
Autumn Semester 2020 December 31, 2021

IE 605: Engineering Statistics

Solutions of tutorial 9

Solution 1

1. Since X1, X2, . . . , Xn is a random sample from Bernoulli population with
parameter θ,

T =

n∑
i=1

Xi ∼ B(n, θ)

⇒ E [T ] = nθ and V ar(T ) = nθ(1− θ)

E


n∑
i=1

Xi

(
n∑
i=1

Xi − 1

)
n(n− 1)

 = E
[
T (T − 1)

n(n− 1)

]

=
1

n(n− 1)
[E
[
T 2
]
− E [T ]]

=
1

n(n− 1)
[V ar(T ) + (E [T ])2 − E [T ]]

=
1

n(n− 1)
[nθ(1− θ) + n2θ2 − nθ]

=
nθ2(n− 1)

n(n− 1)

= θ2

⇒


n∑
i=1

Xi

(
n∑
i=1

Xi − 1

)
n(n− 1)

 is an unbiased estimator of θ2.

2. Let us define,

T (X) = (−k)Xwhere x > 0, so that

=

 T (x) > 0 if X is even

T (x) < 0 if X is odd.

E [T (X)] = E
[
(−k)X

]
, k > O

=
∞∑
x=o

(−k)x
e−θθx

x!
= e−θ

∞∑
x=o

(−kθ)x

x!
= e−θe−kθ = e−(1+k)θ

⇒ T (X) = (−k)X is an unbiased estimator for exp{−(1 + k)θ}, k > O.



Solution 2

1.

log f = − log π − log{1 + (x− θ)2}
∂ log f

∂θ
=

2(x− θ)
[1 + (x− θ)2]

E

[(
∂ log f

∂θ

)2
]

=

∞∫
−∞

4(x− θ)2

[1 + (x− θ)2]2
f(x, θ)dx

=
1

π

∞∫
−∞

4(x− θ)2

[1 + (x− θ)2]2
f(x, θ)dx

Put x− θ − tanφ⇒ dx = sec2φdφ

Therefore E

[(
∂ log f

∂θ

)2
]

=
2

π

π/2∫
0

4tan2φ

sec6φ
sec2φdφ =

2

π

π/2∫
0

4sin2φ

cos2φ
cos4φdφ

=
2

π

π/2∫
0

4sin2φcos2φdφ =
8

π

π/2∫
0

(cos2φ− cos4φ)dφ

=
8

π

[
1

2
.
π

2
− 3.4

4.2

π

2

]

Using the reduction formula for
π/2∫
0

cosnxdx

=
8

π

[
π

4
− 3.π

16

]
Hence Cramer-Rao Lower Bound based on n samples is given by,

=
1

nE
[(

∂ log f
∂θ

)2
] =

1

n
[

1
2

] =
2

n
.

2. We have proved Cramer-Rao’s inequality,

V ar(θ̂) ≥ [φ′(θ)]2

I(θ)
, where E

[
θ̂
]

= φ(θ) (∗)

Now,

E
[
θ̂ − θ

]2
= E

[
θ̂ − φ(θ) + φ(θ)− θ

]2

= E
[
θ̂ − φ(θ)

]2
+ [θ − φ(θ)]2 + 2[φ(θ)− θ].E

[
θ̂ − φ(θ)

]
= V (θ̂) + [θ − φ(θ)]2
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Therefore E
[
θ̂ − θ

]2
≥ [φ′(θ)]2

I(θ)
+ [θ − φ(θ)]2 [Using (*)] (∗∗)

Let θ̂ be a ’biased’ estimator of θ with bias given by b(θ),

i.e., E
[
θ̂
]

= θ + b(θ) = φ(θ) (say)

⇒ φ(θ)− θ = b(θ)

From (**), we get

E
[
θ̂ − θ

]2
≥
[
1 + ∂

∂θ b(θ)
]2

I(θ)
+ [b(θ)]2 > 0,

where I(θ) = n
∞∫
−∞

(
∂
∂θ log f

)2
f(x, θ)dx > 0.

This proves the result.

