IE 605: Engineering Statistics

Solutions of tutorial 7

Solution 1

Given: $U \sim \operatorname{Uniform}(0,1)$

- To show: Both $-\log U$ and $-\log (1-U)$ are exponential random variables.

Solution:

Since $U \sim \operatorname{Uniform}(0,1)$, the pdf is given as

$$
f_{U}(u)=\left\{\begin{array}{ll}
1, & 0<u<1 \\
0, & \text { otherwise }
\end{array} \quad \text { and } \quad F_{U}(u)=u, \quad 0<u<1\right.
$$

We have $\mathrm{Y}=\mathrm{g}(\mathrm{U})=-\log (\mathrm{U})$
Since $\frac{d}{d U} g(U)=\frac{d}{d U}(-\log (U))=\frac{-1}{U}<0, \quad$ for $0<u<1$ $\Longrightarrow g(U)$ is a decreasing function.

As U ranges between 0 and $1,-\log (U)$ ranges between 0 and $\infty \Longrightarrow Y \in$ $(0, \infty)$.

Now for $y>0, y=-\log (u) \Longrightarrow u=e^{-y}$, so $g^{-1}(y)=e^{-y}$.

Therefore, for $y>0$,

$$
\begin{aligned}
F_{Y}(y) & =\mathbb{P}\{Y \leq y\}=\mathbb{P}\left\{X \geq g^{-1}(y)\right\} \\
& =1-F_{X}\left(g^{-1}(y)\right) \\
& =1-F_{X}\left(e^{-y}\right)=1-e^{-y} . \\
\text { and } F_{Y}(y) & =0, \quad \text { for } y \leq 0 . \\
\Longrightarrow Y & \sim \text { Exponential }(1)
\end{aligned}
$$

Now we have $\mathrm{Y}=\mathrm{g}(\mathrm{U})=-\log (1-\mathrm{U})$

$$
\text { Since } \frac{d}{d U} g(U)=\frac{d}{d U}(-\log (1-U))=\frac{1}{1-U}>0, \quad \text { for } 0<u<1
$$

$\Longrightarrow g(U)$ is a increasing function.

As U ranges between 0 and $1,-\log (1-U)$ ranges between 0 and $\infty \Longrightarrow$ $Y \in(0, \infty)$.

Now for $y>0, y=-\log (1-u) \Longrightarrow u=1-e^{-y}$, so $g^{-1}(y)=1-e^{-y}$.

Therefore, for $y>0$,

$$
\begin{aligned}
F_{Y}(y) & =\mathbb{P}\{Y \leq y\}=\mathbb{P}\left\{X \leq g^{-1}(y)\right\} \\
& =F_{X}\left(g^{-1}(y)\right) \\
& =F_{X}\left(1-e^{-y}\right)=1-e^{-y} . \\
\text { and } F_{Y}(y) & =0, \quad \text { for } y \leq 0 . \\
\Longrightarrow Y & \sim \text { Exponential }(1)
\end{aligned}
$$

- To show: $X=\log \left(\frac{U}{1-U}\right)$ is a logistic $(0,1)$ random variable.

Solution:

$$
\begin{aligned}
X & =g(U)=-\log \frac{1-U}{U} \\
\text { Then } g^{-1}(x) & =\frac{1}{1+e^{-y}} \\
\text { Thus } f_{X}(x) & =1 \times\left|\frac{e^{-y}}{\left(1+e^{-y}\right)^{2}}\right| \\
& =\frac{e^{-y}}{\left(1+e^{-y}\right)^{2}} \quad-\infty<y<\infty
\end{aligned}
$$

$\Longrightarrow X \sim \operatorname{logistic}(0,1)$ random variable.

Solution 2

Given: The Box-Muller method for generating normal pseudo-random variables is based on the transformation

$$
X_{1}=\cos \left(2 \pi U_{1}\right) \sqrt{-2 \log \left(U_{2}\right)}, \quad X_{2}=\sin \left(2 \pi U_{1}\right) \sqrt{-2 \log \left(U_{2}\right)}
$$

where U_{1} and U_{2} are iid $U n i f o r m(0,1)$.
To prove: X_{1} and X_{2} are independent $\operatorname{Normal}(0,1)$ random variables.
Solution:

