IE 605: Engineering Statistics

Solutions of tutorial 10

Solution 1

Power of the LRT,

$$
\begin{aligned}
\beta(\theta) & =P_{\theta}\left(\frac{\left|\bar{X}-\theta_{0}\right|}{\sigma / \sqrt{n}}>c\right) \\
& =1-P_{\theta}\left(\frac{\left|\bar{X}-\theta_{0}\right|}{\sigma / \sqrt{n}} \leq c\right) \\
& =1-P_{\theta}\left(-\frac{c \sigma}{\sqrt{n}} \leq \bar{X}-\theta_{0} \leq \frac{c \sigma}{\sqrt{n}}\right) \\
& =1-P_{\theta}\left(\frac{-c \sigma / \sqrt{n}+\theta_{0}-\theta}{\sigma / \sqrt{n}} \leq \frac{\bar{X}-\theta}{\sigma / \sqrt{n}} \leq \frac{c \sigma / \sqrt{n}+\theta_{0}-\theta}{\sigma / \sqrt{n}}\right) \\
& =1-P\left(-c+\frac{\theta_{0}-\theta}{\sigma / \sqrt{n}} \leq Z \leq c+\frac{\theta_{0}-\theta}{\sigma / \sqrt{n}}\right) \\
& =1+\Phi\left(-c+\frac{\theta_{0}-\theta}{\sigma / \sqrt{n}}\right)-\Phi\left(c+\frac{\theta_{0}-\theta}{\sigma / \sqrt{n}}\right)
\end{aligned}
$$

where $Z \sim N(0,1)$ and Φ is the standard normal CDF.

Solution 2

The LRT statistic is,

$$
\lambda(y)=\frac{\sup _{\theta \leq \theta_{0}} L\left(\theta \mid y_{1}, \ldots, y_{m}\right)}{\sup _{\Theta} L\left(\theta \mid y_{1}, \ldots, y_{m}\right)} .
$$

Let $y=\sum_{i=1}^{m} y_{i}$, and note that the MLE in the numerator is $\min \left\{y / m, \theta_{0}\right\}$ (see below NOTE*) while the denominator has y / m as the MLE (Check). Thus

$$
\lambda(y)= \begin{cases}1, & \text { if } y / m \leq \theta_{0} \\ \frac{\theta_{0}^{y}\left(1-\theta_{0}\right)^{m-y}}{(y / m)^{y}(1-y / m)^{m-y}}, & \text { if } y / m>\theta_{0}\end{cases}
$$

and we reject H_{0} if $\quad \frac{\theta_{0}^{y}\left(1-\theta_{0}\right)^{m-y}}{(y / m)^{y}(1-y / m)^{m-y}} \leq c$

To show that this is equivalent to rejecting if $y>b$, we could show $\lambda(y)$ is decreasing in y so that $\lambda(y)<c$ occurs for $y>b>m \theta_{0}$. It is easier to work with $\log \lambda(y)$, and we have

$$
\begin{aligned}
\log \lambda(y) & =y \log \theta_{0}+(m-y) \log \left(1-\theta_{0}\right)-y \log \left(\frac{y}{m}\right)-(m-y) \log \left(\frac{m-y}{m}\right) \\
\text { and } \quad \frac{d}{d y} \log \lambda(y) & =\log \theta_{0}-\log \left(1-\theta_{0}\right)-\log \left(\frac{y}{m}\right)-y \frac{1}{y}+\log \left(\frac{m-y}{m}\right)+(m-y) \frac{1}{m-y} \\
& =\log \left(\frac{\theta_{0}\left(\frac{m-y}{m}\right)}{\frac{y}{m}\left(1-\theta_{0}\right)}\right)
\end{aligned}
$$

For $y / m>\theta_{0}, 1-y / m=(m-y) / m<1-\theta_{0}$, so each fraction above is less than 1 , and the \log is less than 0 . Thus $\frac{d}{d y} \log \lambda<0$ which shows that λ is decreasing in y and $\lambda(y)<c$ if and only if $y>b$.
*NOTE: Maximum Likelihood Estimator of θ :
The likelihood function is

$$
L(\theta \mid y)=\theta^{y}(1-\theta)^{n-y}, \quad \text { where } y=\sum_{i=1}^{m} y_{i}
$$

We can show that $L(\theta \mid y)$ is increasing for $\theta \leq \bar{y}$ and is decreasing for $\theta \geq \bar{y}$.
Here $0<\theta<\theta_{0}$. Therefore, when $\bar{y} \leq \theta_{o}, \bar{Y}$ is the MLE of θ, because \bar{Y} is the overall maximum of $L(\theta \mid y)$. When $\bar{Y}>\theta_{0}, L(\theta \mid y)$ is an increasing function of θ on $\left[0, \theta_{0}\right]$ and obtains its maximum at the upper bound of θ which is θ_{0}. So the MLE is $\hat{\theta}=\min \left\{\bar{Y}, \theta_{0}\right\}$.

Solution 3

For discrete random variables, $L(\theta \mid x)=f(x \mid \theta)=P(X=x \mid \theta)$. So the numerator and denominator of $\lambda(x)$ are the supremum of this probability over the indicated sets.

