IE 605: Engineering Statistics

Solutions of tutorial 9

Solution 1

1. Since $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from Bernoulli population with parameter θ,

$$
\begin{aligned}
& T=\sum_{i=1}^{n} X_{i} \sim B(n, \theta) \\
& \Rightarrow \mathbb{E}\left[\frac{\sum_{i=1}^{n} X_{i}\left(\sum_{i=1}^{n} X_{i}-1\right)}{n(n-1)}=\right.=n \theta \text { and } \operatorname{Var}(T)=n \theta(1-\theta) \\
&=\frac{\mathbb{E}\left[\frac{T(T-1)}{n(n-1)}\right]}{} \\
&=\frac{1}{n(n-1)}\left[\mathbb{E}\left[T^{2}\right]-\mathbb{E}[T]\right] \\
&=\frac{1}{n(n-1)}\left[n \theta(1-\theta)+n^{2} \theta^{2}-n \theta\right] \\
&=\frac{n \theta^{2}(n-1)}{n(n-1)} \\
&=\theta^{2} \\
& \Rightarrow\left[\frac{\left.\sum_{i=1}^{n} X_{i}\left(\sum_{i=1}^{n} X_{i}-1\right)\right]}{n(n-1)}\right] \text { is an unbiased estimator of } \theta^{2} . \\
&\left.\hline[\mathbb{E}[T])^{2}-\mathbb{E}[T]\right] \\
&
\end{aligned}
$$

2. Let us define,

$$
\begin{aligned}
T(X) & =(-k)^{X} \text { where } x>0, \text { so that } \\
& = \begin{cases}T(x)>0 & \text { if } X \text { is even } \\
T(x)<0 & \text { if } X \text { is odd. }\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E}[T(X)] & =\mathbb{E}\left[(-k)^{X}\right], k>O \\
& =\sum_{x=o}^{\infty}(-k)^{x} \frac{e^{-\theta} \theta^{x}}{x!}=e^{-\theta} \sum_{x=o}^{\infty} \frac{(-k \theta)^{x}}{x!}=e^{-\theta} e^{-k \theta}=e^{-(1+k) \theta}
\end{aligned}
$$

$\Rightarrow T(X)=(-k)^{X}$ is an unbiased estimator for $\exp \{-(1+k) \theta\}, k>O$.

Solution 2

1.

$$
\begin{aligned}
\log f & =-\log \pi-\log \left\{1+(x-\theta)^{2}\right\} \\
\frac{\partial \log f}{\partial \theta} & =\frac{2(x-\theta)}{\left[1+(x-\theta)^{2}\right]} \\
\mathbb{E}\left[\left(\frac{\partial \log f}{\partial \theta}\right)^{2}\right] & =\int_{-\infty}^{\infty} \frac{4(x-\theta)^{2}}{\left[1+(x-\theta)^{2}\right]^{2}} f(x, \theta) d x \\
& =\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{4(x-\theta)^{2}}{\left[1+(x-\theta)^{2}\right]^{2}} f(x, \theta) d x
\end{aligned}
$$

Put $x-\theta-\tan \phi \Rightarrow d x=\sec ^{2} \phi d \phi$
Therefore $\mathbb{E}\left[\left(\frac{\partial \log f}{\partial \theta}\right)^{2}\right]=\frac{2}{\pi} \int_{0}^{\pi / 2} \frac{4 \tan ^{2} \phi}{\sec ^{6} \phi} \sec ^{2} \phi d \phi=\frac{2}{\pi} \int_{0}^{\pi / 2} \frac{4 \sin ^{2} \phi}{\cos ^{2} \phi} \cos ^{4} \phi d \phi$

$$
\begin{aligned}
& =\frac{2}{\pi} \int_{0}^{\pi / 2} 4 \sin ^{2} \phi \cos ^{2} \phi d \phi=\frac{8}{\pi} \int_{0}^{\pi / 2}\left(\cos ^{2} \phi-\cos ^{4} \phi\right) d \phi \\
& =\frac{8}{\pi}\left[\frac{1}{2} \cdot \frac{\pi}{2}-\frac{3.4}{4.2} \frac{\pi}{2}\right]
\end{aligned}
$$