Since U_{1} and U_{2} are iid $U n i f o r m(0,1)$, the joint pdf is given as

$$
f_{U_{1}, U_{2}}\left(u_{1}, u_{2}\right)=1, \quad 0 \leq u_{1}, u_{2} \leq 1
$$

We are given

$$
\begin{aligned}
& X_{1}=\cos \left(2 \pi U_{1}\right) \sqrt{-2 \log \left(U_{2}\right)}, \quad \text { and } X_{2}=\sin \left(2 \pi U_{1}\right) \sqrt{-2 \log \left(U_{2}\right)} \\
& \Longrightarrow U_{1}=\frac{1}{2 \pi} \tan ^{-1}\left(\frac{X_{2}}{X_{1}}\right), \quad \text { and } U_{2}=e^{-\frac{1}{2}\left(X_{1}^{2}+X_{2}^{2}\right)} \\
& \text { Jacobian: } J=\left|\begin{array}{cc}
\frac{\delta U_{1}}{\delta X_{1}} & \frac{\delta U_{1}}{\delta X_{2}} \\
\frac{\delta U_{2}}{\delta X_{1}} & \frac{\delta U_{2}}{\delta X_{2}}
\end{array}\right| \\
&=\left|\begin{array}{cc}
\frac{-X_{2}}{2 \pi\left(X_{1}^{2}+X_{2}^{2}\right)} & \frac{X_{1}}{2 \pi\left(X_{1}^{2}+X_{2}^{2}\right)} \\
\left(-X_{1}\right) e^{-\frac{1}{2}\left(X_{1}^{2}+X_{2}^{2}\right)} & \left(-X_{2}\right) e^{-\frac{1}{2}\left(X_{1}^{2}+X_{2}^{2}\right)}
\end{array}\right|=\frac{1}{2 \pi} e^{-\frac{1}{2}\left(X_{1}^{2}+X_{2}^{2}\right)}
\end{aligned}
$$

The joint pdf of X_{1} and X_{2} is

$$
\begin{aligned}
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) & =\frac{1}{2 \pi} e^{-\frac{1}{2}\left(X_{1}^{2}+X_{2}^{2}\right)}, \quad-\infty \leq x_{1}, x_{2} \leq \infty \\
& =\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}\left(X_{1}^{2}\right)} \cdot \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}\left(X_{2}^{2}\right)}, \quad-\infty \leq x_{1}, x_{2} \leq \infty
\end{aligned}
$$

$\Longrightarrow X_{1}$ and X_{2} are independent $\operatorname{Normal}(0,1)$ random variables

Solution 3

Given: Park et.al. (1996) describe a method for generating correlated binary variables based on the following scheme:

Let X_{1}, X_{2}, X_{3} be independent Poisson random variables with mean $\lambda_{1}, \lambda_{2}, \lambda_{3}$ respectively, and create the random variables

$$
Y_{1}=X_{1}+X_{3} \quad \text { and } \quad Y_{2}=X_{2}+X_{3}
$$

1. To show: $\operatorname{Cov}\left(Y_{1}, Y_{2}\right)=\lambda_{3}$.

Solution:

$$
\begin{aligned}
\operatorname{Cov}\left(Y_{1}, Y_{2}\right) & =\operatorname{Cov}\left(X_{1}+X_{3}, X_{2}+X_{3}\right) \\
& =\operatorname{Cov}\left(X_{3}, X_{3}\right)=\lambda_{3} \quad \text { since } X_{1}, X_{2} \text { and } X_{3} \text { are independent. }
\end{aligned}
$$

2. Define $Z_{i}=\mathbb{I}\left(Y_{i}=0\right)$ and $p_{i}=e^{-\left(\lambda_{i}+\lambda_{3}\right)}$.

To show: Z_{i} are $\operatorname{Bernoulli}\left(p_{i}\right)$ with

$$
\operatorname{Corr}\left(Z_{1}, Z_{2}\right)=\frac{p_{1} p_{2}\left(e^{\lambda_{3}}-1\right)}{\sqrt{p_{1}\left(1-p_{1}\right)} \sqrt{p_{2}\left(1-p_{2}\right)}}
$$

Solution:

$$
Z_{i}= \begin{cases}1, & \text { if } X_{i}=X_{3}=0 \\ 0, & \text { otherwise }\end{cases}
$$

$$
p_{i}=P\left(Z_{i}=0\right)=P\left(Y_{i}=0\right)=P\left(X_{i}=0, X_{3}=0\right)=e^{-\left(\lambda_{i}+\lambda_{3}\right)}
$$

