IE 605: Engineering Statistics

Solutions of tutorial 5

Solution 1

Part 1: Add and subtract \bar{x} from the expression on the left hand side and then expand as follows

$$
\sum_{i=1}^{n}\left(x_{i}-\bar{x}+\bar{x}-a\right)^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+2 \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)(\bar{x}-a)+\sum_{i=1}^{n}(\bar{x}-a)^{2}
$$

we can write the middle term in above eqn. ans simplify

$$
\begin{aligned}
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)(\bar{x}-a) & =\bar{x} \sum_{i=1}^{n} x_{i}-a \sum_{i=1}^{n} x_{i}-\bar{x} \sum_{i=1}^{n} \bar{x}+\bar{x} \sum_{i=1}^{n} a \\
& =n \bar{x}^{2}-a n \bar{x}-n \bar{x}^{2}+n \bar{x} a \\
& =0
\end{aligned}
$$

Then, we get

$$
\begin{equation*}
\sum_{i=1}^{n}\left(x_{i}-a\right)^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+\sum_{i=1}^{n}(\bar{x}-a)^{2} \tag{1}
\end{equation*}
$$

Now, it can be verifies that above eqn. attains minimum at $a=\bar{x}$.

Part 2: Now, consider

$$
\begin{aligned}
s^{2} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \\
& =\frac{1}{n-1}\left\{\sum_{i=1}^{n} x_{i}^{2}-2 \bar{x} \sum_{i=1}^{n} x_{i}+\sum_{i=1}^{n} \bar{x}^{2}\right\} \\
& =\frac{1}{n-1}\left\{\sum_{i=1}^{n} x_{i}^{2}-2 n \bar{x}^{2}+n \bar{x}^{2}\right\} \\
& =\frac{1}{n-1}\left\{\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}\right\}
\end{aligned}
$$

Solution 2

Part 1

The pdf of $V \sim \chi_{n-1}^{2}$ is given by

$$
f_{V}(v)=\frac{1}{2^{\left(\frac{n-1}{2}\right)} \Gamma\left(\frac{n-1}{2}\right)} v^{\frac{n-1}{2}-1} e^{-v / 2} ; \quad v>0
$$

The pdf of $U \sim \mathcal{N}(0,1)$ is given by

$$
f_{U}(u)=\frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} ; \quad u \in \mathbb{R}
$$

Since U and V are independent, we can write their joint pdf as:

$$
\begin{aligned}
f_{U V}(u, v) & =f_{U}(u) f_{V}(v) \\
& =\frac{1}{\sqrt{2 \pi} 2^{\left(\frac{n-1}{2}\right)} \Gamma\left(\frac{n-1}{2}\right)} e^{-u^{2} / 2} v^{\frac{n-1}{2}-1} e^{-v / 2}, \quad u \in \mathbb{R}, v>0 \\
& =\frac{1}{2^{\left(\frac{n}{2}\right)} \Gamma\left(\frac{n-1}{2}\right) \Gamma\left(\frac{1}{2}\right)} e^{-u^{2} / 2} v^{\frac{n-3}{2}} e^{-v / 2} \quad \text { since, } \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}
\end{aligned}
$$

Part 2:

Given, $X=\frac{U}{\sqrt{\frac{V}{n-1}}}$ and $Y=V$ Then the inverses are given as, $U=X \sqrt{\frac{Y}{n-1}}$ and $V=Y$ and the jacobian is given as,

$$
\mathbb{J}=\left[\begin{array}{cc}
\sqrt{\frac{Y}{n-1}} & \frac{1}{2(n-1) \sqrt{\frac{Y}{n-1}}} \\
0 & 1
\end{array}\right]=\sqrt{\frac{Y}{n-1}}
$$