Solution 3

1. Let X1, X2, . . . , Xn be n random samples drawn from the distribution. The
joint distribution is given by,

f(x|θ) =
n∏
i=1

α

βα
xα−1
i I[0,β](xi)

=

(
α

βα

)n
(

n∏
i=1

xi)
α−1I(−∞,β](x(n))I[0,∞)(x(1)) = L(α, β|x) (the likelihood function).

By the Factorization Theorem,
(

n∏
i=1

Xi, X(n)

)
are sufficient.

2. For any fixed α,L(α, β|x) = 0 if β < x(n), and L(α, β|x) a decreasing
function of β if β ≥ x(n). Thus, X(n) is the MLE of β. For the MLE of α
calculate,

∂

∂α
logL =

∂

∂α

[
n logα− nα log β + (α− 1) log

∏
i

xi

]
=
n

α
−n log β+log

∏
i

xi
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Set the derivative equal to zero and use β̂ = X(n) to obtain

α̂ =
n

n logX(n) − log
∏
iXi

=

[
1

n

∑
i

(
logX(n) − logXi

)]−1

The second derivative is n/α2 < 0, so this is the MLE.

3. According to the data set given,

X(n) = 25.0, log
∏
i

Xi =
∑
i

logXi = 43.95⇒ β̂ = 25.0, α̂ = 12.59.

Solution 4

1. Let X1, X2, . . . , Xn be n random samples drawn from the distribution. The
joint distribution is given by,

f(x|θ) =
n∏
i=1

θxθ−1
i

= θn

(
n∏
i=1

xi

)θ−1

= L(θ|x) (the likelihood function)

d

dθ
logL =

d

dθ

[
n log θ + (θ − 1) log

n∏
i=1

xi

]
=
n

θ
+

n∑
i=1

log xi

Set the derivative equal to zero and solve for θ to obtain θ̂ =

(
− 1
n

n∑
i=1

log xi

)−1

.

The second derivative is n/θ2 < 0, so this is the MLE. To calculate
the variance of θ̂, note that Yi = − logXi ∼ exponential(1/θ), so

−
n∑
i=1

logXi ∼ gamma(n, 1/θ). Thus θ̂ = n
T , where T ∼ gamma(n, 1/θ).

We can either calculate the first and second moments directly, or use the fact
that θ̂ is inverted gamma (page 51). We have

E
[

1

T

]
=

θn

Γ(n)

∞∫
0

1

t
tn−1e−θtdt =

θn

Γ(n)

Γ(n− 1)

θn−1
=

θ

n− 1
,

E
[

1

T 2

]
=

θn

Γ(n)

∞∫
0

1

t2
tn−1e−θtdt =

θn

Γ(n)

Γ(n− 2)

θn−2
=

θ2

(n− 1)(n− 2)
,

and thus,

E
[
θ̂
]

=
n

n− 1
θ and V ar(θ̂) =

n2

(n− 1)2(n− 2)
θ2 → 0 as n→∞.

2. Because X ∼ Beta(θ, 1),E [X] = θ
θ+1 and the method of moments estimator
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is the solution to

1

n

n∑
i=1

Xi =
θ

θ + 1
⇒ θ̃ =

n∑
i=1

Xi

n−
n∑
i=1

Xi

.

Solution 5

1. For each value of x, the MLE θ̂ is the value of θ that maximizes f(x|θ). These
values are in the following table.

x 0 1 2 3 4

θ̂ 1 1 2 or 3 3 3

At x = 2, f(x|2) = f(x|3) = 1/4 are both maxima, so both θ̂ = 2 or θ̂ = 3

are MLEs.

2. The log function is a strictly monotone increasing function. Therefore,
L(θ|x) > L(θ′|x) if and only if logL(θ|x) > logL(θ′|x). So the value θ̂ that
maximizes logL(θ|x) is the same as the value that maximizes L(θ|x).

Solution 6

1. We know T = (n−1)S2

σ2 ∼ χ2
n−1. Then

E
[
T p/2

]
=

1

Γ(n−1
2 )2

n−1
2

∫ ∞
0

t
p+n−1

2
−1e−

t
2dt

=
2
p
2 Γ(p+n−1

2 )

Γ(n−1
2 )

=⇒ E

[(
(n− 1)S2

σ2

) p
2

]
=

2
p
2 Γ(p+n−1

2 )

Γ(n−1
2 )

=⇒ E

[(
n− 1

2

) p
2 Γ(n−1

2 )

Γ(p+n−1
2 )

Sp

]
= σp

Hence,
(
n−1

2

) p
2

Γ(n−1
2

)

Γ( p+n−1
2

)
Sp is an unbiased estimator of σp.

