IE605: Engineering Statistics
 Lecture 07

Manjesh K. Hanawal

Previous Lecture:

- Exponential Family of Distributions
- Population and Random Sampling
- Sample mean, variance and standard deviation
- Sampling from Normal distribution
- Student's t-distribution

This Lecture:

- F-distributions
- Convergence of RVs
- Consistency
- Order Statistics
- Generating Random Samples

F-distributions

We would be interested in variability of populations:

$$
\begin{aligned}
& \left(X_{1}, X_{2}, \ldots, X_{n}\right) \text { are iid and } \quad X_{i} \sim \mathcal{N}\left(\mu_{X}, \sigma_{X}^{2}\right) \quad \forall i \\
& \left(Y_{1}, Y_{2}, \ldots, Y_{m}\right) \text { are iid and } \quad Y_{j} \sim \mathcal{N}\left(\mu_{Y}, \sigma_{Y}^{2}\right) \quad \forall j
\end{aligned}
$$

We would estimate $\frac{S_{X}^{2}}{S_{Y}^{2}}$. What is its distribution?

$$
\frac{S_{X}^{2} / S_{Y}^{2}}{\sigma_{X}^{2} / \sigma_{Y}^{2}}=\frac{S_{X}^{2} / \sigma_{X}^{2}}{S_{Y}^{2} / \sigma_{Y}^{2}}=\frac{(n-1) S_{X}^{2} /(n-1) \sigma_{X}^{2}}{(m-1) S_{Y}^{2} /(m-1) \sigma_{Y}^{2}}=\frac{\chi_{n-1}^{2} /(n-1)}{\chi_{m-1}^{2} /(m-1)}
$$

$\frac{S_{X}^{2} / S_{Y}^{2}}{\sigma_{X}^{2} / \sigma_{Y}^{2}}$ has F-distribution with ($\mathrm{n}-1$) and ($\mathrm{m}-1$) degree of freedom
F-dsitribution is named in the honor of Sir Ronald Fisher!

F-distributions contd...

PDF of F distribution with p and q degrees of freedom $\left(F_{p, q}\right)$

$$
f_{F}(x)=\frac{\Gamma\left(\frac{p+q}{2}\right)}{\Gamma\left(\frac{p}{2}\right) \Gamma\left(\frac{q}{2}\right)}\left(\frac{p}{q}\right)^{2} \frac{x^{p / 2-1}}{[1+(p / q) x]^{(p+q) / 2}} \quad x>0
$$

$$
F_{p, q}=\frac{U / p}{V / q} \text { where } U \sim \chi_{p}^{2}, V \sim \chi_{q}^{2}, \text { and independent }
$$

Derivation of pdf of $F_{p, q}$

- $X=\frac{U / p}{V / q}=\frac{q}{p} \frac{U}{V}$ and $Y=V$
- As U, V are independent $f(U, V)=f(U) f(V)$
- Find joint distribution of (X, Y) be applying transformations
- Find marginal distribution of X

Properties of F-distribution

- Claim 1: If $X \sim F_{p, q}$, then $1 / X \sim F_{q, p}$
$X=\frac{U / p}{V / p}$ where $U \sim \chi_{p}^{2}, V \sim \chi_{q}^{2}$ and are independent $1 / X=\frac{V / q}{U / p}$, hence $1 / X \sim F_{q, p}$
- Claim 2:if $X \sim t_{p}$, then $X^{2} \sim F_{1, p}$ $X=\frac{U}{\sqrt{V / p}}$, where $U \sim \mathcal{N}(0,1), V \sim \chi_{p}^{2}$ and are independent $X^{2}=U^{2} /(V / p)=\chi_{1}^{2} /(V / p)=\left(\chi_{1}^{2} / 1\right) /\left(\chi_{p}^{2} / p\right) \sim F_{1, p}$
- Claim 3: if $X \sim F_{p, q}$, then $\frac{(p / q) X}{1+(p / q) X} \sim \operatorname{beta}(p / 2, q / 2)$ (Exercise!)

