IE605: Engineering Statistics

Linear Regression

Manjesh K. Hanawal

Simple Linear Regression

• Assume: Each sample has one feature/attribute ($x_i \in \mathcal{R}$)

- We will fit line of the from $y = \beta_1 x + \beta_0$
- x is called the independent/predictor variable
- y is called the dependent/response variable
- β_1 is the slope and β_0 is the intercept
- We will get different lines for different choice of (β_0, β_1)
- How to quantify how good is a line?
- Choose the best line!

Probabilistic Model for Linearly Related Data

- ▶ Instead of $y_i = \beta_1 x_i + \beta_0$ assume data is perturbed by noise
- $y_i = \beta_1 x_i + \beta_0 + \epsilon_i$, where ϵ_i is random perturbation (noise)
- perturbation denotes that data won't be fit the model perfectly
- We assume that $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$, where σ^2 is known

Quantify goodness of a line: Mean Squared Error

- Minimize the distance between the line and points
- distance of point (x_i, y_i) from line (β_0, β_1) (error)

$$y_i - (\beta_1 x_i + \beta_0)$$

As staying above or below line are equally bad we can take

 $|y_i - (\beta_1 x_i + \beta_0)|$ absolute error

 $(y_i - (\beta_1 x_i + \beta_0))^2$ squared error

• We take goodness of line (β_0, β_1) as sum of the squared errors

$$\frac{1}{m}\sum_{i=1}^{n}(y_{i}-(\beta_{1}x_{i}+\beta_{0}))^{2}$$

Mean Squared Error (MSE)

The best line: Least Squared Regression

$$\min_{(\beta_0,\beta_1)} \frac{1}{m} \sum_{i=1}^n (y_i - (\beta_1 x_i + \beta_0))^2$$

Alternate derviation from MLE

$$L(y|\beta) = \prod_{i=1}^{m} f(y_i|\beta) = \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-(y_i - \beta_1 x_i - \beta_0)^2/2\sigma^2\right\}$$
$$= \frac{1}{(2\pi\sigma^2)^{m/2}} \exp\left\{-\sum_{i=1}^{m} (y_i - \beta_1 x_i - \beta_0)^2/2\sigma^2\right\}$$

$$\arg \max_{\beta} L(y|\beta) = \arg \min_{\beta} \sum_{\substack{i=1 \\ Manjesh K. Hanawal}}^{m} (y_i - \beta_1 x_i - \beta_0)^2$$

m

IE605

Least Squared Solution

$$(\hat{\beta}_{0}, \hat{\beta}_{1}) = \arg \min_{(\beta_{0}, \beta_{1})} \frac{1}{m} \sum_{i=1}^{n} (y_{i} - (\beta_{1}x_{i} + \beta_{0}))^{2}$$
$$\hat{\beta}_{1} = \frac{\frac{1}{m} (\sum_{i=1}^{m} x_{i}y_{i}) - (\frac{1}{m} \sum_{i=1}^{m} x_{i}) (\frac{1}{m} \sum_{i=1}^{m} y_{i})}{\frac{1}{m} (\sum_{i=1}^{m} x_{i}^{2}) - (\frac{1}{m} \sum_{i=1}^{m} x_{i})^{2}}$$
$$\hat{\beta}_{0} = \left(\frac{1}{m} \sum_{i=1}^{m} y_{i}\right) - \hat{\beta}_{1} \left(\frac{1}{m} \sum_{i=1}^{m} x_{i}\right)$$

