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Previous Lecture:

I Data Reduction

I Sufficiency principle

I Sufficient Statistics

I Factorization theorem

I Minimum statistics

I Ancillary statistics

This Lecture:

I Likelihood functions



Likelihood function

Given that X = x is observed, the function θ defined by

L(θ|x) =

{
f (x |θ) if X is continuous

Pθ(X = x) if X is discrete

When a sample x is observed. For a given parameters (θ1,θ2) if

Pθ1(X = x) = L(θ1|x) > L(θ2|x) = Pθ(X = x)

Sample would have come more likely from parameter θ1 than θ2.
θ1 is more plausible value of true parameter θ than θ2
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Examples

I Binomial: Suppose X is Binomial with known n and unknown
p. If X = x is observed, then the likelihood function is

L(p|x) = Pp(X = x) =

(
n

x

)
px(1− p)n−x .

I Exponential: if X = (X1,X2, . . . ,Xn), where Xi s are iid
exponential with unknown λ

L(λ|x) = f (x |λ) =
n∏

i=1

λ exp{−λxi}

I Gaussian: if X = (X1,X2, . . . ,Xn), where Xi s are iid Gaussian
with unknown µ and known σ2

L(µ|x) = f (x |µ) =
n∏

i=1

1√
2πσ2

exp{−(xi − µ)2/2σ2}
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Likelihood Principle

If samples x and y are such that L(θ|x) = C (x , y)L(θ|y)
for all θ, then conclusion drawn from x and y are identical.
C (x , y) is independent of θ.

Example: Let X = (X1,X2, . . .Xn) are iid Gaussian with unknown
µ and known σ2. For any samples x and y

L(µ|x) = f (x |µ) =
n∏

i=1

1√
2πσ2

exp{−(xi − µi )2/2σ2}

L(µ|y) = f (y |µ) =
n∏

i=1

1√
2πσ2

exp{−(yi − µi )2/2σ2}

C (x , y) = exp

{
−

n∑
i=1

(xi − x̄)/2σ2 +
n∑

i=1

(yi − ȳ)/2σ2

}

L(µ|x) = L(µ|y) if and only if x̄ = ȳ . Same conclusion is drawn
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Maximum Likelihood Estimators

For a given x , let θ̂(x) be the parameter at which L(θ|x)
attains maximum value as a function of θ, i.e.,

θ̂(x) ∈ arg max
θ

L(θ|x)

θ̂(x) is the Maximum Likelihood Estimator (MLE) of
parameter θ at X = x .

I MLE is the parameter point for which the oberved point is
most likely

I I general, MLE is a good point estimator and is by far the
most popular technique for deriving estimators.
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Solving MLE

I How to find global optima?

I How to verify the found solution is the global optima?

I When L(θ|x) is differentiable in each component θi , simple
differential calculus can be applied.

∂

∂θi
L(θ|x) = 0, i = 1, 2, . . . , k .

I How sensitive is the solution to small changes in sample data

IE605:Engineering Statistics Manjesh K. Hanawal 7



Examples:
Normal Likelihood: X = (X1,X2, . . . ,Xn) be i.i.d. ∼ N (θ, 1).

I Likelihood function is

L(θ|x) =
n∏

i=1

1√
2π

exp

{
(xi − θ)2

2

}
I d

dθL(θ|x) = 0 =⇒
∑n

i=1(xi − θ) = 0. (first order condition)

I θ̂(x) =
∑n

i=1 xi
n = x̄ . Is x̄ global optimal?

I Check d2

dθ2L(θ|x)|θ=x̄ < 0? (second order condition)

Bernoulli Likelihood: X = (X1,X2, . . . ,Xn) be i.i.d. ∼ Ber(p).

I Likelihood function is

L(p|x) =
n∏

i=1

pxi (1− p)1−xi = p
∑n

i=1 xi (1− p)n−
∑n

i=1 xi

I Solve d
dθL(p|x) = 0 and find p̄ (first order condition)

I Check d2

dp2L(p|x)|p=p̄ < 0 (second order condition)
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Log Likelihood Functions

I It is easier work with logarithms of Likelihood functions

I log L(θ|x) instead of L(θ|x), called log likelihood function

I As log(·) is monotone, solution of maximization problem does
not change!

I Normal Log Likelihood:

log L(θ|x) = n log
1√
2π
−
∑n

i=1(xi − θ)2

2

I Binomial Log Likelihood:

log L(p|x) =

(
n∑

i=1

xi

)
log p +

(
n −

n∑
i=1

xi

)
log(1− p)

d

dp
L(p|x) = 0 =⇒ p̂ = x̄

.
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Other Point Estimators:

I Maximum Likelihood estimator

I Method of moments

I Bayes method

I Expectation Maximization (EM) method
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Method of Moments (MM)
I Method of Moments(MM) is one the oldest method for

finding point estimator (since 1800!)
I MM estimators are found by equating the first k sample

moments to the corresponding population moments
I X be a sample from pmf/pdf f (x |(θ1, θ2, . . . , θk))

m1 =
1

n

n∑
i=1

X 1
i , µ′1 = E(X 1)

m2 =
1

n

n∑
i=1

X 2
i , µ′2 = E(X 2)

...

mk =
1

n

n∑
i=1

X k
i , µ′k = E(X k)

Usually, µ′jS will be function of (θ1, θ2, . . . , θk), say
µ′j(θ1, θ2, . . . , θk)
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Solving MMs
I Obtain k equations by equating

m1 = µ′1(θ1, θ2, . . . , θk)

m2 = µ′2(θ1, θ2, . . . , θk)

...

mk = µ′k(θ1, θ2, . . . , θk)

Normal Method of Moments: X = (X1,X2, . . . ,Xn) are i.i.d.
N (µ, σ2). θ = (θ1, θ2) = (µ, σ2).

I m1 = 1
n

∑n
i=1 Xi = X̄ (first moment), m2 = 1

n

∑n
i=1 X

2
i

(second moment)

I µ′1(θ1, θ2) = µ (mean), µ′2(θ1, θ2) = µ2 + σ2 (second
moment).

I ∑n
i=1 Xi

n
= θ1 and

∑n
i=1 X

2
i

n
= θ2

1 + θ2.
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