Therefore Z_{i} are $\operatorname{Bernoulli}\left(p_{i}\right)$ with $\mathbb{E}\left[Z_{i}\right]=p_{i}, \operatorname{Var}\left(Z_{i}\right)=p_{i}\left(1-p_{i}\right)$ and

$$
\begin{aligned}
\mathbb{E}\left[Z_{1} Z_{2}\right] & =P\left(Z_{1}=1, Z_{2}=1\right) \\
& =P\left(Y_{1}=0, Y_{2}=0\right) \\
& =P\left(X_{1}+X_{3}=0, X_{2}+X_{3}=0\right) \\
& =P\left(X_{1}=0\right) \cdot P\left(X_{2}=0\right) \cdot P\left(X_{3}=0\right) \\
& =e^{-\lambda_{1}} e^{-\lambda_{2}} e^{-\lambda_{3}}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\operatorname{Cov}\left(Z_{1}, Z_{2}\right) & =\mathbb{E}\left[Z_{1} Z_{2}\right]-\mathbb{E}\left[Z_{1}\right] \mathbb{E}\left[Z_{2}\right] \\
& =e^{-\lambda_{1}} e^{-\lambda_{2}} e^{-\lambda_{3}}-e^{-\left(\lambda_{1}+\lambda_{3}\right)} e^{-\left(\lambda_{2}+\lambda_{3}\right)} \\
& =e^{-\left(\lambda_{1}+\lambda_{3}\right)} e^{-\left(\lambda_{2}+\lambda_{3}\right)}\left(e^{3}-1\right) \\
& =p_{1} p_{2}\left(e^{\lambda_{3}}-1\right) .
\end{aligned}
$$

Thus $\operatorname{Corr}\left(Z_{1}, Z_{2}\right)=\frac{p_{1} p_{2}\left(e^{\lambda_{3}}-1\right)}{\sqrt{p_{1}(1-p 1)} \cdot \sqrt{p_{2}\left(1-p_{2}\right)}}$.

Solution 4

The given algorithm is the Acceptance-Rejection method (indirect method) of random variable generation for some desired choice of distribution f.

$$
\begin{aligned}
P(Y \leq y) & =P\left(V \leq y \left\lvert\, U<\frac{1}{c} f_{Y}(V)\right.\right) \\
& =\frac{P\left(V \leq y, U<\frac{1}{c} f_{Y}(V)\right)}{P\left(U<\frac{1}{c} f_{Y}(V)\right)} \\
& =\frac{\int_{0}^{y} \int_{0}^{\frac{1}{c} f_{Y}(v)} d u d v}{\frac{1}{c}} \\
& =\frac{\frac{1}{c} \int_{0}^{y} f_{Y}(v) d v}{\frac{1}{c}} \\
& =\int_{0}^{y} f_{Y}(v) d v
\end{aligned}
$$

Thus, we may say that $Y \sim f$, and in this case, $f \equiv \operatorname{Beta}(m, n)$
You may refer to Sec. 8.2.4 from the book "Simulation Modeling and Analysis" by Averill M. Law for a better understanding, in addition to the references already suggested in class.

Solution 5

1. $M=\sup _{y} \frac{\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} y^{a-1}(1-y)^{b-1}}{\frac{\Gamma([a]+b)}{\Gamma([a]) \Gamma(b b)} y^{[a]-1}(1-y)^{[b]-1}}<\infty$, since $a-[a]>0$ and $b-[b]>0$ and $y \in(0,1)$
2. $M=\sup _{y} \frac{\frac{a^{b}}{\Gamma(b)} e^{-a y} y^{b-1}}{\frac{[a]^{b}}{\Gamma(b)} e^{-[a] y} y^{b-1}}<\infty$, since $a-[a]>0$ and $y>0$.
3. $M=\sup _{y} \frac{\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} y^{a-1}(1-y)^{b-1}}{\frac{\Gamma([a]+1+\beta)}{\Gamma([a]+1) \Gamma\left(b^{\prime}\right)} y^{[a]+1-1}(1-y)^{b^{\prime}-1}}<\infty$, since $a-[a]-1<0$ and $y \in(0,1) . b-b^{\prime}>0$ when $b^{\prime}=[b]$ and will be equal to zero when $b^{\prime}=b$, thus it does not affect the result.
