IE 605: Engineering Statistics

Solutions of tutorial 6

Solution 1

Let $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$ be a sample from $N(0,4)$.
To find: $\mathbb{P}\left\{\sum_{i=1}^{5} X_{i}^{2} \geq 5.75\right\}$.

$$
\begin{aligned}
\frac{X_{i}}{2} \sim N(0,1) & \Longrightarrow \frac{X_{i}^{2}}{4} \sim \chi_{1}^{2} \\
& \sum_{i=1}^{5} \frac{X_{i}^{2}}{4} \sim \chi_{5}^{2} \quad \text { since } X_{i}^{\prime} s \text { are independent } \\
\mathbb{P}\left\{\sum_{i=1}^{5} X_{i}^{2} \geq 5.75\right\} & =\mathbb{P}\left\{\frac{\sum_{i=1}^{5} X_{i}^{2}}{4} \geq \frac{5.75}{4}\right\} \\
& =1-\mathbb{P}\left\{\chi_{5}^{2} \leq 1.4375\right\}=0.07983235
\end{aligned}
$$

Solution 2

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from $\operatorname{Poisson}(\lambda)$.

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

The expectation of is given by,

$$
\begin{aligned}
\mathbb{E}[\bar{X}] & =\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right] \\
& =\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right] \\
& =\frac{1}{n} \sum_{i=1}^{n} \lambda \quad \text { since, } x_{i} \sim \operatorname{Poisson}(\lambda) \Longrightarrow \mathbb{E}\left[X_{i}\right]=\lambda \\
\mathbb{E}[\bar{X}] & =\lambda . \\
\operatorname{var}(\bar{X}) & =\operatorname{var}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{n^{2}} \operatorname{var}\left(\sum_{i=1}^{n} X_{i}\right) \\
& =\frac{1}{n^{2}}\left(\sum_{i=1}^{n} \operatorname{var}\left(X_{i}\right)+\sum_{i, j=1, i \neq j}^{n} \operatorname{cov}\left(X_{i}, X_{j}\right)\right) \\
& =\frac{1}{n^{2}}\left(\sum_{i=1}^{n} \operatorname{var}\left(X_{i}\right)\right) \text { since } X_{i}^{\prime} s \text { are independent } \\
& =\frac{1}{n^{2}}\left(\sum_{i=1}^{n} \lambda\right) \\
& =\frac{\lambda}{n} \\
S^{2} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \\
\mathbb{E}\left[S^{2}\right] & =\lambda \quad \text { Check! } \\
\operatorname{var}\left(S^{2}\right) & =\frac{1}{n}\left(\mu_{4}-\frac{(n-3) \mu_{2}^{2}}{n-1}\right) \quad \text { Check! }
\end{aligned}
$$

For Poisson distribution, $\mu_{2}=\lambda$ and $\mu_{4}=\lambda(3 \lambda+1)$. Putting these values we get

$$
\begin{aligned}
\operatorname{var}\left(S^{2}\right) & =\frac{1}{n}\left(\frac{\lambda(3 \lambda+1)(n-1)-(n-3) \lambda^{2}}{n-1}\right) \\
& =\frac{1}{n}\left(\frac{3(n-1) \lambda^{2}+(n-1) \lambda-(n-3) \lambda^{2}}{n-1}\right) \\
\operatorname{var}\left(S^{2}\right) & =\frac{1}{n}\left(\lambda+\frac{2 n \lambda^{2}}{n-1}\right) \\
& >\operatorname{var}(\bar{X}) .
\end{aligned}
$$

Solution 3

For $n=2$, the p.d.f. of $f_{X_{(1)}}(x)$ is given by,

$$
f_{X_{(1)}}(x)=\frac{1}{\beta(1,2)}[1-F(x)] f(x) ; \quad-\infty<x<\infty
$$

where, $f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-x^{2}}{2 \sigma^{2}}}$

$$
\begin{aligned}
\mathbb{E}\left[X_{(1)}\right] & =\int_{-\infty}^{\infty} x \cdot f_{X_{(1)}}(x) d x(1) \\
& \left.=2 \int_{-\infty}^{\infty} 1-F(x)\right] f(x) d x
\end{aligned}
$$

