common
distribution with f (x).

if (x1, x2, . . . , xn) are samples from population f (x)
f (x1, x2, . . . , xn|θ) =

∏n
i=1 f (xi |θ)
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Sampling with and without replacement

With replacement

I After sampling, the sample is put back before the next sample
is drawn randomly.

I Each sample comes from a new fresh experiment

I sampling with replacements gives i.i.d samples (random
sample)

Without replacement

I After sampling, the sample is not put back, before the next
sample is drawn randomly.

I sampling with replacements can give identical samples but not
independent.
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Statistic of Random Samples

I When a sample X1,X2, . . . ,Xn is drawn, we would be
interested in some summary of values

I Any well defined summary may be expressed as a function
T (X1,X2, . . . ,Xn)

The random variable/vector Y = T (X1,X2, . . . ,Xn) is called
statistic. The distribution of the statistic Y is called the
sampling distribution of Y .

Often used statistics

I Sample mean: X̄ = 1
n

∑n
i=1 Xi

I Sample variance: S2 = 1
n−1

∑n
i=1(Xi − X̄ )2

I Sample standard deviation: S =
√
S2

we will denote the observed values as x̄ , s2, s, respectively.
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Properties of statistics X̄ and S2

X1,X2, . . . ,Xn is random sample from a population with mean µ
and variance σ2

I E(X̄ ) = µ

E

(
1

n

n∑
i=1

Xi

)
=

1

n

n∑
i=1

E(Xi ) = µ

I Var(X̄ ) = σ2/n

Var(X̄ ) = Cov(X̄ , X̄ ) = Cov

(
1

n

∑
Xi ,

1

n

∑
Xj

)

= E

(1

n

n∑
i=1

(Xi − µ)

)1

n

n∑
j=1

(Xj − µ)


=

1

n2

n∑
i=1

E
(
(Xi − µ)2

)
=
σ2

n

I E(S2) = σ2
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E(S2) = E

(
1

n − 1

n∑
i=1

(Xi − X̄ )2

)

=
1

n − 1
E

(
n∑

i=1

(Xi + µ− µ− X̄ )2

)

=
1

n − 1
E

(∑
i

(
(Xi − µ)2 + (X̄ − µ)2 − 2(Xi − µ)(X̄ − µ)

))

=
1

n − 1

(∑
i

Var(Xi ) +
∑
i

Var(X̄ )− 2

n

∑
i

E((Xi − µ)2)

)

=
1

n − 1

(
nσ2 + n

σ2

n
− 2

n
nσ2

)
=

1

n − 1
(nσ2 − σ2) = σ2

I E(X̄ ) = µ: Statistic X̄ is unbiased estimator of µ

I E(S2) = σ2: Statistic S2 is unbiased estimator of σ2

IE605:Engineering Statistics Manjesh K. Hanawal 15



Sampling from Gaussian distribution

X1,X2, . . . ,Xn is a random sample from populationN (µ, σ2).
Then, X̄ and S2 are such that

I X̄ has a N (µ, σ2/n) distribution

I X̄ and S2 are independent

I (n − 1)S2/σ2 has chi-square distribution with n − 1
degree of freedom, i.e, ∼ Gamma((n − 1)/2, 1/2).

Proof: workout!
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Student’s t-distributions

Random sample X1,X2, . . .Xn is drawn form population N (µ, σ2)

I X̄−µ
σ2/n

∼ N (0, 1)

I If σ2 is known X̄−µ
σ2/n

can infer µ as it is the only unknown

I In most cases σ2 is not known. How to infer about µ?

I G.S. Gosset (published under pseudonym student) introduced

X̄ − µ
S/
√
n

Let X1,X2, . . . ,Xn be a random sample from N (µ, σ2). Then
the quantity (X̄ − µ)/(S/

√
n) has Student’s t- distribution

with n − 1 degrees of freedom.
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X̄ − µ
S/
√
n

=
(X̄ − µ)/(σ/

√
n)√

S2/σ2

I Define U = (X̄ − µ)/(σ/
√
n) and V = (n − 1)S2/σ2

I U ∼ N (0, 1) and V ∼ χ2
n−1 (chi-squared with n − 1 degree of

freedom)

I Random variables U and V are independent (check!)

I The distibution of U√
V /n−1

gives student’s t-distribution
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PDF of Student’s t-distribution

I tp denotes Student’s t-distribution with p degrees of freedom

I If X ∼ tp, for all −∞ < x <∞

fX (x) =
Γ
(
p−1

2

)
Γ(p2 )

1
√
pπ

1(
1 + t2

p

) p+1
2

I Special case. Set p = 1 (corresponding to n = 2 samples)

fX (x) =
1

π

1

1 + t2
(Cauchy Distribution)
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Derivation of Student’s t-distribution

I U ∼ N (0, 1) and V ∼ χ2
n−1

I Joint distribution of (U,V ) for all −∞ < u <∞ and v > 0

fUV (u, v) =
1√
2π

e−u
2/2 (1/2)

n−1
2

Γ
(
n−1

2

) v n−1
2
−1e−v/2

I Define transformation X = U√
V /(n−1)

and Y = V .

I Find Joint distribution fXY (x , y)

I Find marginal fX (x)
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