Using the reduction formula for $\int_{0}^{\pi / 2} \cos ^{n} x d x$

$$
=\frac{8}{\pi}\left[\frac{\pi}{4}-\frac{3 . \pi}{16}\right]
$$

Hence Cramer-Rao Lower Bound based on n samples is given by,

$$
=\frac{1}{n \mathbb{E}\left[\left(\frac{\partial \log f}{\partial \theta}\right)^{2}\right]}=\frac{1}{n\left[\frac{1}{2}\right]}=\frac{2}{n}
$$

2. We have proved Cramer-Rao's inequality,

$$
\begin{equation*}
\operatorname{Var}(\hat{\theta}) \geq \frac{\left[\phi^{\prime}(\theta)\right]^{2}}{I(\theta)}, \text { where } \mathbb{E}[\hat{\theta}]=\phi(\theta) \tag{*}
\end{equation*}
$$

Now,

$$
\begin{aligned}
\mathbb{E}[\hat{\theta}-\theta]^{2} & =\mathbb{E}[\hat{\theta}-\phi(\theta)+\phi(\theta)-\theta]^{2} \\
& =\mathbb{E}[\hat{\theta}-\phi(\theta)]^{2}+[\theta-\phi(\theta)]^{2}+2[\phi(\theta)-\theta] . \mathbb{E}[\hat{\theta}-\phi(\theta)] \\
& =V(\hat{\theta})+[\theta-\phi(\theta)]^{2}
\end{aligned}
$$

Therefore $\mathbb{E}[\hat{\theta}-\theta]^{2} \geq \frac{\left[\phi^{\prime}(\theta)\right]^{2}}{I(\theta)}+[\theta-\phi(\theta)]^{2} \quad[\operatorname{Using}(*)]$
Let $\hat{\theta}$ be a 'biased' estimator of θ with bias given by $b(\theta)$,

$$
\begin{aligned}
\text { i.e., } \mathbb{E}[\hat{\theta}] & =\theta+b(\theta)=\phi(\theta) \text { (say) } \\
\Rightarrow \phi(\theta)-\theta & =b(\theta)
\end{aligned}
$$

From (**), we get

$$
\mathbb{E}[\hat{\theta}-\theta]^{2} \geq \frac{\left[1+\frac{\partial}{\partial \theta} b(\theta)\right]^{2}}{I(\theta)}+[b(\theta)]^{2}>0
$$

where $I(\theta)=n \int_{-\infty}^{\infty}\left(\frac{\partial}{\partial \theta} \log f\right)^{2} f(x, \theta) d x>0$.
This proves the result.

Solution 3

1. Let $X_{1}, X_{2}, \ldots, X_{n}$ be n random samples drawn from the distribution. The joint distribution is given by,

$$
\begin{aligned}
f(x \mid \theta) & =\prod_{i=1}^{n} \frac{\alpha}{\beta^{\alpha}} x_{i}^{\alpha-1} I_{[0, \beta]}\left(x_{i}\right) \\
& =\left(\frac{\alpha}{\beta^{\alpha}}\right)^{n}\left(\prod_{i=1}^{n} x_{i}\right)^{\alpha-1} I_{(-\infty, \beta]}\left(x_{(n)}\right) I_{[0, \infty)}\left(x_{(1)}\right)=L(\alpha, \beta \mid x) \text { (the likelihood function). }
\end{aligned}
$$

By the Factorization Theorem, $\left(\prod_{i=1}^{n} X_{i}, X_{(n)}\right)$ are sufficient.
2. For any fixed $\alpha, L(\alpha, \beta \mid x)=0$ if $\beta<x_{(n)}$, and $L(\alpha, \beta \mid x)$ a decreasing function of β if $\beta \geq x_{(n)}$. Thus, $X_{(n)}$ is the MLE of β. For the MLE of α calculate,

$$
\frac{\partial}{\partial \alpha} \log L=\frac{\partial}{\partial \alpha}\left[n \log \alpha-n \alpha \log \beta+(\alpha-1) \log \prod_{i} x_{i}\right]=\frac{n}{\alpha}-n \log \beta+\log \prod_{i} x_{i}
$$