We have $\log f(x)=-\log (\sqrt{2 \pi} \sigma)-\frac{x^{2}}{2 \sigma^{2}}$

Differentiating w.r.t. x we get,

$$
\begin{aligned}
\frac{f^{\prime}(x)}{f(x)} & =-\frac{x}{\sigma^{2}} \\
\Rightarrow \int x f(x) d x=-\sigma^{2} \int f^{\prime}(x) d x=-\sigma^{2} f(x)(2) &
\end{aligned}
$$

Integrating (1) by parts and using (2), we get

$$
\begin{aligned}
\mathbb{E}\left[X_{(1)}\right]= & 2 \cdot\left[(1-F(x))\left(-\sigma^{2} f(x)\right)\right]_{-\infty}^{\infty} \\
& -2 \int_{-\infty}^{\infty}\left(-\sigma^{2} f(x)\right)(-f(x)) d x \\
= & -2 \sigma^{2} \int_{-\infty}^{\infty}[f(x)]^{2} d x=-\frac{1}{\pi} \int_{-\infty}^{\infty} e^{\frac{-x^{2}}{\sigma^{2}}} d x \\
= & -\frac{1}{\pi} \frac{\sqrt{\pi}}{(1 / \sigma)}\left(\text { Since } \int_{-\infty}^{\infty} e^{-a^{2} x^{2}} d x=\frac{\sqrt{\pi}}{a}\right) \\
= & -\sigma / \sqrt{\pi}
\end{aligned}
$$

Solution 4

The probability distribution of X (or Y or Z) is

$$
f(x)= \begin{cases}\frac{1}{a} & \text { if } 0<x<a \\ 0 & \text { otherwise }\end{cases}
$$

Thus the cumulative distribution of function of $f(x)$ is given by

$$
F(x)=\left\{\begin{array}{ll}
0 & \text { if } x<0 \\
\frac{1}{a} & \\
1 & \text { if } x \geq a
\end{array} \quad \text { if } 0<x<a\right.
$$

Since $W=\min \{X, Y, Z\}, W$ is the first order statistic of the random sample X, Y, Z. Thus, the density function of W is given by

$$
\begin{aligned}
g(w) & =\frac{3!}{0!1!2!}[F(w)]^{0} f(w)[1-F(w)]^{2} \\
& =3 f(w)[1-F(w)]^{2} \\
& =3\left(1-\frac{w}{a}\right)^{2}\left(\frac{1}{a}\right)
\end{aligned}
$$

$$
=\frac{3}{a}\left(1-\frac{w}{a}\right)^{2}
$$

Thus, the pdf of W is given by

$$
g(w)= \begin{cases}\frac{3}{a}\left(1-\frac{w}{a}\right)^{2} & \text { if } 0<w<a \\ 0 & \text { otherwise }\end{cases}
$$

The expected value of W is

$$
\begin{aligned}
E\left[\left(1-\frac{W}{a}\right)^{2}\right] & =\int_{0}^{a}\left(1-\frac{w}{a}\right)^{2} g(w) d w \\
& =\int_{0}^{a}\left(1-\frac{w}{a}\right)^{2} \frac{3}{a}\left(1-\frac{w}{a}\right)^{2} d w \\
& =\int_{0}^{a} \frac{3}{a}\left(1-\frac{w}{a}\right)^{4} d w \\
& =\frac{3}{5}\left[\left(1-\frac{w}{a}\right)^{5}\right]_{0}^{a} \\
& =\frac{3}{5}
\end{aligned}
$$

