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Previous Lecture:

I Likelihood functions

This Lecture:

I Method of moments

I Bayes method

I Evaluating Estimators

I Cramer’s Rao bound



Other Point Estimators:

I Maximum Likelihood estimator

I Method of moments

I Bayes method

I Expectation Maximization (EM) method
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Method of Moments (MM)
I Method of Moments(MM) is one the oldest method for

finding point estimator (since 1800!)
I MM estimators are found by equating the first k sample

moments to the corresponding population moments
I X be a sample from pmf/pdf f (x |(θ1, θ2, . . . , θk))

m1 =
1

n

n∑
i=1

X 1
i , µ′1 = E(X 1)

m2 =
1

n

n∑
i=1

X 2
i , µ′2 = E(X 2)

...

mk =
1

n

n∑
i=1

X k
i , µ′k = E(X k)

Usually, µ′jS will be function of (θ1, θ2, . . . , θk), say
µ′j(θ1, θ2, . . . , θk)
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Solving MMs
I Obtain k equations by equating

m1 = µ′1(θ1, θ2, . . . , θk)

m2 = µ′2(θ1, θ2, . . . , θk)

...

mk = µ′k(θ1, θ2, . . . , θk)

Normal Method of Moments: X = (X1,X2, . . . ,Xn) are i.i.d.
N (µ, σ2). θ = (θ1, θ2) = (µ, σ2).

I m1 = 1
n

∑n
i=1 Xi = X̄ (first moment), m2 = 1

n

∑n
i=1 X

2
i

(second moment)

I µ′1(θ1, θ2) = µ (mean), µ′2(θ1, θ2) = µ2 + σ2 (second
moment).

I ∑n
i=1 Xi

n
= θ1 and

∑n
i=1 X

2
i

n
= θ21 + θ2.
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Example: Binomial method of moments

X = (X1,X2 . . . ,Xn) are iid, Xi ∼ Bin(k , p). k & p are unknown.
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Bayes Estimators

I In classical approach θ is unknown but fixed

I Based on the observed sample X = (X1,X2, . . . ,Xn) drawn
from population with parameter θ, we obtain knowledge of θ

I In Bayesian approach θ is assumed to be random quantity
drawn from a distribution known as prior distribution

I Prior distribution is a subjective belief formulated before data
are seen (hence prior distribution)

I When sample is observed from population, the prior
distribution is updated. The udate is called Posterior
distribution
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Baye’s method

I Denote prior distributions as P(θ)

I Conditional pmf of samples under θ as P(x |θ)

I Joint pmf of samples as P(x)

I Conditional distibution of θ given x as P(θ|x)

By Baye’s formula:

P(θ|x)p(x) = P(x |θ)P(θ)

=⇒ P(θ|x) =
P(x |θ)p(θ)

P(x)

=⇒ P(θ|x) =
P(x |θ)P(θ)∫
P(x |θ)P(θ)dθ

For continuous case replace pmf p(x |θ) by pdf f (x |θ).
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Example: Binomial Bayes Estimator

Y ∼ Bin(n, p). Prior distribution of p ∼ Beta(α, β). Y = y is

observed. Find posterior, i.e., P(p|y) = P(y |p)P(p)
P(y)

P(y , p) =P(y |p)P(p)

=

[(
n

y

)
py (1− p)n−y

] [
Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1

]
=

[(
n

y

)
Γ(α + β)

Γ(α)Γ(β)
py+α−1(1− p)n−y+β−1

]

P(y) =

∫ 1

0
P(y , p)dp

=

(
n

y

)
Γ(α + β)

Γ(α)Γ(β)

Γ(y + α)Γ(n − y + β)

Γ(n + α + β)
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Binomial Bayes Estimator

P(p|y) =
P(y |p)P(p)

P(y)

=
Γ(n + α + β)

Γ(y + α)Γ(n − y + β)
py+α−1(1− p)n−y+β−1

∼ Beta(y + α, n − y + β).

I Natural estimator is mean of posterior distribution

p̂ =
y + α

α + β + n

I Estimator from prior distribution is α
(α+β) . From samples is y

n .

p̂ =

(
n

α + β + n

)(y
n

)
+

(
α + β

α + β + n

)(
α

α + β

)
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Conjugate family

Let F denote a familly of pmf/pdf. A class Π of prior distribution
is conjugate family for F if any prior distribution for a pdf/pmf
f ∈ F from Π also results in a posterior in Π.

I Beta family is a conjugate for Binomial family

I Normal family is a conjugate for Normal family with unknown
mean and known variance.
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Evaluating Estimators

I Different method can give different estimator

I Basic criteria for evaluation of estimators

Mean Squared Error (MSE) of an estimator W of a parameter
θ is a function of θ defined by Eθ(W − θ)2

I Any increasing function of |W − θ| would serve as a measure
of goodness of an estimator

I MSE has two advantages: It is tractable and it has good
interpretation

Eθ(W − θ)2 =VarθW + (EθW − θ)2

=VarθW + (BiasθW )2
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Unbiased estimator

An estimator W for parameter θ is called unbiased estimator
if EθW = θ for all θ, i.e., BiasθW = 0.
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Cramer-Rao’s Bound

Let X = (X1,X2, . . . ,Xn) be a sample with pdf f (x |θ), and let
W (X ) be any estimator such that VarθW (X ) <∞. Then

VarθW (X ) ≥
(

d
dθEθW (X )

)2
Eθ
((

∂
∂θ log f (x |θ)

)2)
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