Set the derivative equal to zero and use $\hat{\beta}=X_{(n)}$ to obtain

$$
\hat{\alpha}=\frac{n}{n \log X_{(n)}-\log \prod_{i} X_{i}}=\left[\frac{1}{n} \sum_{i}\left(\log X_{(n)}-\log X_{i}\right)\right]^{-1}
$$

The second derivative is $n / \alpha^{2}<0$, so this is the MLE.
3. According to the data set given,

$$
X_{(n)}=25.0, \log \prod_{i} X_{i}=\sum_{i} \log X_{i}=43.95 \Rightarrow \hat{\beta}=25.0, \hat{\alpha}=12.59
$$

Solution 4

1. Let $X_{1}, X_{2}, \ldots, X_{n}$ be n random samples drawn from the distribution. The joint distribution is given by,

$$
\begin{aligned}
f(x \mid \theta) & =\prod_{i=1}^{n} \theta x_{i}^{\theta-1} \\
& =\theta^{n}\left(\prod_{i=1}^{n} x_{i}\right)^{\theta-1}=L(\theta \mid x) \text { (the likelihood function) } \\
\frac{d}{d \theta} \log L & =\frac{d}{d \theta}\left[n \log \theta+(\theta-1) \log \prod_{i=1}^{n} x_{i}\right]=\frac{n}{\theta}+\sum_{i=1}^{n} \log x_{i}
\end{aligned}
$$

Set the derivative equal to zero and solve for θ to obtain $\hat{\theta}=\left(-\frac{1}{n} \sum_{i=1}^{n} \log x_{i}\right)^{-1}$. The second derivative is $n / \theta^{2}<0$, so this is the MLE. To calculate the variance of $\hat{\theta}$, note that $Y_{i}=-\log X_{i} \sim \operatorname{exponential}(1 / \theta)$, so $-\sum_{i=1}^{n} \log X_{i} \sim \operatorname{gamma}(n, 1 / \theta)$. Thus $\hat{\theta}=\frac{n}{T}$, where $T \sim \operatorname{gamma}(n, 1 / \theta)$. We can either calculate the first and second moments directly, or use the fact that $\hat{\theta}$ is inverted gamma (page 51). We have

$$
\begin{aligned}
& \mathbb{E}\left[\frac{1}{T}\right]=\frac{\theta^{n}}{\Gamma(n)} \int_{0}^{\infty} \frac{1}{t} t^{n-1} e^{-\theta t} d t=\frac{\theta^{n}}{\Gamma(n)} \frac{\Gamma(n-1)}{\theta^{n-1}}=\frac{\theta}{n-1} \\
& \mathbb{E}\left[\frac{1}{T^{2}}\right]=\frac{\theta^{n}}{\Gamma(n)} \int_{0}^{\infty} \frac{1}{t^{2}} t^{n-1} e^{-\theta t} d t=\frac{\theta^{n}}{\Gamma(n)} \frac{\Gamma(n-2)}{\theta^{n-2}}=\frac{\theta^{2}}{(n-1)(n-2)}
\end{aligned}
$$

and thus,

$$
\mathbb{E}[\hat{\theta}]=\frac{n}{n-1} \theta \text { and } \operatorname{Var}(\hat{\theta})=\frac{n^{2}}{(n-1)^{2}(n-2)} \theta^{2} \rightarrow 0 \text { as } n \rightarrow \infty
$$

2. Because $X \sim \operatorname{Beta}(\theta, 1), \mathbb{E}[X]=\frac{\theta}{\theta+1}$ and the method of moments estimator
is the solution to