Now, the joint pdf of X and Y is given as,

$$
\begin{aligned}
f_{X Y}(x, y) & =f_{U V}(u, v) \mathbb{J} \quad, \text { where } u=x \sqrt{\frac{y}{n-1}} \text { and } v=y \\
& =\frac{1}{2^{\left(\frac{n}{2}\right)} \Gamma\left(\frac{n-1}{2}\right) \Gamma\left(\frac{1}{2}\right)} e^{-\left(x \sqrt{\frac{y}{n-1}}\right)^{2} / 2} y^{\frac{n-3}{2}} e^{-y / 2} \sqrt{\frac{y}{n-1}} \\
& =\frac{1}{2^{\left(\frac{n}{2}\right)} \Gamma\left(\frac{n-1}{2}\right) \Gamma\left(\frac{1}{2}\right) \sqrt{n-1}} e^{-y\left(\frac{x^{2}}{2(n-1)}+\frac{1}{2}\right)} y^{\frac{n}{2}-1} \quad \text { where } y>0 \text { and } x \in \mathbb{R}
\end{aligned}
$$

Part 3

The marginal distribution of X is given by,

$$
f_{X}(x)=\int_{0}^{\infty} f_{X Y}(x, y) d y
$$

$$
\begin{aligned}
& =\int_{0}^{\infty} \frac{1}{2^{\left(\frac{n}{2}\right)} \Gamma\left(\frac{n-1}{2}\right) \Gamma\left(\frac{1}{2}\right) \sqrt{n-1}} e^{-y\left(\frac{x^{2}}{2(n-1)}+\frac{1}{2}\right)} y^{\frac{n}{2}-1} d y \\
& =\frac{1}{2^{\left(\frac{n}{2}\right)} \Gamma\left(\frac{n-1}{2}\right) \Gamma\left(\frac{1}{2}\right) \sqrt{n-1}} \int_{0}^{\infty} e^{-y\left(\frac{x^{2}}{2(n-1)}+\frac{1}{2}\right)} y^{\frac{n}{2}-1} d y \\
& =\frac{1}{2^{\left(\frac{n}{2}\right)} \Gamma\left(\frac{n-1}{2}\right) \Gamma\left(\frac{1}{2}\right) \sqrt{n-1}}\left(\frac{2(n-1)}{x^{2}+n-1}\right)^{\frac{n}{2}} \int_{0}^{\infty} e^{-u} u^{\frac{n}{2}-1} d u \\
& =\frac{1}{2^{\left(\frac{n}{2}\right)} \Gamma\left(\frac{n-1}{2}\right) \Gamma\left(\frac{1}{2}\right) \sqrt{n-1}}\left(\frac{2(n-1)}{x^{2}+n-1}\right)^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right) \\
& =\frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right) \Gamma\left(\frac{1}{2}\right) \sqrt{n-1}}\left(\frac{1}{\frac{x^{2}}{n-1}+1}\right)^{\frac{n}{2}} \\
\Longrightarrow f_{X}(x) & =\frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right) \Gamma\left(\frac{1}{2}\right) \sqrt{n-1}}\left(\frac{1}{\frac{x^{2}}{n-1}+1}\right)^{\frac{n}{2}}, \quad x \in \mathbb{R}
\end{aligned}
$$

Part 4

We know that t -distribution with $\mathrm{n}-1$ degrees of freedom is given as,

$$
\Longrightarrow f_{T}(t)=\frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right) \Gamma\left(\frac{1}{2}\right) \sqrt{n-1}}\left(\frac{1}{\frac{t^{2}}{n-1}+1}\right)^{\frac{n}{2}}, \quad t \in \mathbb{R}
$$

The above distribution is same as the distribution of X obtained in Part 3. Hence, X has t -distribution with $\mathrm{n}-1$ degrees of freedom

Solution 3

Let $X=$ number of defective parts in the sample. Then $X \sim \operatorname{hypergeometric}(N=$ $100, M, K)$ where $M=$ number of defectives in the lot and $K=$ sample size.

1. If there are 6 or more defectives in the lot, then the probability that the lot is accepted $(X=0)$ is at most

$$
\begin{aligned}
P(X=0 \mid M=100, N=6, K) & =\frac{\binom{6}{0}\binom{94}{K}}{\binom{100}{K}} \\
& =\frac{(100-K)(100-K-5)}{100 \ldots 95} .
\end{aligned}
$$

By trial and error we find $P(X=0)=.10056$ for $K=31$ and $P(X=0)=$. 09182 for $K=32$. So the sample size must be at least 32 .

