IE 605: Engineering Statistics

Solutions: Tutorial 2

Solution 1

(a) If E is an event independent of itself, then $P(E)=P(E \cap E)=P(E) P(E)$. This can happen if $P(E)=0$. If $P(E) \neq 0$ then canceling a factor of $\mathrm{P}(\mathrm{E})$ on each side yields $\mathrm{P}(\mathrm{E})=1$. In summary, either $P(E)=0$ or $P(E)=1$.
(b) In general, we have $P(A \cup B)=P(A)+P(B)-P(A \cap B)$. If the events A and B are independent, then $P(A \cup B)=P(A)+P(B)-P(A) P(B)=$ $0.3+0.4-(0.3)(0.4)=0.58$. On the other hand, if the events A and B are mutually exclusive, then $P(A \cap B)=0$ and therefore $P(A \cup B)=0.3+0.4=0.7$.
(c) If $P(A)=0.6$ and $P(B)=0.8$, and A and B are independent events, then $P(A \cup B)=P(A)+P(B)-P(A) \cdot P(B) \leq 1$. Therefore, the two events could be independent.

However, if A and B were mutually exclusive, then $P(A)+P(B)=P(A \cup B) \leq$ 1 , so it would not possible for A and B to be mutually exclusive if $P(A)=0.6$ and $P(B)=0.8$.

Solution 2

- (a) X: lifetime of a certain car battery (rounded up to an integer number of years)

The pmf of X is given as $p_{X}(k)=0.2$, if $3 \leq k \leq 7$ and $p_{X}(k)=0$, otherwise.
(i) $\mathbb{P}\{X>3\}=1-\mathbb{P}\{X \leq 3\}=1-p_{X}(3)=1-0.2=0.8$.
(ii) $\mathbb{P}\{X>8 \mid X>5\}=\frac{\mathbb{P}\{\{X>8\} \cap\{X>5\}\}}{\mathbb{P}\{X>5\}}=\frac{\mathbb{P}\{X>8\}}{\mathbb{P}\{X>5\}}=0$.

- (b) Let A: the shot is success.

$$
\mathbb{P}\{A\}=p \text { (given), and } \mathbb{P}\left\{A^{c}\right\}=1-p
$$

Let Y : no. of shots required for the first success.
$\mathbb{P}\{Y=y\}=p(1-p)^{y-1}, y=1,2, \ldots$, and $\mathbb{P}\{Y=y\}=0$, otherwise.
(i)

$$
\begin{aligned}
\mathbb{P}\{Y>3\} & =\mathbb{P}\{Y=4\}+\mathbb{P}\{Y=5\}+\ldots \\
& =p(1-p)^{3}+p(1-p)^{4}+\ldots \\
& =p(1-p)^{3}\left\{1+(1-p)+(1-p)^{2}+\ldots\right\}
\end{aligned}
$$

$$
=(1-p)^{3}
$$

(ii)

$$
\begin{aligned}
\mathbb{P}\{Y>8 \mid Y>5\} & =\frac{\mathbb{P}\{\{Y>8\} \cap\{Y>5\}\}}{\mathbb{P}\{Y>5\}} \\
& =\frac{\mathbb{P}\{Y>8\}}{\mathbb{P}\{Y>5\}} \\
& =\frac{p(1-p)^{8}+p(1-p)^{9}+\ldots}{p(1-p)^{5}+p(1-p)^{6}+\ldots} \\
& =(1-p)^{3} .
\end{aligned}
$$

(iii) Geometric Distribution.

Solution 3

(a)There are 6 choices of choosing a face and for each face there are 4 choices to choose an additional corner to color 5 corners so that atleast one face has 4 blue corners. Therefore, there are $6 \times 4=24$ ways.

There are $\binom{8}{5}=56$ ways to select 5 out of 8 corners.
Let B : atleast one face of the cube has all four corners coloured blue.
C : exactly 5 corners of the cube are coloured.
$\mathbb{P}\{B \mid C\}=\frac{\mathbb{P}\{B \cap C\}}{\mathbb{P}\{C\}}=24 / 56=3 / 7$.
(b)By counting the number of ways that B can happen for different numbers of blue corners we find

$$
P(B)=\binom{6}{1} p^{4}(1-p)^{4}+\left(\binom{6}{1} \times\binom{ 4}{1}\right) p^{5}(1-p)^{3}+\left(\binom{8}{6}-4\right) p^{6}(1-p)^{2}+\binom{8}{7} p^{7}(1-p)+p^{8}
$$

Solution 4

- 1. $\lim _{x \rightarrow-\infty} F(x)=0$ and $\lim _{x \rightarrow+\infty} F(x)=1$.