Solution 5

To find the distribution of W, we need the joint distribution of the random variable $\left(X_{(n)}, X_{(1)}\right)$. The joint distribution of $\left(X_{(n)}, X_{(1)}\right)$ is given by

$$
h\left(x_{1}, x_{n}\right)=n(n-1) f\left(x_{1}\right) f\left(x_{n}\right)\left[F\left(x_{n}\right)-F\left(x_{1}\right)\right]^{n-2}
$$

where $x_{n} \geq x_{1}$ and $f(x)$ is the probability density function of X. To determine the probability distribution of the sample range W, we consider the transformation

$$
U=X_{(1)}, W=X_{(n)}-X_{(1)}
$$

which has an inverse

$$
X_{(1)}=U, X_{(n)}=U+W
$$

The Jacobian of this transformation is

$$
J=\operatorname{det}\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)=1
$$

Hence the joint density of (U, W) is given by

$$
g(u, w)=|J| h\left(x_{1}, x_{n}\right)=n(n-1) f(u) f(u+w)[F(u+w)-F(u)]^{n-2}
$$

where $w \geq 0$. Since $f(u)$ and $f(u+w)$ are simultaneously nonzero if $0 \leq u \leq 1$ and $0 \leq u+w \leq 1$. Hence $f(u)$ and $f(u+w)$ are simultaneously nonzero if
$0 \leq u l e 1-w$. Thus, the probability of W is given by

$$
\begin{aligned}
j(w) & =\int_{-\infty}^{\infty} g(u, w) d u \\
& =\int_{-\infty}^{\infty} n(n-1) f(u) f(u+w)[F(u+w)-F(u)]^{n-2} d u \\
& =n(n-1) w^{n-2} \int_{0}^{1-w} d u \\
& =n(n-1)(1-w) w^{n-2}
\end{aligned}
$$

where $0 \leq w \leq 1$

Solution 6

Let X be a random variable with an $F_{p, q}$ distribution, i.e. $X=\frac{U / p}{V / q}$, where U and V are two independent chi-square variates with p and q d.f. respectively.

We will derive the p.d.f. of X .

$$
X=\frac{U / p}{V / q} \Rightarrow \frac{p}{q} X=\frac{U}{V}
$$

$\frac{U}{V}$ being the ratio of two independent chi-square variates with p and q d.f. respectively is a $\beta_{2}(p / 2, q / 2)$ variate (Beta- Second kind) [CHECK]. Hence the probability density function of X is given by

$$
f_{X}(x)=\frac{\left(\frac{p}{q}\right)^{\frac{p}{2}}}{B\left(\frac{p}{2}, \frac{q}{2}\right)} \frac{x^{(p / 2)-1}}{\left[1+\frac{p}{q} x\right]^{\frac{(p+q)}{2}}}, \quad 0 \leq x<\infty
$$

The mean and variance of X.

$$
\begin{aligned}
\mu_{r}^{\prime} & =\mathbb{E}\left[X^{r}\right]=\int_{0}^{\infty} x^{r} f_{X}(x) d x \\
& =\frac{\left(\frac{p}{q}\right)^{\frac{p}{2}}}{B\left(\frac{p}{2}, \frac{q}{2}\right)} \int_{0}^{\infty} x^{r} \frac{x^{(p / 2)-1}}{\left[1+\frac{p}{q} x\right]^{\frac{(p+q)}{2}}} d x
\end{aligned}
$$

To evaluate the integral, put $\frac{p}{q} x=y$ so that $d x=\frac{q}{p} d y$

$$
\mu_{r}^{\prime}=\frac{\left(\frac{p}{q}\right)^{\frac{p}{2}}}{B\left(\frac{p}{2}, \frac{q}{2}\right)} \int_{0}^{\infty} \frac{\left(\frac{q}{p} y\right)^{r+(p / 2)-1}}{[1+y]^{\frac{(p+q)}{2}}} \frac{q}{p} d y
$$