Solution 4

Calculating the cdf of $Z^{2}=[\min (X, Y)]^{2} \Rightarrow Z^{2}>0$, we obtain

$$
\begin{aligned}
F_{Z^{2}}(z) & =\mathbb{P}\left\{(\min (X, Y))^{2} \leq z\right\} \\
& =\mathbb{P}\{-\sqrt{z} \leq \min (X, Y) \leq \sqrt{z}\} \\
& =\mathbb{P}\{\min (X, Y) \leq \sqrt{z}\}-\mathbb{P}\{\min (X, Y) \leq-\sqrt{z}\} \\
& =[1-\mathbb{P}\{\min (X, Y)>\sqrt{z}\}]-[1-\mathbb{P}\{\min (X, Y)>-\sqrt{z}\}] \\
& =\mathbb{P}\{\min (X, Y)>-\sqrt{z}\}-\mathbb{P}\{\min (X, Y)>\sqrt{z}\} \\
& =\mathbb{P}\{X>-\sqrt{z}\} \mathbb{P}\{Y>-\sqrt{z}\}-\mathbb{P}\{X>\sqrt{z}\} \mathbb{P}\{Y>\sqrt{z}\},
\end{aligned}
$$

where we use the independence of X and Y. Since X and Y are identically distributed, $\mathbb{P}\{X>a\}=\mathbb{P}\{Y>a\}=1-F_{X}(a)$, so

$$
\begin{aligned}
F_{Z^{2}}(z) & =\left(1-F_{X}(-\sqrt{z})\right)^{2}-\left(1-F_{X}(\sqrt{z})\right)^{2} \\
& =1-2 F_{X}(-\sqrt{z})
\end{aligned}
$$

since $1-F_{X}(\sqrt{z})=F_{X}(-\sqrt{z})$. Differentiating and substituting gives

$$
\begin{aligned}
f_{Z^{2}}(z) & =\frac{d}{d z} F_{Z^{2}}(z) \\
& =f_{X}(-\sqrt{z}) \frac{1}{\sqrt{z}} \\
& =\frac{1}{\sqrt{2 \pi}} e^{-z / 2} z^{-1 / 2}, \quad z>0
\end{aligned}
$$

the pdf of a χ_{1}^{2} random variable.

Solution 5

It can be verified that $X^{2}+Y^{2} \sim \chi_{2}^{2}$. Thus

$$
P\left(X^{2}+Y^{2}<1\right)=\int_{0}^{1} \frac{e^{-x / 2}}{2} d x=1-\frac{1}{\sqrt{e}}=0.3935 .
$$

Solution 6

The pdf of beta distribution with parameters α and β where both α and β are unknown is given by,

$$
f(x \mid \alpha, \beta)=\frac{1}{B(\alpha, \beta)} x^{\alpha-1}(1-x)^{\beta-1}, 0<x<1, \alpha>0, \beta>0
$$

To show: Beta distribution with parameters α and β where both α and β are
unknown belongs to Exponential family.
Exponential Family: A family of pdfs and pmfs is called an Exponential family if it can be expressed as

$$
f(x \mid \theta)=h(x) c(\theta) \exp \left(\sum_{i=1}^{k} w_{i}(\theta) t_{i}(x)\right)
$$

where $h(x) \geq 0$ and $t_{1}(x), \ldots, t_{k}(x)$ are real-valued functions of the observation x (they cannot depend on θ), and $c(\theta) \geq 0$ and $w_{1}(\theta), \ldots, w_{k}(\theta)$ are real-valued functions of the possibly vector-valued parameter θ.

In this case:

$$
f(x \mid \alpha, \beta)=I_{[0,1]}(x) \frac{1}{B(\alpha, \beta)} \exp \{(\alpha-1) \log (x)+(\beta-1) \log (1-x)\}
$$

where $h(x)=I_{[0,1]}(x), c(\alpha, \beta)=\frac{1}{B(\alpha, \beta)}, w_{1}(\alpha)=\alpha-1, t_{1}(x)=$ $\log (x), w_{2}(\beta)=\beta-1, t_{2}(x)=\log (1-x)$.

