IE605: Engineering Statistics Lecture 11

Previous Lecture:

- Data Reduction
- Sufficiency principle
- Sufficient Statistics
- Factorization theorem
- Minimum statistics
- Ancillary statistics

This Lecture:

Likelihood functions

Likelihood function

Given that $\boldsymbol{X} = \boldsymbol{x}$ is observed, the function $\boldsymbol{\theta}$ defined by

$$\mathcal{L}(oldsymbol{ heta}|oldsymbol{x}) = egin{cases} f(oldsymbol{x}|oldsymbol{ heta}) & ext{if }oldsymbol{X} ext{ is continuous} \ P_{ heta}(oldsymbol{X}=oldsymbol{x}) & ext{if }oldsymbol{X} ext{ is discrete} \end{cases}$$

When a sample x is observed. For a given parameters (θ_1, θ_2) if

$$P_{\boldsymbol{ heta}_1}(\boldsymbol{X}=\boldsymbol{x}) = L(\boldsymbol{ heta}_1|\boldsymbol{x}) > L(\boldsymbol{ heta}_2|\boldsymbol{x}) = P_{\theta}(\boldsymbol{X}=\boldsymbol{x})$$

Sample would have come more likely from parameter θ_1 than θ_2 . θ_1 is more **plausible** value of true parameter θ than θ_2

IE605:Engineering Statistics

Examples

Binomial: Suppose X is Binomial with known n and unknown p. If X = x is observed, then the likelihood function is

$$L(p|x) = P_p(X=x) = \binom{n}{x} p^x (1-p)^{n-x}.$$

• Exponential: if $\mathbf{X} = (X_1, X_2, \dots, X_n)$, where X_i s are iid exponential with unknown λ

$$L(\lambda|x) = f(x|\lambda) = \prod_{i=1}^{n} \lambda \exp\{-\lambda x_i\}$$

• Gaussian: if $\mathbf{X} = (X_1, X_2, \dots, X_n)$, where X_i s are iid Gaussian with unknown μ and known σ^2

$$L(\mu|x) = f(x|\mu) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-(x_i - \mu)^2/2\sigma^2\}$$

IE605:Engineering Statistics

Likelihood Principle

If samples x and y are such that $L(\theta|x) = C(x, y)L(\theta|y)$ for all θ , then conclusion drawn from x and y are identical. C(x, y) is independent of θ .

Example: Let $\mathbf{X} = (X_1, X_2, \dots, X_n)$ are iid Gaussian with unknown μ and known σ^2 . For any samples \mathbf{x} and \mathbf{y}

$$L(\mu|\mathbf{x}) = f(\mathbf{x}|\mu) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-(x_i - \mu_i)^2/2\sigma^2\}$$
$$L(\mu|\mathbf{y}) = f(\mathbf{y}|\mu) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-(y_i - \mu_i)^2/2\sigma^2\}$$
$$C(\mathbf{x}, \mathbf{y}) = \exp\left\{-\sum_{i=1}^{n} (x_i - \bar{x})/2\sigma^2 + \sum_{i=1}^{n} (y_i - \bar{y})/2\sigma^2\right\}$$

 $L(\mu|x) = L(\mu|y)$ if and only if $\bar{x} = \bar{y}$. Same conclusion is drawn about interfigure interfigure interfigure x and y_{NRA} is fying $\bar{x} = \bar{y}$

Maximum Likelihood Estimators

For a given \mathbf{x} , let $\hat{\boldsymbol{\theta}}(\mathbf{x})$ be the parameter at which $L(\boldsymbol{\theta}|\mathbf{x})$ attains maximum value as a function of θ , i.e.,

$$\hat{oldsymbol{ heta}}(oldsymbol{x})\in rg\max_{oldsymbol{ heta}} L(oldsymbol{ heta}|oldsymbol{x})$$

 $\hat{\theta}(\mathbf{x})$ is the Maximum Likelihood Estimator (MLE) of parameter θ at $\mathbf{X} = \mathbf{x}$.

- MLE is the parameter point for which the oberved point is most likely
- I general, MLE is a good **point estimator** and is by far the most popular technique for deriving estimators.

Solving MLE

- How to find global optima?
- How to verify the found solution is the global optima?
- When $L(\theta|\mathbf{x})$ is differentiable in each component θ_i , simple differential calculus can be applied.

$$\frac{\partial}{\partial \theta_i} L(\boldsymbol{\theta} | \boldsymbol{x}) = 0, \quad i = 1, 2, \dots, k.$$

How sensitive is the solution to small changes in sample data

Examples:

Normal Likelihood: $\mathbf{X} = (X_1, X_2, \dots, X_n)$ be i.i.d. $\sim \mathcal{N}(\theta, 1)$.

