IE605: Engineering Statistics Lecture 14

Previous Lecture:

- Hypothesis testing
- Likelihood Ratio Test (LRT)

This Lecture:

- Method of Evaluating Tests
- Power Functions
- Uniformly Most Powerful (UMP) test
- Neyman-Pearson Lemma

Error in Hypothesis Testing

$$\begin{split} & H_0: \theta \in \Theta_0 \quad \text{null hypotesis} \\ & H_1: \theta \in \Theta_0^c \quad \text{alternate hypotesis} \end{split}$$

- ▶ Rejection set $\mathcal{R} = \{ \mathbf{x} : \lambda(\mathbf{x}) \leq c \}$. If $\mathbf{x} \in \mathcal{R}$ hypothesis H_0 is rejected, otherwise H_1 is accepted
- In accepting or rejecting hypothesis the experimenter could be making mistake
- How to control the error?

Types of Error

There could be two types of error

- Type I error: If θ ∈ Θ₀ (H₀ is true), but the hypothesis test incorrectly rejects the null hypotesis H₀
- Type II error: If θ ∈ Θ₀^c (H₁ is true), but the hypothesis test incorrectly accepts the null hypotesis H₀

Truth/Decision	Accept	Reject
H ₀	Correct	Type I error
H_1	Type II error	Correct

Power Function

▶ If $\theta \in \Theta_0$, $P_{\theta}(X \in \mathcal{R})$ gives probability of Type I error

▶ If $\theta \in \Theta_0^c$, $1 - P_{\theta}(\boldsymbol{X} \in \mathcal{R})$ gives probability of Type II error.

Power Function of a hypothesis test with rejection region \mathcal{R} is a function of θ given by $\beta(\theta) = P_{\theta}(\mathbf{X} \in \mathcal{R})$

For an 'ideal' hypothesis test

- waht should be the value of $P_{\theta}(\mathbf{X} \in \mathcal{R})$ iif $\theta \in \Theta_0$?
- ▶ What should be the value of $P_{\theta}(\mathbf{X} \in \mathcal{R})$ if $\theta \in \Theta_0^c$?
- The ideal case cannot be attained in practical problems
- ▶ A good hypothesis test should be such that $P_{\theta}(\mathbf{X} \in \mathcal{R}) \rightarrow 1$ when $\theta \in \Theta_0$ and $P_{\theta}(\mathbf{X} \in \mathcal{R}) \rightarrow 0$ when $\theta \in \Theta_0^c$

IE605:Engineering Statistics

Type I vs Type II error

Example: $X \in Bin(5, \theta)$

 $H_0: heta \leq 1/2$ null hypotesis $H_1: heta > 1/2$ alternate hypotesis

Test 1: Reject H₀ iff all success are observed

$$\beta_1(\theta) = \Pr(\{1, 1, 1, 1, 1\}) = \theta^5$$

Type 1 error: $\beta_1(\theta) \leq (1/2)^5 = 0.0312$ for all $\theta \leq 1/2$ Type II error: $1 - \beta_1(\theta) > 0.87$

Test 2: Reject H₀ if 3, 4, 5 success are observed

$$eta_2(heta)=egin{pmatrix} 5\\3\end{pmatrix} heta^3(1- heta)^2+egin{pmatrix} 5\\3\end{pmatrix} heta^4(1- heta)+ heta^5$$

IE605:Engineering Statistics

Example:

Let $\mathbf{X} = \{X_1, X_2, \dots, X_n\}$ is iid drwan from population $\mathcal{N}(\theta, \sigma^2)$ with known σ^2 . We want to test the hypothesis

$$\begin{split} & H_0: \theta \leq \theta_0 \quad \text{null hypotesis} \\ & H_1: \theta > \theta_0 \quad \text{alternate hypotesis} \end{split}$$

$$\mathcal{R} = \{ \boldsymbol{x} : \lambda(\boldsymbol{x}) \leq c \} = \left\{ \boldsymbol{x} : \frac{\bar{\boldsymbol{x}} - \theta_0}{\sigma/\sqrt{n}} \geq c
ight\}$$