Convergence of Sequence of RVs

What happens when the number of samples goes to infinity (theoretical artifact)

Convergence in Probability: A sequence of RVs X_{1}, X_{2}, \ldots, converge in probability to a random variable X if, for an $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} P\left(\left|X_{n}-X\right| \geq \epsilon\right)=0 \text { or } \lim _{n \rightarrow \infty} P\left(\left|X_{n}-X\right|<\epsilon\right)=1
$$

- In the definition X_{1}, X_{2}, \cdots need not be i.i.d or independent
- Compactly written as $X_{n} \xrightarrow{p} X$ in probability.
- Suppose X_{1}, X_{2}, \ldots are i.i.d. with common mean μ and variance $\sigma^{2}>\infty$. From LLN, we know

$$
\bar{X}_{n}:=\frac{1}{n} \sum_{i=1}^{n} X_{i} \xrightarrow{p} \mu
$$

- For an $\epsilon>0$

$$
\begin{aligned}
P\left(\left|\bar{X}_{n}-\mu\right| \geq \epsilon\right) & \leq \frac{\mathbb{E}\left(\left|\bar{X}_{n}-\mu\right|^{2}\right)}{\epsilon^{2}} \\
& =\frac{\operatorname{Var}\left(\bar{X}_{n}\right)}{\epsilon^{2}}=\frac{\sigma^{2} / n}{\epsilon} \rightarrow 0
\end{aligned}
$$

- Sample mean converges to population mean!
- $\mathbb{E}\left(\bar{X}_{n}\right)=\mu$ (unbiased).

Consistency of Sample mean an Sample Variance

Consistency: A sample quantity is consistent if its sequence converges to a constant

- Sample mean is consistent: $\bar{X}_{n} \xrightarrow{p} \mu$ (by LLN)
- Is sample variance consistent?

$$
S_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{n}-\bar{X}\right)^{2} . \text { We know } \mathbb{E}\left(S_{n}^{2}\right)=\sigma^{2}
$$

$$
P\left(\left|S_{n}^{2}-\sigma^{2}\right| \geq \epsilon\right) \leq \frac{\mathbb{E}\left(\left(S_{n}^{2}-\sigma^{2}\right)^{2}\right)}{\epsilon^{2}}=\frac{\operatorname{Var}\left(S_{n}^{2}\right)}{\epsilon^{2}}
$$

if $\operatorname{Var}\left(S_{n}^{2}\right) \rightarrow 0$, then $S_{n}^{2} \xrightarrow{p} \sigma^{2}$ (hence consistent)

- Is sample standard deviation consistent? (Exercise!)

Other Convergence types

Almost sure convergence: A sequence of $\mathrm{RVs} X_{1}, X_{2}, \cdots$ convergence to X almost surely if $P\left(\lim _{n \rightarrow \infty} X_{n}=X\right)=1$.

Denoted as $X_{n} \xrightarrow{\text { a.s }} X$.

Convergence in distribution: A sequence of $\mathrm{RVs} X_{1}, X_{2}, \cdots$ convergence to X in distribution if $\lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{X}(x)$ for all continuity points of F_{X}. Denoted as $X_{n} \xrightarrow{d} X$

$$
X_{n} \xrightarrow{\text { a.s }} X \Longrightarrow X_{n} \xrightarrow{p} X \Longrightarrow X_{n} \xrightarrow{d} X .
$$

Order Statistics

Smallest, largest, middle observation of a random sample are useful

- Highest temperature in the last 50 years
- Lowest rainfall in the last 50 years
- median value of stock index in the last month

The order static of a random sample $X_{1}, X_{2}, \ldots, X_{n}$ are the sample value placed in the ascending order, denotes by

$$
X_{(1)}, X_{(2)}, \ldots, X_{(n)} \text { where } X_{(1)} \leq X_{(2)} \leq \ldots, \leq X_{(n)}
$$

$$
\begin{aligned}
X_{(1)}= & \min _{1 \leq i \leq n} X_{i} \\
X_{(2)}= & \text { second smallest } X_{i} \\
& \vdots \\
X_{(n)} & =\max _{1 \leq i \leq} X_{i}
\end{aligned}
$$

Sample mean vs Sample Median

- Sample range: $X_{(n)}-X_{(1)}$
- Sample median:

$$
M=\left\{\begin{array}{l}
X_{((n+1) / 2)} \text { if } n \text { is odd } \\
\left(X_{(n / 2)}+X_{((n / 2)+1)}\right) / 2 \text { if } n \text { is even }
\end{array}\right.
$$

- Example:

Random sample: $24,89,59,34,55,81,45,93,85,50$
Order statistic: $24,34,45,50,55,59,81,85,89,93$
Sample range: $93-24=69$
Sample mean: 61.5
Median: 57

- Median gives better indication of "typical" values than means!

Sample Percentile

For any $p \in[0,1]$, the $(100 p)$ the percentile is the observation such that approximately $n p$ of the observations are less than this observation and $n(1-p)$ of the observation are greater.