Likelihood function is

$$L(\theta|\mathbf{x}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} \exp\left\{\frac{(x_i - \theta)^2}{2}\right\}$$

• $\frac{d}{d\theta}L(\theta|\mathbf{x}) = 0 \implies \sum_{i=1}^{n} (x_i - \theta) = 0.$ (first order condition) • $\hat{\theta}(\mathbf{x}) = \frac{\sum_{i=1}^{n} x_i}{n} = \bar{\mathbf{x}}.$ Is $\bar{\mathbf{x}}$ global optimal? • Check $\frac{d^2}{d\theta^2}L(\theta|\mathbf{x})|_{\theta=\bar{\mathbf{x}}} < 0$? (second order condition) Bernoulli Likelihood: $\mathbf{X} = (X_1, X_2, \dots, X_n)$ be i.i.d. $\sim Ber(p).$

Likelihood function is

$$L(p|\mathbf{x}) = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i} = p^{\sum_{i=1}^{n} x_i} (1-p)^{n-\sum_{i=1}^{n} x_i}$$

► Solve $\frac{d}{d\theta}L(p|\mathbf{x}) = 0$ and find \bar{p} (first order condition) ► Check $\frac{d^2}{dp^2}L(p|\mathbf{x})|_{p=\bar{p}} < 0$ (second order condition) IE605:Engineering Statistics

Log Likelihood Functions

- It is easier work with logarithms of Likelihood functions
- ▶ log $L(\theta|\mathbf{x})$ instead of $L(\theta|\mathbf{x})$, called log likelihood function
- As log(·) is monotone, solution of maximization problem does not change!
- Normal Log Likelihood:

$$\log L(\theta|\mathbf{x}) = n \log \frac{1}{\sqrt{2\pi}} - \frac{\sum_{i=1}^{n} (x_i - \theta)^2}{2}$$

Binomial Log Likelihood:

$$\log L(p|\mathbf{x}) = \left(\sum_{i=1}^{n} x_i\right) \log p + \left(n - \sum_{i=1}^{n} x_i\right) \log(1-p)$$
$$\frac{d}{dp} L(p|\mathbf{x}) = 0 \implies \hat{p} = \bar{x}$$

IE605:Engineering Statistics

Other Point Estimators:

- Maximum Likelihood estimator
- Method of moments
- Bayes method
- Expectation Maximization (EM) method

Method of Moments (MM)

- Method of Moments(MM) is one the oldest method for finding point estimator (since 1800!)
- MM estimators are found by equating the first k sample moments to the corresponding population moments
- **X** be a sample from pmf/pdf $f(\mathbf{x}|(\theta_1, \theta_2, \dots, \theta_k))$

$$m_{1} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{1}, \qquad \mu_{1}' = \mathbb{E}(X^{1})$$
$$m_{2} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}, \qquad \mu_{2}' = \mathbb{E}(X^{2})$$
$$\vdots$$

$$m_k = \frac{1}{n} \sum_{i=1}^n X_i^k, \qquad \qquad \mu'_k = \mathbb{E}(X^k)$$

Usually, μ'_{j} S will be function of $(\theta_{1}, \theta_{2}, \dots, \theta_{k})$, say $\mu'_{i}(\theta_{1}, \theta_{2}, \dots, \theta_{k})$ E605:Engisteering Statistics Manjesh K. Hanawal

Solving MMs

Obtain k equations by equating

$$m_1 = \mu'_1(\theta_1, \theta_2, \dots, \theta_k)$$
$$m_2 = \mu'_2(\theta_1, \theta_2, \dots, \theta_k)$$
$$\vdots$$

$$m_k = \mu'_k(heta_1, heta_2, \dots, heta_k)$$

Normal Method of Moments: $X = (X_1, X_2, ..., X_n)$ are i.i.d. $\mathcal{N}(\mu, \sigma^2)$. $\theta = (\theta_1, \theta_2) = (\mu, \sigma^2)$.

- $m_1 = \frac{1}{n} \sum_{i=1}^n X_i = \bar{X}$ (first moment), $m_2 = \frac{1}{n} \sum_{i=1}^n X_i^2$ (second moment)
- $\mu'_1(\theta_1, \theta_2) = \mu$ (mean), $\mu'_2(\theta_1, \theta_2) = \mu^2 + \sigma^2$ (second moment).

$$\frac{\sum_{i=1}^n X_i}{n} = \theta_1 \quad \text{and} \quad \frac{\sum_{i=1}^n X_i^2}{n} = \theta_1^2 + \theta_2.$$

IE605:Engineering Statistics