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i}=\frac{\theta}{\theta+1} \Rightarrow \tilde{\theta}=\frac{\sum_{i=1}^{n} X_{i}}{n-\sum_{i=1}^{n} X_{i}}
$$

Solution 5

1. For each value of x, the MLE $\hat{\theta}$ is the value of θ that maximizes $f(x \mid \theta)$. These values are in the following table.

x	0	1	2	3	4
$\hat{\theta}$	1	1	2 or 3	3	3

At $x=2, f(x \mid 2)=f(x \mid 3)=1 / 4$ are both maxima, so both $\hat{\theta}=2$ or $\hat{\theta}=3$ are MLEs.
2. The \log function is a strictly monotone increasing function. Therefore, $L(\theta \mid x)>L\left(\theta^{\prime} \mid x\right)$ if and only if $\log L(\theta \mid x)>\log L\left(\theta^{\prime} \mid x\right)$. So the value $\hat{\theta}$ that maximizes $\log L(\theta \mid x)$ is the same as the value that maximizes $L(\theta \mid x)$.

Solution 6

1. We know $T=\frac{(n-1) S^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}$. Then

$$
\begin{aligned}
\mathbb{E}\left[T^{p / 2}\right] & =\frac{1}{\Gamma\left(\frac{n-1}{2}\right) 2^{\frac{n-1}{2}}} \int_{0}^{\infty} t^{\frac{p+n-1}{2}-1} e^{-\frac{t}{2}} d t \\
& =\frac{2^{\frac{p}{2}} \Gamma\left(\frac{p+n-1}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)} \\
\Longrightarrow \mathbb{E}\left[\left(\frac{(n-1) S^{2}}{\sigma^{2}}\right)^{\frac{p}{2}}\right] & =\frac{2^{\frac{p}{2}} \Gamma\left(\frac{p+n-1}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)} \\
\Longrightarrow \mathbb{E}\left[\left(\frac{n-1}{2}\right)^{\frac{p}{2}} \frac{\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{p+n-1}{2}\right)} S^{p}\right] & =\sigma^{p}
\end{aligned}
$$

Hence, $\left(\frac{n-1}{2}\right)^{\frac{p}{2}} \frac{\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{p+n-1}{2}\right)} S^{p}$ is an unbiased estimator of σ^{p}.
2. With $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$ as the sample variance, we know that,

$$
\frac{(n-1) S^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}
$$

Keeping in mind that for a chi-squared random variable X with n degrees of freedom, mean and variance of X are n and $2 n$ respectively, we have

$$
\operatorname{Var}\left(\frac{(n-1) S^{2}}{\sigma^{2}}\right)=2(n-1)
$$

$$
\text { or }, \quad \operatorname{Var}\left(S^{2}\right)=\frac{2 \sigma^{4}}{n-1}
$$

We also have,

$$
\begin{aligned}
& \mathbb{E}\left[\left(\frac{(n-1) S^{2}}{\sigma^{2}}\right)\right]=(n-1) \\
& \quad \text { or }, \mathbb{E}\left[S^{2}\right]=\sigma^{2}
\end{aligned}
$$

We require an MSE for the parameter σ^{2} of the form $\alpha S^{2},(\alpha \neq 1)$.
Now,

$$
\begin{aligned}
\operatorname{MSE}_{\sigma}\left(\alpha S^{2}\right) & =\operatorname{Var}_{\sigma}\left(\alpha S^{2}\right)+\left\{\operatorname{bias}\left(\alpha S^{2}\right)\right\}^{2} \\
& =\alpha^{2} \operatorname{Var}_{\sigma}\left(S^{2}\right)+\left(\alpha \sigma^{2}-\sigma^{2}\right)^{2} \\
& =\alpha^{2} \frac{2 \sigma^{4}}{n-1}+\sigma^{4}(\alpha-1)^{2} \\
& =\sigma^{4}\left[\frac{2 \alpha^{2}}{n-1}+(\alpha-1)^{2}\right] \\
& =\sigma^{4} \psi(\alpha), \text { (say) }
\end{aligned}
$$