$$egin{split} eta(heta) &= P\left(rac{ar{\mathbf{x}} - heta_0}{\sigma/\sqrt{n}} \geq c
ight) \ &= P\left(rac{ar{\mathbf{x}} - heta}{\sigma/\sqrt{n}} \geq c + rac{ heta_0 - heta}{\sigma/\sqrt{n}}
ight) \ &= P\left(Z \geq c + rac{ heta_0 - heta}{\sigma/\sqrt{n}}
ight) \end{split}$$

where
$$Z \sim \mathcal{N}(0, 1)$$

IE605:Engineering Statistics

Example Contd.

Suppose we want Type I error to be at most 0.1 and Type II error to be at most 0.2 when $\theta > \theta_0 + \sigma$. What should be the value of *c* and *n*?

$$\beta(\theta) = P\left(Z \ge c + \frac{\theta_0 - \theta}{\sigma/\sqrt{n}}\right)$$

• Increasing in θ

• set
$$\beta(\theta_0) = 0.1$$
 and $\beta(\theta_0 + \sigma) = 0.2$

- For a fixed sample, it is impossible to make both types of errors arbitrarily small.
- To find a good test, it is common to restrict Type I at a fixed level.

IE605:Engineering Statistics

Size and Levels

Definition: For $0 \le \alpha \le 1$, a test with power function $\beta(\theta)$ is a size α test if $\sup_{\theta \in \Theta_0} \beta(\theta) = \alpha$.

Definition: For $0 \le \alpha \le 1$, a test with power function $\beta(\theta)$ is a level α test if $\sup_{\theta \in \Theta_0} \beta(\theta) \le \alpha$.

- Set of level α tests contains set of size α tests
- By fixing α we are only controlling Type I Error, not Type II error.

Unbiased Test

A test with power function $\beta(\theta)$ is unbiased if we have $\beta(\theta') \ge \beta(\theta'')$ for any $\theta' \in \Theta_0^c$ and $\theta'' \in \Theta_0$

Example: Let $\mathbf{X} = \{X_1, X_2, \dots, X_n\}$ is iid drwan from population $\mathcal{N}(\theta, \sigma^2)$ with known σ^2 . We want to test the hypothesis

$$\begin{split} & H_0: \theta \leq \theta_0 \quad \text{null hypotesis} \\ & H_1: \theta > \theta_0 \quad \text{alternate hypotesis} \end{split}$$

$$eta(heta) = m{P}\left(Z \ge m{c} + rac{ heta_0 - heta}{\sigma/\sqrt{n}}
ight)$$

Since $\beta(\theta)$ is increasing. It is clear that $\beta(\theta)$ is unbiased.

IE605:Engineering Statistics

Most Powerful test

- There can be class of level α tests
- ▶ Level α tests have type I Error probability at most α in $\theta \in \Theta_0$
- A good test in such a class would also have a small Type II Error probability

Definition: Let C be a class of test for testing $H_0 : \theta \in \Theta_0$ versus $H_1 : \theta \in \Theta_0^c$. A test in class C with power function $\beta(\theta)$ is a uniformly most powerful (UMP) class C test if for every power function $\beta'(\theta)$ in C we have $\beta(\theta) \ge \beta'(\theta)$ for every $\theta \in \Theta_0^c$.

Neyman-Pearson Lemma

Lemma: Consider H_0 : $\theta = \theta_0$ versus H_1 : $\theta = \theta_1$. Using a rejection region $\mathcal R$ that satsifies $\mathbf{x} \in \mathcal{R}$ if $f(\mathbf{x}|\theta_1) > \kappa f(\mathbf{x}|\theta_0)$ $\mathbf{x} \in \mathcal{R}^c$ if $f(\mathbf{x}|\theta_1) < \kappa f(\mathbf{x}|\theta_0)$ for some $\kappa \geq 0$, and Let $\alpha = P_{\theta_0}(\mathbf{X} \in \mathcal{R})$. Then Any test satisfying above rejection region is a UMP level α test (necessary condiiton) Every UMP level α test satisfies the above rejection regions (sufficient condition)