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Previous Lecture:

I Generating Random Samples

This Lecture:

I Data reduction

I Sufficiency principle

I Sufficient statistics

I factorization theorem



Data Reduction

I A random sample x := (x1, x2, . . . , xn) is a long list of
numbers hard to interpret

I We may wish to summarize the information in it by
determining a few key features
I sample mean
I sample variance
I smallest value
I largest value

I Any statistic T (·) defines a data reduction or data summary

I When we have statistics T (x) we treat sample x and y the
same as long as T (x) = T (y)
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I T (x) =
∑n

i=1 xi gives the sum of the sample x . There could
be many other samples with the same sum of sample space

I Data reduction can be though of partition

I For any t, At = {x : T (x) = t}
I What are advantages and consequences of data reduction?

Statistic are associated with parameters.

Principles of data reduction:

I Sufficiency Principle: Parameter information by
summarization of data

I Likelihood Principle: function of parameter determined by
observed sample

I Equivariance Principle: preserves important features of model
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Sufficiency Principle

I A sufficient statistic for a parameter θ, captures all
information about θ contained in the sample

I knowledge of individual samples does not contain any more
information about θ

I x = (x1, x2, . . . , xn) and T (x) is a statics. T (x) contains all
information about θ. Further knowing x3 or x4 or any other
component provides no additional information

Sufficency Principle: If T (X ) is a sufficient statistic for θ,
then any inference about θ should depend on the sample X
only through T (X )

If x and y are such that T (x) = T (y), then the inference about θ
should be the same whether X = x or X = y is observed.
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Characterization of Sufficient Statistic

A statistic T (X ) is a sufficient statistic for θ, if the conditional
distribution of X given T (X ) does not depend on θ.

I Pθ (X = x |T (X ) = t) is independent of θ if T (X ) is sufficient

I Sufficient statistic captures all the information about θ

Example:

I Statistician 1: Generate sample x and computes T (x)

I Statistician 2: is informed about T (x) only not x

I if T is a sufficient statistic for parameter θ, both the
statistician have same amount of information about θ.
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Sufficient Statistic contd..

Let T (X ) is a sufficient Statistic for parameter θ

I Pθ(X = x |T (X ) = t) doesn’t depend on θ for all t

I Probability is non zero for sample T (x) = t

I We consider Pθ(X = x |T (X ) = T (x)). Note
{X = x} ⊂ {y : T (y) = T (x)}. Then

Pθ (X = x |T (X ) = T (x)) =
Pθ(X = x ,T (X ) = T (x))

Pθ(T (X ) = T (x))

=
Pθ(X = x)

Pθ(T (X ) = T (x))

=
p(x |θ)

q(T (x)|θ)

I p(x |θ) is the joint pmf of sample X and q(t|θ) is the
distribution of statistic T (X ).
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Alternate definition of sufficient statistic

If p(x |θ) is a joint pdf/pmf of X and q(t|θ) is pdf/pmf of
T (X ), then T (X ) is a sufficient statistic for θ if for every x ,
the ratio p(x |θ)/q(T (x)|θ) does not depend on θ.

Example 1: Bernoulli sufficient statistics Let X = (X1,X2, . . . ,Xn)
be iid ∼ Ber(θ). T (X ) =

∑n
i=1 Xi is a sufficient statistic for θ.

For x = (x1, x2, . . . , xn), define t =
∑n

i=1 xi

p(x |θ)

q(T (x)|θ)
=

∏n
i=1 θ

xi (1− θ)1−xi(n
t

)
θt(1− θ)n−t

=
θ
∑

xi (1− θ)
∑

(1−xi )(n
t

)
θt(1− θ)n−t

=
θt(1− θ)n−t(n
t

)
θt(1− θ)n−t

=
1(n
t

) =
1( n∑
xi

) (not a function of θ)
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Example 2: Normal sufficient statistics X = (X1,X2, . . . ,Xn) is iid
∼ N (µ, σ2). Sample mean X̄ = 1

n

∑n
i=1 Xi , is a sufficient statistic

for µ.

p(x |µ) =
n∏

i=1

1√
2πσ2

exp{−(xi − µ)2/2σ2}

We know X̄ ∼ N (µ, σ2/n)

q(X̄ |µ) =

√
n√

2πσ2
exp{−n(x̄ − µ)2/2σ2}

p(x |θ)

q(x̄ |θ)
=

√
n√

(2πσ2)n−1
exp

{
−

n∑
i=1

(xi − x̄)2/2σ2

}
(does not depend on µ)
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Factorization theorem

How to come up with a sufficient statistic for a parameter

I guess a statistics (required good intuition)

I find its pdf/pmf (expression can be tedious)

I find the ration to acertain

Factorization Theorem: For a random sample X with
pdf/pmf f (x |θ), let T (X ) is a statistic for θ. Then T (X )
is sufficient statistic if and only if if there exists functions
g(t|θ) and h(x) such that, for all x and parameters points θ

f (x |θ) = g(T (x)|θ)h(x)
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Proof of factorization theorem for discrete case

Assume T (X ) is a sufficient statistic ( =⇒ ).

I Pθ(X = x |T (X ) = T (x) does not depend on θ

I Set h(x) = Pθ(X = x |T (X ) = T (x)) (valid!)

I Set g(t|θ) = Pθ(T (X ) = t) (valid!)

f (x |θ) = Pθ(X = x))

= Pθ(X = x ,T (X ) = T (x))

= Pθ(X = x |T (X ) = T (x))Pθ(T (X ) = T (x))

= h(x)g(T (x)|θ)
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Proof of factorization theorem for discrete case contd..
Assume the factorization holds (⇐= )

I We show that ratio f (x |θ)/q(T (x)|θ) does not depend on θ

I Choose x . Let t = T (x) and At = {y : T (y) = t}

f (x |θ)

q(T (x)|θ)
=

g(T (x)|θ)h(x)

q(T (x)|θ)

=
g(T (x)|θ)h(x)∑

y∈At
f (y |θ)

=
g(T (x)|θ)h(x)∑

y∈At
g(T (y)|θ)h(y)

=
g(T (x)|θ)h(x)

g(T (x)|θ)
∑

y∈At
h(y)

=
h(x)∑

y∈At
h(y)

does not depend on θ

T (X ) is a sufficient statistic for θ
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