IE 605: Engineering Statistics

Solutions of tutorial 4

Solution 1

Part 1: MGF of Exponential (λ) distribution is $\frac{\lambda}{\lambda-u}$. Therefore, this is Exponential distribution with $\lambda=2$.
Part 1: MGF of $\operatorname{Binomial}(n, p)$ distribution is $\left(p e^{t}+q\right)^{n}$. Therefore, this is Binomial distribution with $p=\frac{1}{3}$ and $n=1050$.
Part 3: MGF of Poisson (λ) distribution is $e^{\lambda\left(e^{u}-1\right)}$. Therefore, this is Poisson distribution with $\lambda=3.5$.

Solution 2

2
The conditional density of X, given that $Y=1$, is given by

$$
\begin{aligned}
f_{X \mid Y}(x \mid 1) & =\frac{f(x, 1)}{f_{Y}(1)} \\
& =\frac{\frac{1}{2} e^{-x}}{\int_{0}^{\infty} \frac{1}{2} e^{-x}} \\
& =e^{-x}
\end{aligned}
$$

Hence, by the definition of $\mathbb{E}[g(X)]$ we have,

$$
\begin{aligned}
\mathbb{E}\left[e^{X / 2} \mid Y=1\right] & =\int_{0}^{\infty} e^{x / 2} f_{X \mid Y}(x \mid 1) d x \\
& =\int_{0}^{\infty} e^{x / 2} e^{-x} d x \\
& =2
\end{aligned}
$$

Solution 3

Part 1: If X and Y are independent then

$$
f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}=\frac{f_{X}(x) f_{Y}(y)}{f_{Y}(y)}=f_{X}(x)
$$

So,

$$
E[X \mid Y=y]=\int x f_{X \mid Y}(x \mid y) d x=\int x f_{X}(x) d x=E[X]
$$

Similarly, it can be proved for discrete case.

Part 3: We must compute $E[X g(Y) \mid Y=y]$. Given that $Y=y$, the possible values of $X g(Y)$ are $x g(y)$ where x varies over the range of X. The probability of the value $x g(y)$ given that $Y=y$ is just $P(X=x \mid Y=y)$. So

$$
\begin{aligned}
E[X g(Y) \mid Y=y] & =\sum_{x} x g(y) P(X=x \mid Y=y) \\
& =g(y) \sum_{x} x P(X=x \mid Y=y) \\
& =g(y) E[X \mid Y=y]
\end{aligned}
$$

Solution 4

0.0175

Let X_{i} be the indicator random variable for the i th bit in the packet. That is, $X_{i}=1$ if the $i^{t h}$ bit is received in error, and $X_{i}=0$ otherwise. Then the X_{i} 's are i.i.d. and $X i \sim \operatorname{Bernoulli}(p=0.1)$.
If Y is the total number of bit errors in the packet, we have $Y=X_{1}+X_{2}+\cdots+X_{n}$. Since $X i \sim \operatorname{Bernoulli}(p=0.1)$, we have $E\left[X_{i}\right]=\mu=p=0.1, \operatorname{Var}\left(X_{i}\right)=\sigma^{2}=p(1-p)=0.09$
Using the CLT, we have

$$
\begin{aligned}
P(Y>120) & =P\left(\frac{Y-n \mu}{\sqrt{n} \sigma}>\frac{120-n \mu}{\sqrt{n} \sigma}\right) \\
& =P\left(\frac{Y-n \mu}{\sqrt{n} \sigma}>\frac{120-n \mu}{\sqrt{90}}\right) \\
& \approx 1-\Phi\left(\frac{20}{\sqrt{90}}\right) \\
& =0.0175
\end{aligned}
$$