Solution 7

The sample mean is given by $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$.
The sample variance is given by $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$.
Here we use the theorem that states,

Theorem 1. Let $X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables. Let $g_{i}\left(X_{i}\right)$ be a function of only $x_{i}, i=1,2, \ldots, n$. Then the random variables $U_{i}=g_{i}\left(X_{i}\right), i=$ $1,2, \ldots, n$ are mutually independent.

Applying the above theorem, we can write S^{2} as a function of $(n-1)$ deviations.

$$
\begin{aligned}
S^{2} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \\
& =\frac{1}{n-1} \sum_{i=1}^{n}\left(\left(X_{1}-\bar{X}\right)^{2}+\sum_{i=2}^{n}\left(X_{i}-\bar{X}\right)^{2}\right) \\
& =\frac{1}{n-1} \sum_{i=1}^{n}\left(\left(\sum_{i=2}^{n}\left(X_{i}-\bar{X}\right)\right)^{2}+\sum_{i=2}^{n}\left(X_{i}-\bar{X}\right)^{2}\right) \quad \text { since, } \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)=0
\end{aligned}
$$

Thus S^{2} can be written as a function only of $\left(X_{2}-\bar{X}, \ldots, X_{n}-\bar{X}\right)$. We will now show that these random variables are independent of \bar{X}. The joint pdf of the sample $X_{1}, X_{2}, \ldots, X_{n}$ is given by
$f\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{(2 \pi)^{n / 2}} e^{-1 / 2 \sum_{i=1}^{n} x_{i}}, \quad-\infty<x_{i}<\infty, \forall i=1,2, \ldots, n$

Make the transformations

$$
\begin{aligned}
& y_{1}=\bar{x}, \\
& y_{2}=x_{2}-\bar{x}, \\
& \cdot \\
& \cdot \\
& \cdot \\
& y_{n}=x_{n}-\bar{x},
\end{aligned}
$$

This is a linear transformation with a Jacobian equal to $1 / n$ (Verify it). We have

$$
\begin{aligned}
g\left(y_{1}, \ldots, y_{n}\right) & =\frac{n}{(2 \pi)^{n / 2}} e^{-(1 / 2)\left(y_{1}-\sum_{i=2}^{n} y_{i}\right)^{2}} e^{-(1 / 2) \sum_{i=2}^{n}\left(y_{i}+y_{1}\right)^{2}}, \quad-\infty<y_{i}<\infty, \forall i=1, \ldots, n \\
& =\left\{\left(\frac{n}{2 \pi}\right)^{2} e^{\left(-n y_{1}^{2}\right) / 2}\right\}\left\{\frac{n^{1 / 2}}{(2 \pi)^{(n-1) / 2}} e^{-(1 / 2)\left(\sum_{i=2}^{n} y_{i}^{2}+\left(\sum_{i=2}^{n} y_{i}\right)^{2}\right)}\right\}, \quad-\infty<y_{i}<\infty, \forall i=1, . ., n
\end{aligned}
$$

Since the joint pdf of Y_{1}, \ldots, Y_{n} factors, it follows from theorem that Y_{1} is independent of Y_{2}, \ldots, Y_{n} and, hence, it follows from theorem that \bar{X} is independent of S^{2}.

Solution 8

The pdf of $X \sim \operatorname{Gamma}(\alpha, \lambda)$ is given by

$$
f(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} ; \quad 0<x<\infty, \alpha>0, \lambda>0
$$

The mgf is given by

$$
\begin{aligned}
M_{x}(t) & =\int_{0}^{\infty} e^{t x} \frac{\lambda^{\alpha}}{\Gamma(\alpha) \lambda^{\alpha}} x^{\alpha-1} e^{-\lambda x} d x \\
& =\int_{0}^{\infty} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-(\lambda-t) x} \\
& =\frac{\lambda^{\alpha}}{(\lambda-t)^{\alpha}} \int_{0}^{\infty} \frac{(\lambda-t)^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-(\lambda-t) x} d x
\end{aligned}
$$

