IE 605:Engineering Statistics

Tutorial 3 Solution

Solution 1

- Say $Z=\min (X, Y)$
$P(Z>k)=P(\min (X, Y)>k)=P(X>k) P(Y>k)=e^{-\lambda_{1} * k} e^{-\lambda_{2} * k}$
$=e^{-\left(\lambda_{1}+\lambda_{2}\right) * k}$
$P(Z \leq k)=1-e^{-\left(\lambda_{1}+\lambda_{2}\right) * k}$
I.e. $Z \sim \exp \left(\lambda_{1}+\lambda_{2}\right)$.
- Say $Z=\max (X, Y)$
$P(Z \leq k)=P(\max (X, Y) \leq k)=P(X \leq k) P(Y \leq k)$ $=\left(1-e^{-\lambda_{1} k}\right)\left(1-e^{-\lambda_{2} k}\right)$.

Solution 2

Given: X, Y, Z are discrete random variable.
The joint pmf of X, Y, Z is, $p_{X, Y, Z}(x, y, z)$ where $x \in A_{1}, y \in A_{2}, z \in A_{3}$ and A_{1}, A_{2}, A_{3} are the support of x, y, z respectively.

- To show: $\mathbb{E}[Z]=\mathbb{E}[\mathbb{E}[Z \mid Y]]$.

$$
\begin{aligned}
\mathbb{E}[\mathbb{E}[Z \mid Y]] & =\sum_{y} \mathbb{E}[Z \mid Y] \cdot p_{Y}(y) \quad \text { where } p_{Y}(y) \text { is marginal pmf of } Y \in A_{2} \\
& =\sum_{y} p_{Y}(y) \sum_{x} \sum_{z} z \cdot p_{(X, Z) \mid Y}(x, z \mid y) \\
& =\sum_{x} \sum_{y} \sum_{z} z \cdot p_{Y}(y) p_{(X, Z) \mid Y}(x, z \mid y) \\
& =\sum_{x} \sum_{y} \sum_{z} z \cdot p_{Y}(y) \frac{p_{X, Z, Y}(x, y, z)}{p_{Y}(y)} \\
& =\sum_{x} \sum_{y} \sum_{z} z \cdot p_{X, Z, Y}(x, y, z) \\
& =\mathbb{E}[Z] .
\end{aligned}
$$

- To show: $\mathbb{E}[Z]=\mathbb{E}[\mathbb{E}[Z \mid X, Y]]$.

$$
\begin{aligned}
\mathbb{E}[\mathbb{E}[Z \mid X, Y]] & =\sum_{x} \sum_{y} \mathbb{E}[Z \mid X, Y] \cdot p_{X, Y}(x, y) \\
& =\sum_{x} \sum_{y} p_{X, Y}(x, y) \sum_{z} z \cdot p_{Z \mid X, Y}(z \mid x, y) . \\
& =\sum_{x} \sum_{y} \sum_{z} z \cdot p_{X, Y}(x, y) \frac{p_{X, Z, Y}(x, y, z)}{p_{X, Y}(x, y)} \\
& =\sum_{x} \sum_{y} \sum_{z} z \cdot p_{X, Z, Y}(x, y, z) \\
& =\mathbb{E}[Z]
\end{aligned}
$$

Solution 3

$$
\begin{gathered}
E[X \mid Y=3]=\sum_{x=0}^{3} x P(X=x \mid Y=3)=\sum_{x=1}^{3} x P(X=x \mid Y=3) \\
P(X=1 \mid Y=3)=\frac{P(X=1 \cap Y=3)}{P(Y=3)}=\frac{\binom{6}{3} *\left(\begin{array}{l}
\left.\frac{5}{14}\right)^{3} *\binom{3}{1} *\left(\frac{3}{14}\right) *\left(\frac{6}{14}\right)^{2} \\
\binom{6}{3} *\left(\frac{5}{14}\right)^{3} *\left(\frac{9}{14}\right)^{3}
\end{array} \frac{4}{9}\right.}{P(X=2 \mid Y=3)=\frac{P(X=2 \cap Y=3)}{P(Y=3)}=\frac{\binom{6}{3} *\left(\frac{5}{14}\right)^{3} *\binom{3}{2} *\left(\frac{3}{14}\right)^{2} *\left(\frac{6}{14}\right)}{\binom{6}{3} *\left(\frac{5}{14}\right)^{3} *\left(\frac{9}{14}\right)^{3}}=\frac{2}{9}} \begin{array}{c}
P(X=3 \mid Y=3)=\frac{P(X=3 \cap Y=3)}{P(Y=3)}=\frac{\binom{6}{3} *\left(\frac{5}{14}\right)^{3} *\binom{3}{3} *\left(\frac{3}{14}\right)^{3}}{\binom{6}{3} *\left(\frac{5}{14}\right)^{3} *\left(\frac{9}{14}\right)^{3}}=\frac{1}{27} \\
E[X \mid Y=3]=1 * \frac{4}{9}+2 * \frac{2}{9}+3 * \frac{1}{27}=1
\end{array} .
\end{gathered}
$$