$$
\begin{aligned}
& =\frac{\left(\frac{q}{p}\right)^{r}}{B\left(\frac{p}{2}, \frac{q}{2}\right)} \int_{0}^{\infty} \frac{y^{r+(p / 2)-1}}{[1+y]^{(p / 2+r)+(q / 2-r)}} d y \\
& =\frac{\left(\frac{q}{p}\right)^{r}}{B\left(\frac{p}{2}, \frac{q}{2}\right)} B(r+p / 2, q / 2-r) \quad \text { Check }
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\mu_{1}^{\prime}(\text { mean }) & =\frac{q}{q-2}, \quad q>2 \quad \text { Verify } \\
\mu_{2}^{\prime} & =\frac{q^{2}(p+2)}{p(q-2)(q-4)}, \quad q>4 \quad \text { Verify } \\
\mu_{2}(\text { Variance }) & =\frac{2 q^{2}(q+p-2)}{p(q-2)^{2}(q-4)}, \quad q>4 \quad \text { Verify }
\end{aligned}
$$

To show that $\frac{\frac{p}{q} X}{1+\frac{p}{q} X}$ has a beta distribution with parameters $p / 2$ and $q / 2$.

$$
\text { Note that } Z=\frac{p}{q} X
$$

has the pdf of Z as

$$
f_{Z}(z)=\frac{\Gamma[(p+q) / 2]}{\Gamma(p / 2) \Gamma(q / 2)} \frac{z^{(p / 2)-1}}{(1+z)^{(p+q) / 2}}, \quad z>0
$$

If $u=z /(1+z)$, then $z=u /(1-u), d z=(1-u)^{-2} d u$, and the pdf of $U=$ $Z /(1+Z)$ is

$$
\begin{aligned}
g_{U}(u) & =\frac{\Gamma[(p+q) / 2]}{\Gamma(p / 2) \Gamma(q / 2)}\left(\frac{u}{1-u}\right)^{(p / 2)-1} \frac{1}{(1-u)^{-(p+q) / 2}} \frac{1}{(1-u)^{2}} \\
& =\frac{\Gamma[(p+q) / 2]}{\Gamma(p / 2) \Gamma(q / 2)} u^{(p / 2)-1}(1-u)^{(q / 2)-1}, u>0 \\
& =\frac{1}{\operatorname{Beta}(p / 2, q / 2)} u^{(p / 2)-1}(1-u)^{(q / 2)-1}, u>0 \\
\Longrightarrow \frac{\frac{p}{q} X}{1+\frac{p}{q} X} & \sim \operatorname{Beta}(p / 2, q / 2) .
\end{aligned}
$$

Solution 7

We have,

$$
\begin{aligned}
& f(x)=1 ; \quad 0 \leq x \leq 1 \\
& F(x)=\mathbb{P}\{X \leq x\}=\int_{0}^{x} f(u) d u=x
\end{aligned}
$$

Let $n=2 m+1$ (odd), where m is a positive integer ≥ 1. Then median observation is $X_{(m+1)}$. Taking $r=(m+1)$ in $X_{(r)}$, the pdf of median $X_{(m+1)}$ is given by,

$$
\begin{aligned}
f_{m+1}(x) & =\frac{1}{\beta(m+1, m+1)} x^{m}(1-x)^{m} \\
\mathbb{E}\left[X_{(m+1)}\right] & =\frac{1}{\beta(m+1, m+1)} \int_{0}^{1} x \cdot x^{m}(1-x)^{m} d x \\
& =\frac{\beta(m+2, m+1)}{\beta(m+1, m+1)} \\
& =\frac{1}{2} \quad \text { Check } \\
\mathbb{E}\left[X_{(m+1)}^{2}\right] & =\int_{0}^{1} x^{2} f_{m+1}(x) d x \\
& =\frac{m+2}{2(2 m+3)} \quad \text { Check }
\end{aligned}
$$

Therefore,

$$
\operatorname{Var}\left(X_{(m+1)}\right)=\mathbb{E}\left[X_{(m+1)}^{2}\right]-\left[\mathbb{E}\left[X_{(m+1)}\right]\right]^{2}=\frac{1}{4(n+2)} \quad \text { Check. }
$$

Solution 8

To show: Sample standard deviation is not unbiased, but is consistent.
Let X_{1}, \ldots, X_{n} be n random sample drawn from a population with mean μ and population variance σ^{2}. We define,