The function in the last (underbraced) integral is a p.d.f. of gamma distribution $\Gamma(\alpha, \lambda-t)$ and, therefore, it integrates to 1 . We get,

$$
M_{X}(t)=\left(\frac{\lambda}{\lambda-t}\right)^{\alpha}
$$

Now,

$$
\begin{aligned}
E\left[X^{k}\right] & =\int_{0}^{\infty} x^{k} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} d x \\
& =\frac{\lambda^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty} x^{(\alpha+k)-1} e^{-\lambda x} d x \\
& =\frac{\lambda^{\alpha}}{\Gamma(\alpha)} \frac{\Gamma(\alpha+k)}{\lambda^{\alpha+k}} \int_{0}^{\infty} \frac{\lambda^{\alpha+k}}{\Gamma(\alpha+k)} x^{(\alpha+k)-1} e^{-\lambda x} d x \\
& =\frac{\lambda^{\alpha}}{\Gamma(\alpha)} \frac{\Gamma(\alpha+k)}{\lambda^{\alpha+k}} .1 \\
& =\frac{\Gamma(\alpha+k)}{\Gamma(\alpha) \lambda^{k}} \\
& =\frac{(\alpha+k-1) \Gamma(\alpha+k-1)}{\Gamma(\alpha) \lambda^{k}} \\
& =\frac{(\alpha+k-1)(\alpha+k-2) \ldots \alpha \Gamma(\alpha)}{\Gamma(\alpha) \lambda^{k}} \\
& =\frac{(\alpha+k-1) \ldots \alpha}{\lambda^{k}}
\end{aligned}
$$

Therefore, first moment is

$$
E[X]=\frac{\alpha}{\lambda}
$$

and the second moment is

$$
E\left[X^{2}\right]=\frac{(\alpha+1) \alpha}{\lambda^{2}}
$$

Solution 9

The pdf of $X \sim \chi_{r}^{2}$ is given by

$$
f(x)=\frac{1}{2^{r / 2} \Gamma(r / 2)} x^{r / 2-1} e^{-x / 2} ; \quad x>0
$$

The MGF of X is calculated as follows:

$$
\begin{aligned}
M_{X}(t) & =\mathbb{E}\left(e^{t X}\right) \\
& =\int_{0}^{\infty} e^{t x} \cdot \frac{1}{2^{r / 2} \Gamma(r / 2)} x^{r / 2-1} e^{-x / 2} d x \\
& =\int_{0}^{\infty} \frac{1}{2^{r / 2} \Gamma(r / 2)} x^{r / 2-1} e^{-(1 / 2-t) x} d x \\
& =\left(\frac{1}{2}-t\right)^{-r / 2} \cdot \frac{1}{2^{r / 2} \Gamma(r / 2)} \int_{0}^{\infty} y^{r / 2-1} e^{-y} d y \quad \text { putting } y=\left(\frac{1}{2}-t\right) x \\
& =(1-2 t)^{-r / 2} \cdot \frac{1}{\Gamma(r / 2)} \int_{0}^{\infty} y^{r / 2-1} e^{-y} d y \\
& =(1-2 t)^{-r / 2}
\end{aligned}
$$

[The second half of the above expression is a p.d.f. of Gamma distribution, therefore it integrates to 1].

We then have,

$$
M_{X}(t)=\frac{1}{(1-2 t)^{r / 2}}
$$

Now, let us define $Y=\sum_{i=1}^{n} X_{i}$ where $X_{i} \sim \chi_{n_{i}}^{2}$ for $i=1, \ldots, n$.
Then, MGF of Y is given by,

$$
\begin{aligned}
M_{Y}(t) & =\mathbb{E}\left(e^{t Y}\right) \\
& =\mathbb{E}\left(e^{t\left(\sum_{i=1}^{n} X_{i}\right)}\right) \\
& =\prod_{i=1}^{n} \mathbb{E}\left(e^{t X_{i}}\right) \quad \text { since } X_{i}^{\prime} s \text { are independent } \\
& =\prod_{i=1}^{n} \frac{1}{(1-2 t)^{n_{i} / 2}} \quad \text { since } X_{i} \sim \chi_{n_{i}}^{2} \\
& =\frac{1}{(1-2 t)^{p / 2}} \quad \text { where } p=\sum_{i=1}^{n} n_{i}
\end{aligned}
$$