Solution 5

0.1587

If we let X_{i} denote the lifetime of the i th battery to be put in use, then we desire $p=P\left\{X_{1}+\cdots+X_{25}>1100\right\}$, which is approximated as follows:

$$
\begin{aligned}
p & =P\left\{\frac{X_{1}+\cdots+X_{25}-1000}{20 \sqrt{25}}>\frac{1100-1000}{20 \sqrt{25}}\right\} \\
& =P\{N(0,1)>1\} \\
& =1-\Phi(1)
\end{aligned}
$$

$$
=0.1587
$$

Solution 6

0.2405

We have

$$
\begin{aligned}
E\left[X_{i}\right] & =(0.6)(1)+(0.4)(-1) \\
& =\frac{1}{5} \\
E\left[X_{i}^{2}\right] & =(0.6)(1)^{2}+(0.4)(-1)^{2} \\
& =1
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\operatorname{Var}\left(X_{i}\right) & =1-\frac{1}{25}=\frac{24}{25} \\
\text { and } \sigma_{X_{i}} & =\frac{2 \sqrt{6}}{5}
\end{aligned}
$$

Now,

$$
\begin{gathered}
E[Y]=25 \times \frac{1}{5}=5 \\
\operatorname{Var}(Y)=25 \times \frac{24}{25}=24 \\
\text { and } \sigma_{Y}=2 \sqrt{6} \\
P(3.5 \leq Y \leq 6.5)=P\left(\frac{3.5-5}{2 \sqrt{6}} \leq \frac{Y-5}{2 \sqrt{6}} \leq \frac{6.5-5}{2 \sqrt{6}}\right) \\
=P\left(-0.3062 \leq \frac{Y-5}{2 \sqrt{6}} \leq+0.3062\right) \\
\\
\approx \Phi(0.3062)-\Phi(-0.3062) \\
\\
=2 \Phi(0.3062)-1 \\
\approx 0.2405
\end{gathered}
$$

Solution 7

74
Let X_{i} be the number of sandwiches that the i th person needs, and let

$$
Y=X_{1}+X_{2}+\cdots X_{64}
$$

The goal is to find y such that $P(Y \leq y) \geq 0.95$.
Now, $E\left[X_{i}\right]=(0.25)(0)+(0.5)(1)+(0.25)(2)=1$,
$E\left[X_{i}^{2}\right]=(0.25)\left(0^{2}\right)+(0.5)\left(1^{2}\right)+(0.5)\left(2^{2}\right)=1.5$.
Thus, $\operatorname{Var}\left(X_{i}\right)=E\left[X_{i}^{2}\right]-\left(E\left[X_{i}\right]\right)^{2}=1.5-1=\frac{1}{2} \Longrightarrow \sigma_{X_{i}}=\frac{1}{\sqrt{2}}$.
Then, $E[Y]=64 \times 1=64$,
$\operatorname{Var}(Y)=64 \times 12=32 \Longrightarrow \sigma_{Y}=4 \sqrt{2}$.
Now, we can use the CLT to find y

$$
\begin{aligned}
P(Y \leq y) & =P\left(\frac{Y-64}{4 \sqrt{2}} \leq \frac{y-64}{4 \sqrt{2}}\right) \\
& =\Phi\left(\frac{y-64}{4 \sqrt{2}}\right)
\end{aligned}
$$

We have

$$
\Phi\left(\frac{y-64}{4 \sqrt{2}}\right)=0.95
$$

Therefore,

$$
\begin{aligned}
\left(\frac{y-64}{4 \sqrt{2}}\right) & =\Phi^{-1}(0.95) \\
& \approx 1.6449
\end{aligned}
$$

Thus, $y=73.3$.
Therefore, if you make 74 sandwiches, you are 95% sure that there is no shortage. Note that the numerical value of $\Phi^{1}(0.95)$ by can be computed on MATLAB by running the norminv (0.95) command.