Sample mean: $=\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$.
Sample variance: $=S_{n}^{2}=\frac{1}{n-1}\left(\sum_{i=1}^{n} X_{i}-\bar{X}\right)^{2}$
Sample standard deviation: $=S_{n}=\sqrt{\frac{1}{n-1}\left(\sum_{i=1}^{n} X_{i}-\bar{X}\right)^{2}}=\sqrt{S_{n}^{2}}$.
We know the sample variance defined S_{n}^{2} is an unbiased estimator of population variance σ^{2} (CHECK!) and the sample standard deviation is given as $S_{n}=\sqrt{S_{n}^{2}}$.

- To check: Sample standard deviation is an unbiased estimator of σ or not.

We know,

$$
\begin{aligned}
& \operatorname{Var}\left(S_{n}\right) \geq 0 \\
& \Longrightarrow \mathbb{E}\left[S_{n}^{2}\right]-\left(\mathbb{E}\left[S_{n}\right]\right)^{2} \geq 0 \\
& \Longrightarrow \mathbb{E}\left[S_{n}^{2}\right] \geq\left(\mathbb{E}\left[S_{n}\right]\right)^{2} \\
& \Longrightarrow \mathbb{E}\left[S_{n}\right] \leq \sqrt{\mathbb{E}\left[S_{n}^{2}\right]} \quad \text { we consider positive part only since } S_{n} \geq 0 . \\
& \Longrightarrow \mathbb{E}\left[S_{n}\right] \leq \sigma
\end{aligned}
$$

This implies that sample standard deviation S_{n} is a biased estimator of population standard deviation.

- To check: Sample standard deviation is an consistent estimator of σ or not. First we will show that S_{n}^{2} is a consistent estimator of σ^{2}.

$$
\mathbb{P}\left\{\left|S_{n}^{2}-\sigma^{2}\right| \geq \epsilon\right\} \leq \frac{\mathbb{E}\left[\left(S_{n}^{2}-\sigma^{2}\right)^{2}\right]}{\epsilon^{2}}=\frac{\operatorname{Var}\left(S_{n}^{2}\right)}{\epsilon^{2}}
$$

If $\operatorname{var}\left(S_{n}^{2}\right) \rightarrow 0$ as $n \rightarrow \infty$ then $\frac{\operatorname{Var}\left(S_{n}^{2}\right)}{\epsilon^{2}} \rightarrow 0$

$$
\begin{aligned}
\Longrightarrow \mathbb{P}\left\{\left|S_{n}^{2}-\sigma^{2}\right| \geq \epsilon\right\} & \rightarrow 0 \text { as } n \rightarrow \infty \\
\Longrightarrow S_{n}^{2} & \rightarrow \sigma^{2} \text { in probability. }
\end{aligned}
$$

Therefore, S_{n}^{2} is a consistent estimator of σ^{2}.
By invariance property of consistent estimator which states that:
If T is a consistent estimator of θ and if f is a continuous function then $f(T)$ is a consistent estimator of $f(\theta)$.

So by invariance property we can say that if S_{n}^{2} is a consistent estimator of σ^{2} then $S_{n}=\sqrt{S_{n}^{2}}$ is a consistent estimator of σ as square-root is a continuous function.

Solution 9

$$
\begin{aligned}
P(Z>z) & =\sum_{x=1}^{\infty} P(Z>z \mid x) P(X=x) \\
& =\sum_{x=1}^{\infty} P\left(U_{1}>z, \ldots, U_{x}>z \mid x\right) P(X=x) \\
& =\sum_{x=1}^{\infty} \prod_{i=1}^{x} P\left(U_{i}>z\right) P(X=x) \quad\left(\text { by independence of the } U_{i} \prime \text { 's }\right) \\
& =\sum_{x=1}^{\infty} P\left(U_{i}>z\right)^{x} P(X=x) \\
& =\sum_{x=1}^{\infty}(1-z)^{x} \frac{1}{(e-1) x!} \\
& =\frac{1}{(e-1)} \sum_{x=1}^{\infty} \frac{(1-z)^{x}}{x!} \\
& =\frac{e^{1-z}-1}{e-1}, \quad 0<z<1
\end{aligned}
$$