Therefore,

$$
\begin{aligned}
\mathbb{P}\left\{X^{2}>5\right\} & =\mathbb{P}\{|X|>\sqrt{5}\} \\
& =\mathbb{P}\{X<-\sqrt{5}\}+\mathbb{P}\{X \geq \sqrt{5}\} \\
& =F(-\sqrt{5})+1-F(\sqrt{5}) \\
& =e^{-5} / 2
\end{aligned}
$$

- 2. $\lim _{x \rightarrow-\infty} F(x)=0$ and $\lim _{x \rightarrow+\infty} F(x)=1$. But, $F(0)=0.5+1>1$, which is not possible. Hence, $F(x)$ is not cdf.
- 3. $\lim _{x \rightarrow-\infty} F(x)=0$ and $\lim _{x \rightarrow+\infty} F(x)=1$. And, $F(0)=F\left(0^{+}\right)$and $F(10)=$ $F\left(10^{+}\right)$. They are right continuous also. Hence, $F(x)$ is cdf. $\mathbb{P}\left\{X^{2}>5\right\}=$ $0+1-\mathbb{P}\{X \leq \sqrt{5}\}=1-(0.5+\sqrt{5} / 20)=0.5-\sqrt{5} / 20$.

Solution 5

Given X have the CDF shown as:

We can write CDF as:

$$
F(x)= \begin{cases}0 & \text { if } x<0 \\ 0.5 & \text { if } 0 \leq x<1 \\ \mathrm{x} / 2 & \text { if } 1 \leq x<2 \\ 1 & \text { if } x \geq 2\end{cases}
$$

1. $P(X \leq 0.8)=F(0.8)=0.5$
2. $E(X)=(0 \times 1 / 2)+\int_{1}^{2} 0.5 * x d x=3 / 4$
3. $\operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2}=\int_{1}^{2} x^{2} / 2 d x-9 / 16=29 / 48$

Solution 6

$$
\begin{aligned}
P(X \geq 0.4 \mid X \leq 0.8) & =P(0.4 \leq X \leq 1 \mid X \leq 0.8) \\
& =\frac{P(0.4 \leq X \leq 0.8)}{P(x \leq 0.8)} \\
& =\frac{\left(0.8^{2}-0.4^{2}\right)}{0.8^{2}} \\
& =\frac{3}{4}
\end{aligned}
$$

Solution 7

For the following outcome in the original sample space I_{E} equals 1
$E=\{H, H, H, H, H\}$
$P\left(I_{E}=1\right)=P(E$ occurs $)=\frac{1}{2^{5}}$.

Solution 8

Let X: no. of heads, and n: no. of tosses. Then $X \sim \operatorname{Bin}(n, p)$ where $p=$ $P($ Head occurs $)=0.7$.

Following is the pmf of X
$P(X=0)=0.3^{3}=0.027$
$P(X=1)=\binom{3}{1} * 0.3^{2} * 0.7=0.189$
$P(X=2)=\binom{3}{2} * 0.7^{2} * 0.3=0.441$
$P(X=3)=0.7^{3}=0.343$

Solution 9

$$
P(X=b)= \begin{cases}1 / 2 & \text { if } b=0 \\ 1 / 2 & \text { if } b=1 \\ 0 & \text { otherwise }\end{cases}
$$

Solution 10

In order for X to equal n, the first $n-1$ flips must have $r-1$ tails, and then the n-th flip must land heads. By independence the desired probability is thus

$$
\binom{n-1}{r-1} p^{r-1}(1-p)^{n-r} \times p=\binom{n-1}{r-1} p^{r}(1-p)^{n-r}
$$

Solution 11

Formula signifies negative binomial random number. It is discrete probability distribution of the number of successes in a sequence of independent and identically distributed Bernoulli trials before a specified (non-random) number of failures occurs.

Solution 12

Firstly we will calculate the value of " c " as follows:

$$
\begin{gathered}
\int_{-\infty}^{\infty} f(x) d x=1 \\
\int_{-\infty}^{0} f(x) d x+\int_{0}^{\infty} f(x) d x=1 \\
\int_{-\infty}^{0} 0 d x+\int_{0}^{\infty} c e^{-2 x} d x=1 \\
c\left[\frac{e^{-2 x}}{-2}\right]_{0}^{\infty}=1 \\
\frac{c}{-2}[0-1]=1 \\
c=2
\end{gathered}
$$

Next, we calculate $P(X>2)$:

$$
\begin{aligned}
P(x>2) & =\int_{2}^{\infty} c e^{-2 x} \\
& =2\left[\frac{e^{-2 x}}{-2}\right]_{2}^{\infty} \\
& =e^{-4}
\end{aligned}
$$