Minimizing $\psi(\alpha)$ by usual calculus, we find that $\alpha=\frac{n-1}{n+1}$ is the point of minima.
Therefore, the required minimum MSE estimator of the form αS^{2} is

$$
T=\left(\frac{n-1}{n+1}\right) S^{2}=\frac{1}{n+1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

with the minimum MSE being $\sigma^{4} \psi\left(\frac{n-1}{n+1}\right)=\frac{2 \sigma^{4}}{n+1}$

Solution 7

$\mathbb{E}(T)=\theta, \quad \mathbb{E}\left(T^{\prime}\right)=\theta$ and $V(T)<V\left(T^{\prime}\right)$
$\therefore \mathbb{E}\left(T-T^{\prime}\right)=0$
$\Longrightarrow T-T^{\prime} \in U_{0}$ where $U_{0}=\{u(X): \mathbb{E}[u(X)]=0, V(u(X))<\infty \forall \theta \in \Omega\}$
From the theorem, we know that if
$U_{\Psi}=\{T(X): \mathbb{E}[T(X)]=\Psi(\theta), V(T(X))<\infty \quad \forall \theta \in \Omega\}$
$U_{0}=\{u(X): \mathbb{E}[u(X)]=0, V(u(X))<\infty \quad \forall \theta \in \Omega\}$
Then $T \in U_{\Psi}$ is UMVUE of $\Psi(\theta)$ iff $\operatorname{cov}(u, T)=0 \forall u \in U_{0} \forall \theta \in \Omega$
Here, T is UMVUE of θ and $u=T-T^{\prime}$
So, $\operatorname{cov}(u, T)=0$ (by theorem)
$\Longrightarrow \operatorname{cov}\left(T-T^{\prime}, T\right)=0$
$\Longrightarrow V(T)-\operatorname{cov}\left(T, T^{\prime}\right)=0$
$\Longrightarrow \operatorname{cov}\left(T, T^{\prime}\right)=V(T)$

Solution 8

Let $t=s^{2}$ and $\theta=\sigma^{2}$. Because $\frac{(n-1) S^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}$, we have

$$
f(t \mid \theta)=\frac{1}{\Gamma\left(\frac{n-1}{2}\right) 2^{(n-1) / 2}}\left(\frac{n-1}{\theta} t\right)^{[(n-1) / 2]-1} e^{-(n-1) t / 2 \theta} \frac{n-1}{\theta} .
$$

With $\pi(\theta)$ as given, we have (ignoring terms that do not depend on θ),

$$
\begin{aligned}
\pi(\theta) & \propto\left[\left(\frac{1}{\theta}\right)^{((n-1) / 2)-1} e^{-(n-1) t / 2 \theta} \frac{1}{\theta}\right]\left[\frac{1}{\theta^{\alpha+1}} e^{-1 / \beta \theta}\right] \\
& \propto\left(\frac{1}{\theta}\right)^{((n-1) / 2)+\alpha+1} \exp \left\{-\frac{1}{\theta}\left[\frac{(n-1) t}{2}+\frac{1}{\beta}\right]\right\}
\end{aligned}
$$

which we recognize as the kernel of an inverted gamma pdf, $\operatorname{IG}(a, b)$, with

$$
a=\frac{n-1}{2}+\alpha, \text { and } b=\left[\frac{(n-1) t}{2}+\frac{1}{\beta}\right]^{-1}
$$

Direct calculation shows that the mean of an $\operatorname{IG}(a, b)$ is $\frac{1}{(a-1) b}$, so

$$
\mathbb{E}[\theta \mid t]=\frac{\frac{n-1}{2} t+\frac{1}{\beta}}{\frac{n-1}{2}+\alpha-1}=\frac{\frac{n-1}{2} s^{2}+\frac{1}{\beta}}{\frac{n-1}{2}+\alpha-1}
$$

This is the Bayes Estimator of σ^{2}.

Solution 9

For n observations, $Y=\sum_{i=1}^{n} X_{i} \sim \operatorname{Poisson}(n \lambda)$.