Solution 10

The solution for three parts are as follows:
a. $\sum_{i=1}^{3}\left(\frac{X_{i}-i}{i}\right)^{2} \sim X_{3}^{2}$
b. $\left(\frac{X_{i}-1}{i}\right) / \sqrt{\sum_{i=1}^{3}\left(\frac{X_{i}-i}{i}\right)^{2} / 2} \sim t_{2}$
c. Square the random variable in part (b).

Solution 11

Use $f_{X}(x)=1 / \theta, F_{X}(x)=x / \theta, 0<x<\theta$. Let $Y=X_{(n)}, Z=X_{(1)}$.

$$
\begin{aligned}
f_{(Z, Y)}(z, y) & =\frac{n!}{0!(n-2)!0!} \frac{1}{\theta} \frac{1}{\theta}\left(\frac{z}{\theta}\right)^{0}\left(\frac{y-z}{\theta}\right)^{n-2}\left(1-\frac{y}{\theta}\right)^{0} \\
& =\frac{n(n-1)}{\theta^{n}}(y-z)^{n-2}, \quad 0<z<y<\theta
\end{aligned}
$$

Now let $W=Z / Y, Q=Y$. Then $Y=Q, Z=W Q$ and $|J|=q$. Therefore

$$
\begin{aligned}
f_{(W, Q)}(w, q) & =\frac{n(n-1)}{\theta^{n}}(q-w q)^{n-2} q \\
& =\frac{n(n-1)}{\theta^{n}}(1-w)^{n-2} q^{n-1}, \quad 0<w<1,0<q<\theta
\end{aligned}
$$

The joint pdf factors into functions of w and q, and, hence, W and Q are independent.

Solution 12

Assume p and q are even. $F_{p, q}=\frac{U / p}{V / q}$ where $U \sim \chi_{p}^{2}$ and $V \sim \chi_{q}^{2}$ and are independent. As chi-squared distribution with p degrees of freedom is Gamma distributed with parameter $\alpha=p / 2$ and $\lambda=1 / 2$, we get $U \sim \operatorname{Gamma}(p / 2,1 / 2)$ and $V \sim \operatorname{Gamma}(q / 2,1 / 2)$. As $p / 2$ and $q / 2$ are integers, we have $\sum_{i=1}^{p / 2} X_{i} \sim \operatorname{Gamma}(p / 2,1 / 2)$ and $\sum_{i=1}^{q / 2} Y_{i} \sim \operatorname{Gamma}(p / 2,1 / 2)$, where $X_{1}, X_{2}, \ldots, X_{p / 2}, Y_{1}, Y_{2}, \ldots, Y_{q / 2}$ are iid RVs $\sim \operatorname{Exp}(1 / 2)$. Hence we have

$$
F_{p, q}=\frac{q}{p} \frac{\sum_{i=1}^{p / 2} X_{i}}{\sum_{j=1}^{q / 2} Y_{j}}
$$

Finally, we know that $X_{1}, X_{2}, \ldots, X_{p / 2}, Y_{1}, Y_{2}, \ldots, Y_{q / 2}$ can be generated from uniform random variables. If $Z_{1}, Z_{2}, Z_{p / 2}, W_{1}, W_{2}, W_{q / 2}$ are iid $\sim \operatorname{Unif}(0,1)$. We have $X_{i}=-2 \log \left(1-Z_{i}\right) 2$ for all $i=1,2,, p / 2$ and $Y_{j}=-2 \log \left(1-W_{j}\right)$ for all $j=1,2, q / 2$. Thus we have

$$
F_{p, q}=\frac{q}{p} \frac{\sum_{i=1}^{p / 2} 2 \log \left(1-Z_{i}\right)}{\sum_{j=1}^{q / 2} 2 \log \left(1-W_{i}\right)}
$$

