IE 605: Engineering Statistics

Solutions: Tutorial 1

Solution 1

```
\(\Omega=\{\{i, j, k\} \ni \mathrm{i}, \mathrm{j}, \mathrm{k} \in\{1,2,3,4,5,6\}\}\)
\(F=2^{\Omega}\)
\(P(\) Same no. on exactly 2 dice \()=\frac{\binom{3}{2} \times 6 \times 5}{6^{3}}=5 / 12\).
```


Solution 2

1. $A \cup B \cup C$
2. $(A \cup B \cup C)^{c} \cup(A \cup B)^{c} \cup(A \cup C)^{c} \cup(C \cup B)^{c}$
3. $(A \cup B \cup C)^{c}$
4. $A \cap B \cap C$
5. $\left(A \cap B^{c} \cap C^{c}\right) \cup\left(A^{c} \cap B \cap C^{c}\right) \cup\left(A^{c} \cap B^{c} \cap C\right)$
6. $A \cap B \cap C^{c}$
7. $A \cup(A \cup B)^{c}$

Solution 3

$\Omega=\{H H, T H H, H T H H, T T H H, .$.
There are two configurations for exactly 4 tosses i.e. $\{$ TTH $\mathrm{H}, \mathrm{HTHH}\}$
$P($ exactly 4 tosses $)=\left(\frac{1}{2}\right)^{4}+\left(\frac{1}{2}\right)^{4}=\frac{1}{8}$

Solution 4

$n($ geniuses $)=60$
$n($ chocolate lovers $)=70$
n (geniuses \cap chocolate lovers $)=40$
So that, n (geniuses \cup chocolate lovers $)=70+60-40=90$
$P(\text { geniuses } \cup \text { chocolate lovers })^{c}=\frac{100-90}{100}=0.10$

Solution 5

Let $P($ odd face $)=2 \mathrm{p}$;
$P($ even face $)=\mathrm{p}$;
As probability of sample space will be 1 ;
so,

$$
\begin{aligned}
P(1)+P(2)+P(3)+P(4)+P(5)+P(6) & =1 \\
2 p+p+2 p+p+2 p+p & =1 \\
p & =\frac{1}{9}
\end{aligned}
$$

Now,

$$
P(1)+P(2)+P(3)=4 p=\frac{4}{9}
$$

Solution 6

1. Given $A \subset B$;

Let $D=B / A$ or $B \cap A^{c}$. then A and D will be mutually exclusive sets;
hence, $\mathrm{P}(\mathrm{B})=\mathrm{P}(\mathrm{D})+\mathrm{P}(\mathrm{A})$;
so, $\mathrm{P}(\mathrm{B}) \geq \mathrm{P}(\mathrm{A})$
2. Let $D_{1}=A$
$D_{2}=B \cap A^{c}$
$A \cup B=D_{1} \cup D_{2}$, where D_{1} and D_{2} are mutually exclusives.
$P(A \cup B)=P\left(D_{1}\right)+P\left(D_{2}\right)$
$\Longrightarrow P(A \cup B)=P(A)+P\left(B \cap B^{c}\right)$
Again, $B=\left(B \cap A^{c}\right) \cup(A \cap B)$, where $B \cap A^{c}$ and $A \cap B$ are mutually exclusives.
$\Longrightarrow P(B)=P\left(B \cap A^{c}\right)+P(A \cap B)$
Inserting (ii) in (i) we get, $P(A \cup B)=P(A)+P(B)-P(A \cap B)$.
3.

$$
\begin{aligned}
& P(A \cup B \cup C)=P((A \cup B) \cup C) \\
& =P(A \cup B)+P(C)-P((A \cup B) \cap C) \\
& =P(A)+P(B)+P(C)-P(A \cap B)-P((A \cap C) \cup(B \cap C)) \\
& =P(A)+P(B)+P(C)-P(A \cap B)-[P(A \cap C)+P(B \cap C)-P(A \cap B \cap C)]
\end{aligned}
$$

Therefore,
$P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A \cap B)-P(A \cap C)-P(B \cap$
$C)+P(A \cap B \cap C)$.
4. $\Omega=A \cup A^{c}$