Solution 8

0.00043

Let W be the total weight, then $W=X_{1}+X_{2}+\cdots+X_{n}$, where $n=100$.
We have

$$
\begin{aligned}
E[W] & =n \mu=(100)(170)=17000 \\
\operatorname{Var}(W) & =100 \operatorname{Var}\left(X_{i}\right)=100(30)^{2}=90000
\end{aligned}
$$

Thus, $\sigma_{W}=300$.
We have

$$
\begin{aligned}
P(W>18000) & =P\left(\frac{W-17000}{300}>\frac{18000-17000}{300}\right) \\
& =P\left(\frac{W-17000}{300}>\frac{10}{3}\right) \\
& =1-\Phi\left(\frac{10}{3}\right)(\text { by CLT }) \\
& \approx 0.00043
\end{aligned}
$$

Solution 9

Let X_{i} be Poisson with mean 1 , and $\mathbb{E}\left[X_{i}\right]=1$ and $\operatorname{Var}\left(X_{i}\right)=1$. We define $S_{n}=X_{0}+X_{1}+\cdots+X_{n}$, and S_{n} follows Poisson distribution with mean n (Verify by MGF).

Therefore, $\mathbb{P}\left\{S_{n} \leq n\right\}=e^{-n} \sum_{k=0}^{n} \frac{n^{k}}{k!}$.
Use the central limit theorem to show that $\lim _{n \rightarrow \infty} e^{-n} \sum_{k=0}^{n} \frac{n^{k}}{k!}=\frac{1}{2}$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} e^{-n} \sum_{k=0}^{n} \frac{n^{k}}{k!} & =\lim _{n \rightarrow \infty} \mathbb{P}\left\{S_{n} \leq n\right\} \\
& =\lim _{n \rightarrow \infty} \mathbb{P}\left\{\frac{S_{n}-n}{\sqrt{n}} \leq \frac{n-n}{\sqrt{n}}\right\} \\
& =\lim _{n \rightarrow \infty} \mathbb{P}\left\{Z_{n} \leq 0\right\} \quad \text { where } Z_{n} \sim N(0,1) \\
& =\frac{1}{2} .
\end{aligned}
$$

Solution 10

Here,

$$
\begin{aligned}
P(X \geq \theta n) & =P(X-n p \geq \theta n-n p) \\
& \leq P(|X-n p| \geq n \theta-n p) \\
& \leq \frac{\operatorname{Var}(X)}{(n \theta-n p)^{2}} \quad \text { (using Chebyshev's inequality) } \\
& =\frac{p(1-p)}{n(\theta-p)^{2}}
\end{aligned}
$$

For, $p=1 / 2$ and $\theta=3 / 4$, we get

$$
\begin{equation*}
P\left(X \geq \frac{3 n}{4}\right) \leq \frac{4}{n} . \tag{1}
\end{equation*}
$$

Solution 11

This is the binomial distribution with $n=20$ and $p=\frac{1}{5}$, and $E[X]=n p=20 \times \frac{1}{5}$. By Markov's inequality, we have

$$
P\{X \geq 16\} \leq \frac{E[X]}{16}=\frac{1}{4}
$$

Now, the actul probabilty is given by

$$
P\{X \geq 16\}=\sum_{k=16}^{20}{ }^{20} C_{k}\left(\frac{1}{5}\right)^{k} \cdot\left(\frac{4}{5}\right)^{20-k}=1.38 \times 10^{-8}
$$

So, it can be seen that Markov's inequality is not a very good estimate as it doesn't get close enough to the true value.

Solution 12

Let X be any RV, and suppose that the MGF of $X, M(t)=\mathbb{E}\left[e^{t X}\right]$, exists for every $t>0$.

To show: For any $t>0, \mathbb{P}\left\{t X>s^{2}+\log M(t)\right\}<e^{-s^{2}}$.

$$
\begin{aligned}
\mathbb{P}\left\{t X>s^{2}+\log M(t)\right\} & =\mathbb{P}\left\{e^{t X}>e^{s^{2}+\log M(t)}\right\} \\
& =\mathbb{P}\left\{e^{t X}>e^{s^{2}} \cdot M(t)\right\} \quad \text { Taking exponent on both sides } \\
& \leq \frac{\mathbb{E}\left[e^{t X}\right]}{e^{s^{2}} \cdot M(t)} \quad \text { By Markov's Inqeuality } \\
& =\frac{M(t)}{e^{s^{2}} \cdot M(t)} \\
\Longrightarrow \mathbb{P}\left\{t X>s^{2}+\log M(t)\right\} & \leq e^{-s^{2}}
\end{aligned}
$$

