IE605: Engineering Statistics Lecture 07

Previous Lecture:

- Exponential Family of Distributions
- Population and Random Sampling
- Sample mean, variance and standard deviation
- Sampling from Normal distribution
- Student's t-distribution

This Lecture:

- F-distributions
- Convergence of RVs
- Consistency
- Order Statistics
- Generating Random Samples

F-distributions

We would be interested in variability of populations:

$$(X_1, X_2, \dots, X_n)$$
 are iid and $X_i \sim \mathcal{N}(\mu_X, \sigma_X^2)$ $\forall i$
 (Y_1, Y_2, \dots, Y_m) are iid and $Y_j \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$ $\forall j$

We would estimate $\frac{S_X^2}{S_Y^2}$. What is its distribution?

$$\frac{S_X^2/S_Y^2}{\sigma_X^2/\sigma_Y^2} = \frac{S_X^2/\sigma_X^2}{S_Y^2/\sigma_Y^2} = \frac{(n-1)S_X^2/(n-1)\sigma_X^2}{(m-1)S_Y^2/(m-1)\sigma_Y^2} = \frac{\chi_{n-1}^2/(n-1)}{\chi_{m-1}^2/(m-1)}$$

 $\frac{S_X^2/S_Y^2}{\sigma_X^2/\sigma_Y^2}$ has F-distribution with (n-1) and (m-1) degree of freedom

3

F-dsitribution is named in the honor of Sir Ronald Fisher! IE605:Engineering Statistics Manjesh K. Hanawal

F-distributions contd...

PDF of *F* distribution with *p* and *q* degrees of freedom (*F*_{*p*,*q*})
$$f_F(x) = \frac{\Gamma\left(\frac{p+q}{2}\right)}{\Gamma\left(\frac{p}{2}\right)\Gamma\left(\frac{q}{2}\right)} \left(\frac{p}{q}\right)^2 \frac{x^{p/2-1}}{\left[1 + (p/q)x\right]^{(p+q)/2}} \quad x > 0$$

$$F_{p,q} = rac{U/p}{V/q}$$
 where $U \sim \chi_p^2, V \sim \chi_q^2$, and independent

Derivation of pdf of $F_{p,q}$

•
$$X = \frac{U/p}{V/q} = \frac{q}{p} \frac{U}{V}$$
 and $Y = V$

• As U, V are independent f(U, V) = f(U)f(V)

- Find joint distribution of (X, Y) be applying transformations
- Find marginal distribution of X

IE605:Engineering Statistics

Properties of *F*-distribution

► Claim 1: If
$$X \sim F_{p,q}$$
, then $1/X \sim F_{q,p}$
 $X = \frac{U/p}{V/p}$ where $U \sim \chi_p^2$, $V \sim \chi_q^2$ and are independent
 $1/X = \frac{V/q}{U/p}$, hence $1/X \sim F_{q,p}$

Claim 2:if
$$X \sim t_p$$
, then $X^2 \sim F_{1,p}$
 $X = \frac{U}{\sqrt{V/p}}$, where $U \sim \mathcal{N}(0,1)$, $V \sim \chi_p^2$ and are independent
 $X^2 = U^2/(V/p) = \chi_1^2/(V/p) = (\chi_1^2/1)/(\chi_p^2/p) \sim F_{1,p}$

Claim 3: if
$$X \sim F_{p,q}$$
, then $\frac{(p/q)X}{1+(p/q)X} \sim beta(p/2, q/2)$
(Exercise!)

IE605:Engineering Statistics

Convergence of Sequence of RVs

What happens when the number of samples goes to infinity (theoretical artifact)

Convergence in Probability: A sequence of RVs $X_1, X_2, ...,$ converge in probability to a random variable X if, for an $\epsilon > 0$,

$$\lim_{n\to\infty} P(|X_n - X| \ge \epsilon) = 0 \text{ or } \lim_{n\to\infty} P(|X_n - X| < \epsilon) = 1$$

In the definition X₁, X₂, · · · need not be i.i.d or independent
 Compactly written as X_n ^p→ X in probability.

Suppose X₁, X₂,... are i.i.d. with common mean μ and variance σ² > ∞. From LLN, we know

$$\bar{X}_n := \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{p} \mu$$

For an $\epsilon > 0$

$$P(|\bar{X}_n - \mu| \ge \epsilon) \le \frac{\mathbb{E}\left(|\bar{X}_n - \mu|^2\right)}{\epsilon^2}$$
$$= \frac{Var(\bar{X}_n)}{\epsilon^2} = \frac{\sigma^2/n}{\epsilon} \to 0$$

IE605:Engineering Statistics

Consistency of Sample mean an Sample Variance

Consistency: A sample quantity is consistent if its sequence converges to a constant

- ▶ Sample mean is consistent: $\bar{X}_n \xrightarrow{p} \mu$ (by LLN)
- ► Is sample variance consistent? $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_n - \bar{X})^2$. We know $\mathbb{E}(S_n^2) = \sigma^2$ $\mathbb{E}\left((S_n^2 - \sigma^2)^2\right) = V_{2r}(S_n^2)^2$

$$P(|S_n^2 - \sigma^2| \ge \epsilon) \le \frac{\mathbb{E}\left((S_n^2 - \sigma^2)^2\right)}{\epsilon^2} = \frac{Var(S_n^2)}{\epsilon^2}$$

if $Var(S_n^2) \to 0$, then $S_n^2 \xrightarrow{p} \sigma^2$ (hence consistent)

Is sample standard deviation consistent? (Exercise!)