2. With S2 = 1
n−1

∑n
i=1(Xi − X̄)2 as the sample variance, we know that,

(n− 1)S2

σ2
∼ χ2

n−1

Keeping in mind that for a chi-squared random variable X with n degrees of
freedom, mean and variance of X are n and 2n respectively, we have

Var

(
(n− 1)S2

σ2

)
= 2(n− 1)
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or , Var(S2) =
2σ4

n− 1

We also have,

E
[(

(n− 1)S2

σ2

)]
= (n− 1)

or ,E
[
S2
]

= σ2

We require an MSE for the parameter σ2 of the form αS2, (α 6= 1).

Now,

MSEσ(αS2) = Varσ(αS2) +
{

bias(αS2)
}2

= α2 Varσ(S2) +
(
ασ2 − σ2

)2
= α2 2σ4

n− 1
+ σ4 (α− 1)2

= σ4

[
2α2

n− 1
+ (α− 1)2

]
= σ4 ψ(α), (say)

Minimizing ψ(α) by usual calculus, we find that α = n−1
n+1 is the point of

minima.

Therefore, the required minimum MSE estimator of the form αS2 is

T =

(
n− 1

n+ 1

)
S2 =

1

n+ 1

n∑
i=1

(Xi − X̄)2,

with the minimum MSE being σ4 ψ
(
n−1
n+1

)
= 2σ4

n+1

Solution 7

E(T ) = θ, E(T ′) = θ and V (T ) < V (T ′)

∴ E(T − T ′) = 0

=⇒ T − T ′ ∈ U0 where U0 = {u(X) : E[u(X)] = 0, V (u(X)) <∞ ∀ θ ∈ Ω}
From the theorem, we know that if
UΨ = {T (X) : E[T (X)] = Ψ(θ), V (T (X)) <∞ ∀ θ ∈ Ω}
U0 = {u(X) : E[u(X)] = 0, V (u(X)) <∞ ∀ θ ∈ Ω}
Then T ∈ UΨ is UMVUE of Ψ(θ) iff cov(u, T ) = 0 ∀ u ∈ U0 ∀ θ ∈ Ω

Here, T is UMVUE of θ and u = T − T ′

So, cov(u, T ) = 0 (by theorem)
=⇒ cov(T − T ′, T ) = 0

=⇒ V (T )− cov(T, T ′) = 0

=⇒ cov(T, T ′) = V (T )
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Solution 8

Let t = s2 and θ = σ2. Because (n−1)S2

σ2 ∼ χ2
n−1, we have

f(t|θ) =
1

Γ
(
n−1

2

)
2(n−1)/2

(
n− 1

θ
t

)[(n−1)/2]−1

e−(n−1)t/2θn− 1

θ
.

With π(θ) as given, we have (ignoring terms that do not depend on θ),

π(θ) ∝

[(
1

θ

)((n−1)/2)−1

e−(n−1)t/2θ 1

θ

] [
1

θα+1
e−1/βθ

]

∝
(

1

θ

)((n−1)/2)+α+1

exp

{
−1

θ

[
(n− 1)t

2
+

1

β

]}
,

which we recognize as the kernel of an inverted gamma pdf, IG(a, b), with

a =
n− 1

2
+ α, and b =

[
(n− 1)t

2
+

1

β

]−1

.

Direct calculation shows that the mean of an IG(a, b) is 1
(a−1)b , so

E [θ|t] =

n−1
2 t+ 1

β
n−1

2 + α− 1
=

n−1
2 s2 + 1

β
n−1

2 + α− 1

This is the Bayes Estimator of σ2.

Solution 9

For n observations, Y =
n∑
i=1

Xi ∼ Poisson(nλ).

1. The marginal pmf of Y is,

m(y) =

∞∫
0

(nλ)ye−nλ

y!