Solution 4

$X_{1}+X_{2}=m$
Since X_{1} and X_{2} are independent,

$$
\begin{aligned}
& \mathbb{P}\left\{X_{1}+X_{2}=m\right\}=\binom{\left(n_{1}+n_{2}\right)}{m} p^{m}(1-p)^{n_{1}+n_{2}-m} . \\
& P\left(X_{1}=k \mid X_{1}+X_{2}=m\right)=\frac{P\left(X_{1}=k \cap X_{1}+X_{2}=m\right)}{P\left(X_{1}+X_{2}=m\right)} \\
& P\left(X_{1}=k \mid X_{1}+X_{2}=m\right)=\frac{P\left(X_{1}=k\right) P\left(X_{2}=m-k\right)}{P\left(X_{1}+X_{2}=m\right)} \text { as } X_{1}, X_{2} \text { are independent } \\
& P\left(X_{1}=k \mid X_{1}+X_{2}=m\right)=\frac{\left.\left(\binom{n_{1}}{k} p^{k}(1-p)^{n_{1}-k}\right)\binom{n_{2}}{m} p^{m-k}(1-p)^{n_{2}-m+k}\right)}{\binom{\left.n_{1}+m_{2}\right)}{m} p^{m}(1-p)^{n_{1}+n_{2}-m}} \\
& P\left(X_{1}=k \mid X_{1}+X_{2}=m\right)=\frac{\left(\begin{array}{c}
\left.n_{1}\right)\binom{n_{2}}{k} \\
\binom{n_{1}+n_{2}}{m}
\end{array} .\right.}{(.}
\end{aligned}
$$

Solution 5

Let $X \sim U([-1,1])$ and $Y=X^{2}$. Then, it is evident that X, Y are not independent and $\operatorname{Cov}(X, Y)=E\left(\left(X-E(X)(Y-E(Y))=E\left(X^{3}\right)=0\right.\right.$.

Solution 6

Given two random variables X, Y such that their joint distribution is as follows:

$$
f_{X, Y}(x, y)= \begin{cases}c(1+x y) & \text { if } 2 \leq x \leq 3,1 \leq y \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

1. We know that, $\int_{y=1}^{2} \int_{x=2}^{3} f(x, y) d x d y=1$. Thus, on substitution we get, $\mathrm{c}=$ 4/19
2.

$$
\begin{aligned}
f_{X}(x) & =\int_{y=1}^{2} f_{X, Y}(x, y) d y \\
& = \begin{cases}\frac{4}{19}(1+3 x / 2) & \text { if } 2 \leq x \leq 3 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
f_{Y}(y) & =\int_{x=2}^{3} f_{X, Y}(x, y) d x \\
& = \begin{cases}\frac{4}{19}(1+5 y / 2) & \text { if } 1 \leq y \leq 2 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

3.

$$
\begin{aligned}
f_{X \mid Y}(x \mid y) & =\frac{f_{X, Y}(x, y)}{f_{Y}(y)} \\
& = \begin{cases}\frac{2(1+x y)}{2+5 y} & \text { if } 2 \leq x \leq 3,1 \leq y \leq 2 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Solution 7

Let X denote the number of accidents that a randomly chosen policyholder has next year. Letting Y be the Poisson mean number of accidents for this policyholder, then conditioning on Y yields

$$
\begin{aligned}
P\{X=n\} & =\int_{0}^{\infty} P\{X=n \mid Y=\lambda\} g(y) d y \\
& =\int_{0}^{\infty} e^{-\lambda} \frac{\lambda^{n}}{n!} \lambda e^{-\lambda} d y \\
& =\frac{1}{n!} \int_{0}^{\infty} e^{-2 \lambda} \lambda^{n+1} d y
\end{aligned}
$$

Since,

$$
h(y)=\frac{2 e^{-2 \lambda}(2 \lambda)^{n+1}}{(n+1)!}, \lambda>0
$$

is the density function of a gamma $(n+2,2)$ random variable, its integral is 1 . Therefore,

$$
\begin{gathered}
1=\int_{0}^{\infty} \frac{2 e^{-2 \lambda}(2 \lambda)^{n+1}}{(n+1)!} d \lambda=\frac{2^{n+2}}{(n+1)!} \int_{0}^{\infty} \lambda^{n+1} e^{-2 \lambda} \\
\Longrightarrow P\{X=n\}=\frac{n+1}{2^{n+2}}
\end{gathered}
$$

Solution 8

Let N_{1} denote the number of women and N_{2} the number of men who visit the academy today. Also, let $N=N_{1}+N_{2}$ be the total number of people who visit. Conditioning on N gives,

$$
\mathbb{P}\left\{N_{1}=n, N_{2}=m\right\}=\sum_{i=0}^{\infty} \mathbb{P}\left\{N_{1}=n, N_{2}=m \mid N=i\right\} \mathbb{P}\{N=i\}
$$

Because $\mathbb{P}\left\{N_{1}=n, N_{2}=m \mid N=i\right\}=0$ when $i \neq n+m$, the preceding equation yields

$$
\mathbb{P}\left\{N_{1}=n, N_{2}=m\right\}=\mathbb{P}\left\{N_{1}=n, N_{2}=m \mid N=n+m\right\} e^{\lambda} \frac{\lambda^{n+m}}{(n+m)!}
$$