By uniqueness of MGF, we can then conclude that $Y=\sum_{i=1}^{n} X_{i} \sim \chi_{p}^{2}$ where $p=\sum_{i=1}^{n} n_{i}$

Solution 10

Let X_{1}, \ldots, X_{n} be iid with pdf $f_{X}(x)$. Let \bar{X} be the sample mean and $X=n \bar{X}$. Therefore, $X=X_{1}+\cdots+X_{n}$. Then $\bar{X}=(1 / n) X$, a scale transformation. Therefore the pdf of \bar{X} is

$$
f_{\bar{X}}(x)=\frac{1}{1 / n} f_{X}\left(\frac{x}{1 / n}\right)=n f_{X}(n x)
$$

Solution 11

Given: Let \bar{X}_{n} and S_{n}^{2} are sample mean and sample variance of random sample $X_{1}, X_{2}, \ldots, X_{n}$. Let $X_{n+1}^{t h}$ sample is obtained.

- To show: $\bar{X}_{n+1}=\frac{X_{n+1}+n \bar{X}_{n}}{n+1}$.

$$
\begin{aligned}
\bar{X}_{n+1} & =\frac{\sum_{i=1}^{n+1} X_{i}}{n+1} \\
& =\frac{X_{n+1}+\sum_{i=1}^{n} X_{i}}{n+1} \\
& =\frac{X_{n+1}+n \bar{X}_{n}}{n+1} \quad \text { where } \bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i} .
\end{aligned}
$$

- To show: $n S_{n+1}^{2}=(n-1) S_{n}^{2}+\left(\frac{n}{n+1}\right)\left(X_{n+1}-\bar{X}_{n}\right)^{2}$.

$$
\begin{aligned}
n S_{n+1}^{2} & =\frac{n}{(n+1)-1} \sum_{i=1}^{n+1}\left(X_{i}-\bar{X}_{n+1}\right)^{2} \\
& =\sum_{i=1}^{n+1}\left(X_{i}-\frac{X_{n+1}+n \bar{X}_{n}}{n+1}\right)^{2} \quad \text { use } \bar{X}_{n+1}=\frac{X_{n+1}+n \bar{X}_{n}}{n+1} \\
& =\sum_{i=1}^{n+1}\left(X_{i}-\frac{X_{n+1}}{n+1}+\frac{n \bar{X}_{n}}{n+1}\right)^{2} \\
& =\sum_{i=1}^{n+1}\left\{\left(X_{i}-\bar{X}_{n}\right)-\left(\frac{X_{n+1}}{n+1}-\frac{\bar{X}_{n}}{n+1}\right)\right\}^{2} \quad \text { we adjust by } \pm \bar{X}_{n} \\
& =\sum_{i=1}^{n+1}\left\{\left(X_{i}-\bar{X}_{n}\right)^{2}-2\left(X_{i}-\bar{X}_{n}\right)\left(\frac{X_{n+1}-\bar{X}_{n}}{n+1}\right)+\frac{1}{(n+1)^{2}}\left(X_{n+1}-\bar{X}_{n}\right)^{2}\right\}
\end{aligned}
$$

since $\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)=0$, we get

$$
\begin{aligned}
n S_{n+1}^{2} & =\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}+\left(X_{n+1}-\bar{X}_{n}\right)^{2}-2 \frac{\left(X_{n+1}-\bar{X}_{n}\right)^{2}}{n+1}+\frac{n+1}{(n+1)^{2}}\left(X_{n+1}-\bar{X}_{n}\right)^{2} \\
& =(n-1) S_{n}^{2}+\frac{n}{n+1}\left(X_{n+1}-\bar{X}_{n}\right)^{2} .
\end{aligned}
$$