- For $p=0.5,50$ the percentile gives median
- For any $b \in \mathbb{R}_{+}$, define

$$
\{b\}=\left\{\begin{array}{lll}
\lceil b\rceil & \text { if } & \lceil b\rceil \leq b+0.5 \\
\lfloor b\rfloor & \text { if } & b-0.5<\lfloor b\rfloor
\end{array}\right.
$$

- $\frac{1}{2}<n p<n-\frac{1}{2} \Longrightarrow \frac{1}{2 n}<p<1-\frac{1}{2 n}$

Lower and Upper Quartile

$(100 p)$ th sample percentile is $= \begin{cases}X_{(\{n p\})} & \text { if } p<0.5 \\ X_{(n+1-\{n(1-p)\})} & \text { if } p>0.5\end{cases}$

Example 1: $n=50, p=.35, n p=17.5,\{n p\}=18$. 35th sample percentile is $X_{(18)}$
Example 2: $n=50, p=.65, n(1-p)=17.5,\{n(1-p)\}=18$ $n+1-\{n(1-p)\}=50+1-18=33$. 65th sample percentile is $X_{(33)}$

- For $p<0.5$ and $p>0.5$ sample percentiles exhibit symmetry
- if $(100 p)$ th sample percentile is ithe smallest observation, then $100(1-p)$ the sample percentile is the ith largest observation
- 25th sample percentile is called lower quartile
- 75the sample percentile is called upper quartile

Distribution of Order Statistics

Discrete Case:
Random sample $X_{1}, X_{2}, \ldots, X_{n}$ come from a discrete distributions with pmf $P_{X}\left(x_{i}\right)=p_{i}$, where $x_{1}<x_{2}<\cdots$ are the possible realizations in ascending order. For any x_{i}, what is $P\left(X_{(j)} \leq x_{i}\right)$?

$$
\begin{gathered}
P_{0}=0 \\
P\left(X \leq x_{1}\right)=P_{1}=p_{1} \\
P\left(X \leq x_{2}\right)=P_{2}=p_{1}+p_{2} \\
\vdots \\
P\left(X \leq x_{i}\right)=P_{i}=p_{1}+p_{2}+\ldots,+p_{i}
\end{gathered}
$$

Discrete Case contd..

- Fix some x_{i}. Define $Y_{j}=\mathbb{1}_{\left\{x_{j} \leq x_{i}\right\}}$ for all $j=1,2, \ldots, n$
- $P\left(Y_{j}=1\right)=P_{i}$ for all $j=1,2, \ldots, n$
- $Y=\sum_{j=1}^{n} Y_{j}, Y \in\{0,1,2, \ldots, n\}$
- As X_{i} s are i.i.d, Y_{j} s are i.i.d. $Y_{j} \sim \operatorname{Ber}\left(P_{i}\right)$.
- $Y \sim \operatorname{Bin}\left(n, P_{i}\right) . Y$ is sum of $n \operatorname{Ber}\left(P_{i}\right)$ RVs
- $\left\{X_{(j)} \leq x_{i}\right\}=\{Y \geq j\}$. Hence $P\left(X_{(j)} \leq x_{i}\right)=P(Y \geq i)$
- $P(Y \geq j)=\sum_{k=j}^{n}\binom{n}{k} P_{i}^{k}\left(1-P_{i}\right)^{n-k}$.

$$
\begin{gathered}
P\left(X_{(j)} \leq x_{i}\right)=\sum_{k=j}^{n}\binom{n}{k} P_{i}^{k}\left(1-P_{i}\right)^{n-k} \\
P\left(X_{(j)}=x_{i}\right)=P\left(X_{(j)} \leq x_{i}\right)-P\left(X_{(j)} \leq x_{i-1}\right) \\
=\sum_{k=j}^{n}\binom{n}{k}\left(P_{i}^{k}\left(1-P_{i}\right)^{n-k}-P_{i-1}^{k}\left(1-P_{i-1}\right)^{n-k}\right)
\end{gathered}
$$

Continuous case

Random sample $X_{1}, X_{2}, \ldots, X_{n}$ come from a population with pdf $f_{X}(x)$, and CDF $F_{X}(x)$. Let $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$ denote the order statistics. Then, pdf of $X_{(j)}$ is

$$
f_{X_{(j)}(x)}=\frac{n!}{(j-1)!(n-j)!} f_{X}(x)\left(F_{X}(x)\right)^{j-1}\left(1-F_{X}(x)\right)^{n-j}
$$

Joint pdf of $X_{(i)}$ and $X_{(j)}$ for $1 \leq i<j \leq n$ is

$$
\begin{aligned}
f_{X_{(i), X_{(j)}}(u, v)} & =\frac{n!}{(i-1)!(j-1-i)(n-j)!} \times \\
& f_{X}(u) f_{X}(v)\left(F_{X}(u)\right)^{i-1}\left(F_{X}(v)-F_{X}(u)\right)^{j-1-i}\left(1-F_{X}(v)\right)^{n-j}
\end{aligned}
$$