IE605:Engineering Statistics

Other Convergence types

Almost sure convergence: A sequence of RVs X_1, X_2, \cdots convergence to X almost surely if $P\left(\lim_{n \to \infty} X_n = X\right) = 1$. Denoted as $X_n \xrightarrow{a.s} X$.

Convergence in distribution: A sequence of RVs X_1, X_2, \cdots convergence to X in distribution if $\lim_{n \to \infty} F_{X_n}(x) = F_X(x)$ for all continuity points of F_X . Denoted as $X_n \xrightarrow{d} X$

$$X_n \xrightarrow{a.s} X \implies X_n \xrightarrow{p} X \implies X_n \xrightarrow{d} X.$$

IE605:Engineering Statistics

Order Statistics

Smallest, largest, middle observation of a random sample are useful

- Highest temperature in the last 50 years
- Lowest rainfall in the last 50 years
- median value of stock index in the last month

The order static of a random sample X_1, X_2, \ldots, X_n are the sample value placed in the ascending order, denotes by $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$ where $X_{(1)} \leq X_{(2)} \leq \ldots, \leq X_{(n)}$

$$X_{(1)} = \min_{1 \le i \le n} X_i$$
$$X_{(2)} = \text{second smallest } X_i$$
$$\vdots$$
$$X_{(n)} = \max_{1 \le i \le} X_i$$

IE605:Engineering Statistics

Sample mean vs Sample Median

Sample range:
$$X_{(n)} - X_{(1)}$$

Sample median:

$$M = \begin{cases} X_{((n+1)/2)} \text{ if } n \text{ is odd} \\ (X_{(n/2)} + X_{((n/2)+1)})/2 \text{ if } n \text{ is even} \end{cases}$$

Example:

Random sample: 24, 89, 59, 34, 55, 81, 45, 93, 85, 50 Order statistic: 24, 34, 45, 50, 55, 59, 81, 85, 89, 93 Sample range: 93 - 24 = 69Sample mean: 61.5 Median: 57

Median gives better indication of "typical" values than means!

Sample Percentile

For any $p \in [0, 1]$, the (100p)the percentile is the observation such that approximately np of the observations are less than this observation and n(1-p) of the observation are greater.

- For p = 0.5, 50the percentile gives median
- For any $b \in \mathbb{R}_+$, define

$$\{b\} = \begin{cases} \lceil b \rceil & \text{if} \quad \lceil b \rceil \le b + 0.5\\ \lfloor b \rfloor & \text{if} \quad b - 0.5 < \lfloor b \rfloor \end{cases}$$

$$\frac{1}{2} < np < n - \frac{1}{2} \implies \frac{1}{2n} < p < 1 - \frac{1}{2n}$$

Lower and Upper Quartile

(100*p*)th sample percentile is =
$$\begin{cases} X_{(\{np\})} & \text{if } p < 0.5\\ X_{(n+1-\{n(1-p)\})} & \text{if } p > 0.5 \end{cases}$$

Example 1: $n = 50, p = .35, np = 17.5, \{np\} = 18$. 35th sample percentile is $X_{(18)}$ Example 2: $n = 50, p = .65, n(1 - p) = 17.5, \{n(1 - p)\} = 18$ $n + 1 - \{n(1 - p)\} = 50 + 1 - 18 = 33$. 65th sample percentile is $X_{(33)}$

- For p < 0.5 and p > 0.5 sample percentiles exhibit symmetry
- ▶ if (100*p*)th sample percentile is *i*the smallest observation, then 100(1 − *p*)the sample percentile is the *i*th largest observation
- > 25th sample percentile is called lower quartile
- 75the sample percentile is called upper quartile

IE605:Engineering Statistics

Distribution of Order Statistics

Discrete Case:

Random sample $X_1, X_2, ..., X_n$ come from a discrete distributions with pmf $P_X(x_i) = p_i$, where $x_1 < x_2 < \cdots$ are the possible realizations in ascending order. For any x_i , what is $P(X_{(i)} \le x_i)$?

> $P_0 = 0$ $P(X \le x_1) = P_1 = p_1$ $P(X \le x_2) = P_2 = p_1 + p_2$ \vdots $P(X \le x_i) = P_i = p_1 + p_2 + \dots, + p_i$

Discrete Case contd..

$$P(X_{(j)} \le x_i) = \sum_{k=j}^n \binom{n}{k} P_i^k (1-P_i)^{n-k}$$

$$\begin{split} P(X_{(j)} = x_i) = & P(X_{(j)} \le x_i) - P(X_{(j)} \le x_{i-1}) \\ & = \sum_{k=j}^n \binom{n}{k} \left(P_i^k (1-P_i)^{n-k} - P_{i-1}^k (1-P_{i-1})^{n-k} \right) \end{split}$$

IE605:Engineering Statistics

Continuous case

Random sample $X_1, X_2, ..., X_n$ come from a population with pdf $f_X(x)$, and CDF $F_X(x)$. Let $X_{(1)}, X_{(2)}, ..., X_{(n)}$ denote the order statistics. Then, pdf of $X_{(j)}$ is

$$f_{X_{(j)}(x)} = \frac{n!}{(j-1)!(n-j)!} f_X(x) \left(F_X(x)\right)^{j-1} \left(1 - F_X(x)\right)^{n-j}$$

Joint pdf of $X_{(i)}$ and $X_{(j)}$ for $1 \le i < j \le n$ is

$$f_{X_{(i),X_{(j)}}(u,v)} = \frac{n!}{(i-1)!(j-1-i)(n-j)!} \times f_X(u)f_X(v) (F_X(u))^{i-1} (F_X(v) - F_X(u))^{j-1-i} (1 - F_X(v))^{n-j}$$

IE605:Engineering Statistics