As A and A^{c} are mutually exclusive
$P\left(A \cup A^{c}\right)=P(A)+P\left(A^{c}\right)$
$P(\Omega)=P(A)+P\left(A^{c}\right) ;$
$P(A)+P\left(A^{c}\right)=1$
5. As Ω and ϕ are mutually exclusive;

$$
\begin{aligned}
& P(\Omega \cup \phi)=P(\Omega)+P(\phi) \\
& P(\phi)=0
\end{aligned}
$$

Solution 7

Proof for Axiom 1:

$$
P^{\prime}(A)=P(A \mid B)=P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

As $P(A \cap B) \geq 0$
hence $P^{\prime}(A) \geq 0$

Proof for Axiom 2:

$P^{\prime}(\Omega)=P(\Omega \mid B)=\frac{P(\Omega \cap B)}{P(B)}=\frac{P(B)}{P(B)}=1$.

Proof for Axiom 3:

Let A and B are two mutually exclusive set;
$P^{\prime}(A \cup C)=P((A \cup C) \mid B)$;
$P^{\prime}(A \cup C)=\frac{P((A \cup C) \cap B)}{P(B)}$
$P^{\prime}(A \cup C)=\frac{P((A \cap B) \cup(C \cap B))}{P(A)}$
$P^{\prime}(A \cup C)=\frac{P(A \cup B)}{P(B)}+\frac{P(C \cap B}{P(B)}$
$P^{\prime}(A \cup C)=P(A \mid B)+P(C \mid B)$
$P^{\prime}(A \cup C)=P^{\prime}(A)+P^{\prime}(C)$

Solution 8

Let, we toss two coin simultaneously, we are assuming the following events;
A = both coin agree (HH, TT);
B = head appears on coin 1 (HH, HT);
$\mathrm{C}=$ head appears on coin $2(\mathrm{HH}, \mathrm{TH})$;
For independence of two sets A and B ;
$P(A \cap B)=P(A) . P(B)$
we can see,
$P(A \cap B)=P(A) \cdot P(B)=\frac{1}{4}$
$P(A \cap c)=P(A) \cdot P(C)=\frac{1}{4}$
$P(C \cap B)=P(C) \cdot P(B)=\frac{1}{4}$
Now, For $P(A \cap B \cap C)=\frac{1}{4}$
but $P(A) \cdot P(B) \cdot P(C)=\frac{1}{8}$
hence pairwise Independence does not make mutual independence.

Solution 9

Given $A_{i} \in \mathcal{F}, i \geq 1$.
To show: $P\left(\cup_{i=1}^{\infty} A_{i}\right) \leq \sum_{i=1}^{\infty} P\left(A_{i}\right)$
Consider $B_{i}=A_{i}-\cup_{j=1}^{i-1} A_{j}$, such that $\left\{B_{i}\right\}_{i \geq 1}$ are disjoint.
By construction, $B_{i} \subset A_{i}$ and $\cup_{i=1}^{\infty} B_{i}=\cup_{i=1}^{\infty} A_{i}$
Using Ques 6(1), $P\left(B_{i}\right) \leq P\left(A_{i}\right)$
So, $P\left(\cup_{i=1}^{\infty} A_{i}\right)=P\left(\cup_{i=1}^{\infty} B_{i}\right)=\sum_{i=1}^{\infty} P\left(B_{i}\right) \leq \sum_{i=1}^{\infty} P\left(A_{i}\right)$.

Solution 10

Let A be the event that the product is manufactured at company A, B be the event that the product is manufactured at company B, D be the event that the product is defective.

1. $\mathrm{P}($ sample is defective $)=P(A) P(D \mid A)+P(B) P(D \mid B)=0.26$
2. $\mathrm{P}($ defective sample is manufactured at company A$)=P(A \mid D)=\frac{P(A \cap D)}{P(D)}=\frac{12}{13}$

Solution 11

Let F denote the event that the attempt fails, W be the event that the server is working, NW be the event that the server is not working.