1

Γ(α)βα
λα−1e−λ/βdλ

=
ny

y!Γ(α)βα

∞∫
0

λ(y+α)−1e
− λ
β/(nβ+1)dλ

=
ny

y!Γ(α)βα
Γ(y + α)

(
β

nβ + 1

)y+α

Thus,

π(λ|y) =
f(y|λ)π(λ)

m(y)
=

λ(y+α)−1e
− λ
β/(nβ+1)

Γ(y + α)
(

β
nβ+1

)y+α ∼ Gamma
(
y + α,

β

nβ + 1

)
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2.
E [λ|y] = (y + α)

β

nβ + 1
=

β

nβ + 1
y +

1

nβ + 1
(αβ)

.

V ar(λ|y) = (y + α)
β2

(nβ + 1)2
.

Solution 10

Given: Let X1, X2, . . . , Xn be iid Poisson(λ) RVs and suppose ψ(λ) = Pλ(X =

0) = e−λ.

1. To find: UMVUE of ψ(λ).

We consider the estimator

δ(X) =

 1, if X1 = 0

0, otherwise

is unbiased for ψ(λ) since

E [δ(X)] = E [δ(X)]2 = P {X1 = 0} = e−λ.

Also, var(δ(X)) = e−λ(1− e−λ).

We show next that δ(X) is the only unbiased estimator of θ and hence is the UMVUE.

We know T (X) =
n∑
i=1

Xi is sufficient and complete for (λ) > 0 and has

Poisson(nλ). Then by Rao-Blackwell Theorem, E [δ(X)|T (X)] is UMVUE
of ψ(λ).

E [δ(X)|T (X) = t] = 1.P {X1 = 0|T (X) = t}

=
P {X1 = 0, T (X) = t}

P {T (X) = t}

=

P
{
X1 = 0,

n∑
i=2

Xi = t

}
P
{

n∑
i=1

Xi = t

}

=

P {X1 = 0} .P
{

n∑
i=2

Xi = t

}
P
{

n∑
i=1

Xi = t

}
=
e−λ.e−(n−1)λ ((n−1)λ)t

t!

e−nλ (nλ)t

t!

=

(
n− 1

n

)t
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Hence, the UMVUE of ψ(λ) is given by T0 =
(
n−1
n

) n∑
i=1

Xi
.

2. To find: The variance of T0

E [T0] =
∞∑
t=0

(
n− 1

n

)t
e−nλ

(nλ)t

t!

= e−λ
∞∑
t=0

e−(n−1)λ ((n− 1)λ)t

t!

= e−λ

E
[
T 2

0

]
=
∞∑
t=0

(
n− 1

n

)2

te−nλ
(nλ)t

t!

=

∞∑
t=0

e−nλ

(
(n−1)2

n

)
λ)t

t!

= e−λ[n− (n−1)2

n
]

= e−λ(
2n−1
n )

var(T0) = E
[
T 2

0

]
− (E [T0])2

= e−2λ
(
e
λ
n − 1

)
3. To find: Fisher Cramer-Rao lower bound for any unibiased estimator of ψ(λ).

LX(x|λ) =
e−nλλ

n∑
i=1

xi

n∏
i=1

xi!

ln(LX(x|λ)) = −nλ+
n∑
i=1

xiln(λ)− ln(
n∏
i=1

xi!)

Differentiating the log of likelihood function wrt λ we get

dln(L)

dλ
= −n+

n∑
i=1

xi

λ

d2ln(L)

dλ2
= −

n∑
i=1

xi

λ2
=⇒ I(λ) = E

[
−d

2ln(L)

dλ2

]
=

E
[
n∑
i=1

xi

]
λ2

=
n

λ

Therefore, the Cramer-Rao lower bound is given by

CRLB =
[ψ′(λ)]2

I(λ)
= e−2λλ

n

4. Is T0 the most efficient estimator?

We know that e
λ
n − 1 ≥ λ

n ,∀λ > 0 since ex ≥ 1 + x,∀x > 0.
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=⇒ e−2λ
(
e
λ
n − 1

)
≥ e−2λ λ

n

=⇒ var(T0) ≥ e−2λ λ
n .

Therefore, T0 is not most efficient.
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