Expressing the solutions in terms of statistics

Given a random sample (X_1, X_2, \ldots, X_m) **Sample mean:** $\bar{X} = \frac{1}{m} \left(\sum_{i=1}^{m} X_i \right)$ • Sample variance: $S_X^2 = \frac{1}{m-1} \left(\sum_{i=1}^m (X_i - \bar{X})^2 \right)$ • Sample standard deviations: $S_X = \sqrt{S_X^2}$. For give data $S = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\}$ $\bar{x} = \frac{1}{m} \left(\sum_{i=1}^{m} x_i \right) \quad s_x = \frac{1}{m-1} \left(\sum_{i=1}^{m} (x_i - \bar{x})^2 \right)$ $ar{y} = rac{1}{m} \left(\sum_{i=1}^m y_i
ight) \quad s_y = rac{1}{m-1} \left(\sum_{i=1}^m (y_i - ar{y})^2
ight)$

$$r = rac{1}{m-1}\sum_{i=1}^m \left(rac{x_i-ar{x}}{s_x}
ight) \left(rac{y_i-ar{y}}{s_y}
ight)$$
 Correlation coefficient

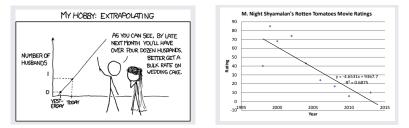
Prediction

$$\hat{eta}_1 = r rac{s_y}{s_x}$$
 and $\hat{eta}_0 = ar{y} - \hat{eta}_1 ar{x}$

Given any sample x, its predicted label is

$$y = \hat{\beta}_1 x + \hat{\beta}_0$$

For what all x we can get prediction?



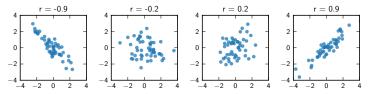
Correlation coefficient

$$r = \frac{1}{m-1} \sum_{i=1}^{m} \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right)$$

• $-1 \le r \le 1$. Measure how much y is related to x

▶ if *r* is positive *y* increases in *x*

if r is negative y decreases in x



r² is called coefficient of determination (explains how well data is fit).

Multiple Linear Regression

 $S = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\}, x_i \in \mathbb{R}^d$, where d > 1. Each sample point $x_i = (x_{i1}, x_{i2}, \dots, x_{id})$.

• We can write linear relation: $y_i = \sum_{j=1}^d x_{ij}\beta_j + \beta_0$

•
$$y_i = \sum_{j=0}^{d} x_{ij}\beta_j$$
, where $x_{i0} = 1$ for all $i = 1, 2..., m$

• set $\beta = (\beta_0, \beta_1, \beta_2, ..., \beta_d)$ and $x_i = (1, x_{i1}, x_{i2}, ..., x_{id})$

• Compactly
$$y_i = x_i \beta^T$$
 for all $i = 1, 2, ..., n$

• The probabilistic model is $y_i = x_i \beta^T + \epsilon_i$, $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$.

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1d} \\ 1 & x_{21} & x_{22} & \dots & x_{2d} \\ \vdots & & & & \\ 1 & x_{m1} & x_{m2} & \dots & x_{md} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_d \end{bmatrix}$$
$$y = X\beta^T \text{ where } X \text{ is data matrix}$$

The probabilistic model is then

$$y = X\beta^T + \epsilon$$

IE605

Manjesh K. Hanawal

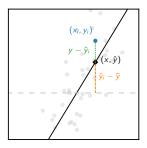
10

Solution of Multiple Linear Regression

$$\hat{\beta} = \arg \min_{\beta} \sum_{i=1}^{m} (y_i - x_i \beta^T)^2$$
$$\hat{\beta} = (X^T X)^{-1} X^T y$$

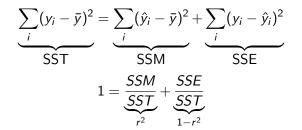
Model Evaluation:

Suppose every point y_i is very close to $\bar{y} \implies y_i$ does not dependent much on x_i and there is not much random error.



$$y_i - \bar{y} = \underbrace{(\hat{y}_i - \bar{y})}_{\text{explained by model not explained by odel}} + \underbrace{(y_i - \hat{y}_i)}_{\text{not explained by odel}}$$

Coefficient Determination



- r² is called the coefficient of determination (square of coefficient of correlation!)
- Captures the fraction of variability explained by model
- It is a measure that allows us to determine how certain one can be in making predictions from a certain model/graph
- closer to 1, the better.