1. $\mathrm{P}($ first attempt fails $)=P(F \mid N W) P(N W)+P(F \mid W) P(W)=0.28$.
2. P (server was working given that first access attempt fails) $=\frac{P(F \cap W)}{P(F)}=$ $\frac{P(F \mid W) P(W)}{P(F)}=2 / 7$.
3. Let F_{1}, F_{2} denote the event that the first, second access attempt fails respectively.
$P\left(F_{2} \mid F_{1}\right)=\frac{P\left(F_{1}, F_{2}\right)}{P\left(F_{1}\right)}=\frac{P(W) P\left(F_{1} \mid W\right) P\left(F_{2} \mid W\right)+P(N W) P\left(F_{1} \mid N W\right) P\left(F_{2} \mid N W\right)}{P\left(F_{1}\right)}=$ 208/280.
4. $\mathrm{P}($ server is working given that first and second attempt fails $)=\frac{P\left(W \cap F_{1} \cap F_{2}\right)}{P\left(F_{1} \cap F_{2}\right)}=$ $\frac{P\left(F_{1} \cap F_{2} \mid W\right) P(W)}{P\left(F_{1} \cap F_{2}\right)}=8 / 208$.

Solution 12

We will use first principle of mathematical induction for this question.
For $\mathrm{n}=2$, refer to ques 6 . Let the claim be true for $\mathrm{n}=\mathrm{r}$. We will thus prove that it also holds for $\mathrm{n}=\mathrm{r}+1$.

$$
\begin{aligned}
P\left(\cup_{i=1}^{r+1} E_{i}\right)= & P\left(\left(\cup_{i=1}^{r} E_{i}\right) \cup E_{r+1}\right) \\
& =P\left(\cup_{i=1}^{r} E_{i}\right)+P\left(E_{r+1}\right)-P\left(\left(\cup_{i=1}^{r} E_{i}\right) \cap E_{r+1}\right) \\
= & P\left(\cup_{i=1}^{r} E_{i}\right)+P\left(E_{r+1}\right)-P\left(\cup_{i=1}^{r}\left(E_{i} \cap E_{r+1}\right)\right) \\
& =\sum_{i=1}^{r} P\left(E_{i}\right)-\sum_{1 \leq i<j \leq r} P\left(E_{i} \cap E_{j}\right)+\cdots+(-1)^{r+1} P\left(\cap_{i=1}^{r} E_{i}\right)+P\left(E_{r+1}\right) \\
& -P\left(\cup_{i=1}^{r}\left(E_{i} \cap E_{r+1}\right)\right) \\
= & \sum_{i=1}^{r+1} P\left(E_{i}\right)-\sum_{1 \leq i<j \leq r} P\left(E_{i} \cap E_{j}\right)+\cdots+(-1)^{r+1} P\left(\cap_{i=1}^{r} E_{i}\right)-\left\{\sum_{i=1}^{r} P\left(E_{i} \cup E_{r+1}\right)\right. \\
& \left.-\sum_{1 \leq i<j \leq r} P\left(\left(E_{i} \cap E_{r+1}\right) \cap\left(E_{j} \cap E_{r+1}\right)\right)+\cdots+(-1)^{r+1} P\left(\cap_{i=1}^{r+1} E_{i}\right)\right\} \\
= & \sum_{i=1}^{r+1} P\left(E_{i}\right)-\left\{\sum_{1 \leq i<j \leq r} P\left(E_{i} \cap E_{j}\right)+\sum_{i=1}^{r} P\left(E_{i} \cap E_{r+1}\right)\right\}+\cdots+(-1)^{r+2} P\left(\cap_{i=1}^{r+1} E_{i}\right) \\
= & \sum_{i=1}^{r+1} P\left(E_{i}\right)-\sum_{1 \leq i<j \leq r+1} P\left(E_{i} \cap E_{j}\right)+\cdots+(-1)^{r+2} P\left(\cap_{i=1}^{r+1} E_{i}\right)
\end{aligned}
$$

Thus, the claim holds true for any finite value of n.

Solution 13

Let $B=$ event both are girls; $E=$ event oldest is girl and $L=$ event at least one is a girl.
Part (a):

$$
P(B \mid E)=\frac{P(B E)}{P(E)}=\frac{P(B)}{P(E)}=\frac{1 / 4}{1 / 2}=\frac{1}{2} .
$$

Part (b):

$$
P(L)=1-P(\text { no girls })=1-\frac{1}{4}=\frac{3}{4}
$$

Then,

$$
P(B \mid L)=\frac{P(B L)}{P(L)}=\frac{P(B)}{P(L)}=\frac{1 / 4}{3 / 4}=\frac{1}{3}
$$

Solution 14

Let $E=$ event at least one is a six.