1. The marginal pmf of Y is,

$$
\begin{aligned}
m(y) & =\int_{0}^{\infty} \frac{(n \lambda)^{y} e^{-n \lambda}}{y!} \frac{1}{\Gamma(\alpha) \beta^{\alpha}} \lambda^{\alpha-1} e^{-\lambda / \beta} d \lambda \\
& =\frac{n^{y}}{y!\Gamma(\alpha) \beta^{\alpha}} \int_{0}^{\infty} \lambda^{(y+\alpha)-1} e^{-\frac{\lambda}{\beta /(n \beta+1)}} d \lambda \\
& =\frac{n^{y}}{y!\Gamma(\alpha) \beta^{\alpha}} \Gamma(y+\alpha)\left(\frac{\beta}{n \beta+1}\right)^{y+\alpha}
\end{aligned}
$$

Thus,

$$
\pi(\lambda \mid y)=\frac{f(y \mid \lambda) \pi(\lambda)}{m(y)}=\frac{\lambda^{(y+\alpha)-1} e^{-\frac{\lambda}{\beta /(n \beta+1)}}}{\Gamma(y+\alpha)\left(\frac{\beta}{n \beta+1}\right)^{y+\alpha}} \sim \operatorname{Gamma}\left(y+\alpha, \frac{\beta}{n \beta+1}\right)
$$

2.

$$
\begin{gathered}
\mathbb{E}[\lambda \mid y]=(y+\alpha) \frac{\beta}{n \beta+1}=\frac{\beta}{n \beta+1} y+\frac{1}{n \beta+1}(\alpha \beta) \\
\operatorname{Var}(\lambda \mid y)=(y+\alpha) \frac{\beta^{2}}{(n \beta+1)^{2}} .
\end{gathered}
$$

Solution 10

Given: Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid Poisson (λ) RVs and suppose $\psi(\lambda)=\mathbb{P}_{\lambda}(X=$ $0)=e^{-\lambda}$.

1. To find: UMVUE of $\psi(\lambda)$.

We consider the estimator

$$
\delta(X)= \begin{cases}1, & \text { if } X_{1}=0 \\ 0, & \text { otherwise }\end{cases}
$$

is unbiased for $\psi(\lambda)$ since

$$
\mathbb{E}[\delta(X)]=\mathbb{E}[\delta(X)]^{2}=\mathbb{P}\left\{X_{1}=0\right\}=e^{-\lambda}
$$

$$
\text { Also, } \operatorname{var}(\delta(X))=e^{-\lambda}\left(1-e^{-\lambda}\right)
$$

We show next that $\delta(X)$ is the only unbiased estimator of θ and hence is the UMVUE.
We know $T(X)=\sum_{i=1}^{n} X_{i}$ is sufficient and complete for $(\lambda)>0$ and has $\operatorname{Poisson}(n \lambda)$. Then by Rao-Blackwell Theorem, $\mathbb{E}[\delta(X) \mid T(X)]$ is UMVUE of $\psi(\lambda)$.

$$
\begin{aligned}
\mathbb{E}[\delta(X) \mid T(X)=t] & =1 \cdot \mathbb{P}\left\{X_{1}=0 \mid T(X)=t\right\} \\
& =\frac{\mathbb{P}\left\{X_{1}=0, T(X)=t\right\}}{\mathbb{P}\{T(X)=t\}} \\
& =\frac{\mathbb{P}\left\{X_{1}=0, \sum_{i=2}^{n} X_{i}=t\right\}}{\mathbb{P}\left\{\sum_{i=1}^{n} X_{i}=t\right\}} \\
& =\frac{\mathbb{P}\left\{X_{1}=0\right\} \cdot \mathbb{P}\left\{\sum_{i=2}^{n} X_{i}=t\right\}}{\mathbb{P}\left\{\sum_{i=1}^{n} X_{i}=t\right\}} \\
& =\frac{e^{-\lambda} \cdot e^{-(n-1) \lambda} \frac{((n-1) \lambda)^{t}}{t!}}{e^{-n \lambda} \frac{(n \lambda)^{t}}{t!}} \\
& =\left(\frac{n-1}{n}\right)^{t}
\end{aligned}
$$