Given that $n+m$ people visit it follows, because each of these $n+m$ is independently a woman with probability p, that the conditional probability that n of them are women (and m are men) is just the binomial probability of n successes in $n+m$ trials. Therefore,

$$
\begin{aligned}
\mathbb{P}\left\{N_{1}=n, N_{2}=m\right\} & =\binom{n+m}{n} p^{n}(1 p)^{m} e^{\lambda} \frac{\lambda^{n+m}}{(n+m)!} \\
& =\frac{(n+m)!}{n!m!} p^{n}(1 p)^{m} e^{\lambda p} e^{\lambda(1 p)} \frac{\lambda^{n} \lambda^{m}}{(n+m)!} \\
& =e^{\lambda p} \frac{(\lambda p)^{n}}{n!} e^{\lambda(1 p)} \frac{(\lambda(1 p))^{m}}{m!}
\end{aligned}
$$

Because the preceding joint probability mass function factors into two products, one of which depends only on n and the other only on m, it follows that N_{1} and N_{2} are independent. Moreover, because

$$
\begin{aligned}
\mathbb{P}\left\{N_{1}=n\right\} & =\sum_{i=0}^{\infty} \mathbb{P}\left\{N_{1}=n, N_{2}=m\right\} \\
& =e^{\lambda p} \frac{(\lambda p)^{n}}{n!} \sum_{i=o}^{\infty} e^{\lambda(1-p)} \frac{\left(\lambda(1-p)^{m}\right.}{m!}
\end{aligned}
$$

and similarly,

$$
\mathbb{P}\left\{N_{2}=m\right\}=e^{\lambda(1-p)} \frac{\left(\lambda(1-p)^{m}\right.}{m!}
$$

we can conclude that N_{1} and N_{2} are independent Poisson random variables with respective means λp and $\lambda(1-p)$. Therefore, this example establishes the important result that when each of a Poisson number of events is independently classified either as being type 1 with probability p or type 2 with probability $1-p$, then the numbers of type 1 and type 2 events are independent Poisson random variables.

Solution 9

Given: A chicken lays n eggs. Each egg independently does or doesn't hatch, with probability p of hatching.

Let N : number of eggs which hatch out of n eggs.
$\Longrightarrow N \sim \operatorname{Bin}(n, p)$.
For each egg that hatches, the chick does or doesn't survive (independently of the other eggs), with probability s of survival.

Let X : the number of chicks which survive out of N chicks.
$\Longrightarrow X \mid N \sim \operatorname{Bin}(N, s)$.
Let Y : the number of chicks which hatch but don't survive (so $X+Y=N$).
To find: PMF of X

$$
\begin{aligned}
p_{X}(x)=\mathbb{P}\{X=x\} & =\sum_{n^{\prime}=x}^{n} p_{X \mid N}\left(x \mid N=n^{\prime}\right) p_{N}\left(n^{\prime}\right) \\
& =\sum_{n^{\prime}=x}^{n}\binom{n^{\prime}}{x} s^{x}(1-s)^{n^{\prime}-x}\binom{n}{n^{\prime}} p^{n^{\prime}}(1-p)^{n-n^{\prime}} \\
& =\sum_{n^{\prime}=x}^{n} \frac{n^{\prime}!}{x!\left(n^{\prime}-x\right)!} s^{x}(1-s)^{n^{\prime}-x} \cdot \frac{n!}{n^{\prime}!\left(n-n^{\prime}\right)!} p^{n^{\prime}}(1-p)^{n-n^{\prime}}
\end{aligned}
$$

Let $n^{\prime}-x=r$. Then, $n^{\prime}=x \Longrightarrow r=0$ and $n^{\prime}=n \Longrightarrow r=n-x$

$$
\begin{aligned}
& =\sum_{r=0}^{n-x} \frac{n!}{x!r!(n-r-x)!} s^{x}(1-s)^{r} p^{r+x}(1-p)^{n-r-x} \\
& =\frac{n!}{x!(n-x)!}(p s)^{x}(1-p)^{n-x} \sum_{r=0}^{n-x} \frac{(n-x)!}{r!(n-r-x)!}(1-s)^{r} p^{r}(1-p)^{-r} \\
& =\binom{n}{x}(p s)^{x}(1-p)^{n-x} \sum_{r=0}^{n-x}\binom{n-x}{r}\left(\frac{(1-s) p}{1-p}\right)^{r} \\
& =\binom{n}{x}(p s)^{x}(1-p)^{n-x}\left(1+\frac{(1-s) p}{1-p}\right)^{n-x} \\
& =\binom{n}{x}(p s)^{x}(1-p)^{n-x}\left(\frac{1-p+(1-s) p}{1-p}\right)^{n-x} \\
& =\binom{n}{x}(p s)^{x}(1-p)^{n-x}\left(\frac{1-p s}{1-p}\right)^{n-x} \\
& =\binom{n}{x}(p s)^{x}(1-p s)^{n-x} \Longrightarrow X \sim \operatorname{Bin}(n, p s)
\end{aligned}
$$