$$
P(E)=\frac{\text { number of ways to get } \mathrm{E}}{\text { number of sample points }}=\frac{11}{36}
$$

Let $D=$ event two faces are different

$$
P(D)=1-\operatorname{Prob}(\text { two faces the same })=1-\frac{6}{36}=\frac{5}{6}
$$

Then,

$$
P(E \mid D)=\frac{P(E D)}{P(D)}=\frac{10 / 36}{5 / 6}=\frac{1}{3}
$$

Solution 15

Let $E=$ event same number on exactly two of the dice; $S=$ event all three numbers are the same; $D=$ event all three numbers are different. These three events are mutually exclusive and define the whole sample space. Thus,

$$
1=P(D)+P(S)+P(E)
$$

Now,

$$
P(S)=\frac{6}{216}=\frac{1}{36}
$$

For even D, we have six possible values for first die, five for second, and four for third. Therefore, Number of ways to get $D=6 \cdot 5 \cdot 4=120$.

$$
\Longrightarrow P(D)=\frac{120}{216}=\frac{20}{36}
$$

Then,

$$
\begin{aligned}
P(E) & =1-P(S)-P(D) \\
& =1-\frac{1}{36}-\frac{20}{36} \\
& =\frac{5}{12} .
\end{aligned}
$$

Solution 16

Let $C=$ event person is color blind. Then,

$$
\begin{aligned}
P(\text { Male } \mid C) & =\frac{P(C \mid \text { Male }) P(\text { Male })}{P(C \mid \text { Male }) P(\text { Male })+P(C \mid \text { Female }) P(\text { Female })} \\
& =\frac{0.05 \times 0.5}{0.05 \times 0.5+0.0025 \times 0.5}
\end{aligned}
$$

$$
=\frac{2500}{2625}=\frac{20}{21} .
$$

Solution 17

Let A_{k} : points of A in game k.
B_{k} : points of B in game k.
Let $x_{k}=A_{k}-B_{k}$: difference of points between A and B in game k.
Given: $\mathbb{P}\left\{A_{k}\right\}=p \forall k=1,2, .$.
$\mathbb{P}\{$ Total 2 n points $\}=\mathbb{P}\left\{X_{2 n} \in\{-2,2\}, X_{2 n-2}=0, X_{2 n-4}=0, . ., X_{0}=0\right\}$

$$
\begin{aligned}
\mathbb{P}\left\{X_{0}=0\right\} & =1 \\
\mathbb{P}\left\{X_{2}=0, X_{0}=0\right\} & =p(1-p)+(1-p) p=2 p(1-p) \\
\mathbb{P}\left\{X_{4}=0, X_{2}=0, X_{0}=0\right\} & =p(1-p) p(1-p)+p(1-p)(1-p) p \\
& +(1-p) p p(1-p)(1-p) p(1-p) p \\
& =2^{2} p^{2}(1-p)^{2}
\end{aligned}
$$

$X_{0}=0 ; X_{1}=-1$ (if B wins); $X_{2}=0$ (if A wins); $X_{3}=1$ (if A wins); $X_{4}=0$ (if B wins $) \Longrightarrow(1-p) p p(1-p)$ holds.

Similarly, $X_{0}=0 ; X_{1}=1$ (if A wins); $X_{2}=0$ (if B wins); $X_{3}=-1$ (if B wins); $X_{4}=0$ (if A wins) $\Longrightarrow p(1-p)(1-p) p$ holds.

Similarly,

$$
\mathbb{P}\left\{X_{2 n-2}=0, \ldots, X_{0}=0\right\}=2^{n-1} p^{n-1}(1-p)^{n-1}
$$

Therefore,

$$
\begin{gathered}
\mathbb{P}\left\{X_{2 n} \in\{-2,2\}, X_{2 n-2}=0, X_{2 n-4}=0, . ., X_{0}=0\right\}=2^{n-1} p^{n-1}(1-p)^{n-1}\left(p^{2}+(1-p)^{2}\right) \\
\mathbb{P}\{\text { A wins }\}=\sum_{n=1}^{\infty}\left\{2^{n-1} p^{n-1}(1-p)^{n-1} p^{2}\right\}=\frac{p^{2}}{1-2 p(1-p)}
\end{gathered}
$$