Hence, the UMVUE of $\psi(\lambda)$ is given by $T_{0}=\left(\frac{n-1}{n}\right)^{\sum_{i=1}^{n} X_{i}}$.
2. To find: The variance of T_{0}

$$
\begin{aligned}
\mathbb{E}\left[T_{0}\right] & =\sum_{t=0}^{\infty}\left(\frac{n-1}{n}\right)^{t} e^{-n \lambda} \frac{(n \lambda)^{t}}{t!} \\
& =e^{-\lambda} \sum_{t=0}^{\infty} e^{-(n-1) \lambda} \frac{((n-1) \lambda)^{t}}{t!} \\
& =e^{-\lambda} \\
\mathbb{E}\left[T_{0}^{2}\right] & =\sum_{t=0}^{\infty}\left(\frac{n-1}{n}\right)^{2} t e^{-n \lambda} \frac{(n \lambda)^{t}}{t!} \\
& =\sum_{t=0}^{\infty} e^{-n \lambda} \frac{\left.\left(\frac{(n-1)^{2}}{n}\right) \lambda\right)^{t}}{t!} \\
& =e^{-\lambda\left[n-\frac{(n-1)^{2}}{n}\right]} \\
& =e^{-\lambda\left(\frac{2 n-1}{n}\right)} \\
\operatorname{var}\left(T_{0}\right) & =\mathbb{E}\left[T_{0}^{2}\right]-\left(\mathbb{E}\left[T_{0}\right]\right)^{2} \\
& =e^{-2 \lambda}\left(e^{\frac{\lambda}{n}}-1\right)
\end{aligned}
$$

3. To find: Fisher Cramer-Rao lower bound for any unibiased estimator of $\psi(\lambda)$.

$$
\begin{aligned}
L_{X}(x \mid \lambda) & =\frac{e^{-n \lambda} \sum_{i=1}^{n} x_{i}}{\prod_{i=1}^{n} x_{i}!} \\
\ln \left(L_{X}(x \mid \lambda)\right) & =-n \lambda+\sum_{i=1}^{n} x_{i} \ln (\lambda)-\ln \left(\prod_{i=1}^{n} x_{i}!\right)
\end{aligned}
$$

Differentiating the \log of likelihood function wrt λ we get

$$
\begin{aligned}
\frac{d \ln (L)}{d \lambda} & =-n+\frac{\sum_{i=1}^{n} x_{i}}{\lambda} \\
\frac{d^{2} \ln (L)}{d \lambda^{2}} & =-\frac{\sum_{i=1}^{n} x_{i}}{\lambda^{2}} \Longrightarrow I(\lambda)=\mathbb{E}\left[-\frac{d^{2} \ln (L)}{d \lambda^{2}}\right]=\frac{\mathbb{E}\left[\sum_{i=1}^{n} x_{i}\right]}{\lambda^{2}}=\frac{n}{\lambda}
\end{aligned}
$$

Therefore, the Cramer-Rao lower bound is given by

$$
C R L B=\frac{\left[\psi^{\prime}(\lambda)\right]^{2}}{I(\lambda)}=e^{-2 \lambda} \frac{\lambda}{n}
$$

4. Is T_{0} the most efficient estimator?

We know that $e^{\frac{\lambda}{n}}-1 \geq \frac{\lambda}{n}, \forall \lambda>0$ since $e^{x} \geq 1+x, \forall x>0$.

$$
\begin{aligned}
& \Longrightarrow e^{-2 \lambda}\left(e^{\frac{\lambda}{n}}-1\right) \geq e^{-2 \lambda \frac{\lambda}{n}} \\
& \Longrightarrow \operatorname{var}\left(T_{0}\right) \geq e^{-2 \lambda} \frac{\lambda}{n}
\end{aligned}
$$

Therefore, T_{0} is not most efficient.