Solution 4

1. The log-likelihood is,

$$
\log L(\theta, \nu \mid x)=n \log \theta+n \theta \log \nu-(\theta+1) \log \left(\prod_{i} x_{i}\right), \quad \nu \leq x_{(1)}
$$

where $x_{(1)}=\min _{i} x_{i}$. For any value of θ, this is an increasing function of ν for $\nu \leq x_{(1)}$. So both the restricted and unrestricted MLEs of ν are $\hat{\nu}=x_{(1)}$. To find the MLE of θ, set

$$
\frac{\partial}{\partial \theta} \log L\left(\theta, x_{(1)} \mid x\right)=\frac{n}{\theta}+n \log x_{(1)}-\log \left(\prod_{i} x_{i}\right)=0
$$

and solve for θ yielding

$$
\hat{\theta}=\frac{n}{\log \left(\prod_{i} x_{i} / x_{(1)}^{n}\right)}=\frac{n}{T}
$$

$\left(\partial^{2} / \partial \theta^{2}\right) \log L\left(\theta, x_{(1)} \mid x\right)=-n / \theta^{2}<0, \quad$ for all θ.

So $\hat{\theta}$ is a maximum.
2. Under H_{0}, the MLE of θ is $\hat{\theta_{0}}=1$, and the MLE of ν is still $\hat{\nu}=x_{(1)}$. So the likelihood ratio statistic is

$$
\begin{aligned}
\lambda(x) & =\frac{x_{(1)}^{n} /\left(\prod_{i} x_{i}\right)^{2}}{(n / T)^{n} x_{(1)}^{n^{2} / T} /\left(\prod_{i} x_{i}\right)^{n / T+1}} \\
& =\left(\frac{T}{n}\right)^{n} \frac{e^{-T}}{\left(e^{-T}\right)^{n / T}} \\
& =\left(\frac{T}{n}\right)^{n} e^{-T+n} \\
\frac{\partial}{\partial T} \log \lambda(X) & =\left(\frac{n}{T}-1\right)
\end{aligned}
$$

Hence, $\lambda(x)$ is increasing if $T \leq n$ and decreasing if $T \geq n$. Thus, $T \leq c$ is equivalent to $T \leq c_{1}$ or $T \geq c_{2}$, for appropriately chosen constants c_{1} and c_{2}.
3. We will not use the hint, although the problem can be solved that way. Instead, make the following three transformations. First, let $Y_{i}=\log X_{i}, i=1, \ldots, n$. Next, make the n-to- 1 transformation that sets $Z_{1}=\min _{i} Y_{i}$ and sets Z_{2}, \ldots, Z_{n} equal to the remaining $Y_{i} \mathrm{~s}$, with their order unchanged. Finally, let $W_{1}=Z_{1}$ and $W_{i}=Z_{i}-Z_{1}, i=2, \ldots, n$. Then you find that the W_{i} s are independent with $W_{1} \sim f_{W_{1}}(w)=n \nu^{n} e^{-n w}, w>\log \nu$, and $W_{i} \sim \operatorname{exponential}(1), i=2, \ldots, n$. Now $T=\sum_{i=2}^{n} W_{i} \sim \operatorname{Gamma}(n-1,1)$, and, hence, $2 T \sim \operatorname{gamma}(n-1,2)=\chi_{2(n-1)}^{2}$.

Solution 5

1. Suppose that we have two independent samples X_{1}, \ldots, X_{n} are Exponential (θ), and Y_{1}, \ldots, Y_{n} are Exponential (μ).

$$
\begin{aligned}
\lambda(x, y) & =\frac{\sup _{\Theta_{0}} L(\theta \mid x, y)}{\sup _{\Theta} L(\theta \mid x, y)} \\
& =\frac{\sup _{\theta} \prod_{i=1}^{n} \frac{1}{\theta} e^{-x_{i} / \theta} \prod_{j=1}^{m} \frac{1}{\theta} e^{-y_{j} / \theta}}{\sup _{\theta, \mu} \prod_{i=1}^{n} \frac{1}{\theta} e^{-x_{i} / \theta} \prod_{j=1}^{m} \frac{1}{\mu} e^{-y_{j} / \mu}}
\end{aligned}
$$

Differentiation will show that the numerator $\hat{\theta_{0}}=\frac{\sum_{i} x_{i}+\sum_{j} y_{j}}{n+m}$, while in the denominator $\hat{\theta}=\bar{x}$ and $\hat{\mu}=\bar{y}$. Therefore,

$$
\begin{aligned}
\lambda(x, y) & =\frac{\left(\frac{n+m}{\sum_{i} x_{i}+\sum_{j} y_{j}}\right)^{n+m} \exp \left\{-\left(\frac{n+m}{\sum_{i} x_{i}+\sum_{j} y_{j}}\right)\left(\sum_{i} x_{i}+\sum_{j} y_{j}\right)\right\}}{\left(\frac{n}{\sum_{i} x_{i}}\right)^{n} \exp \left\{-\left(\frac{n}{\sum_{i} x_{i}}\right) \sum_{i} x_{i}\right\}\left(\frac{m}{\sum_{j} y_{j}}\right)^{m} \exp \left\{-\left(\frac{m}{\sum_{j} y_{j}}\right) \sum_{j} y_{j}\right\}} \\
& =\frac{(n+m)^{n+m}\left(\sum_{i} x_{i}\right)^{n}\left(\sum_{j} y_{j}\right)^{m}}{n^{n} m^{m}\left(\sum_{i} x_{i}+\sum_{j} y_{j}\right)^{n+m}}
\end{aligned}
$$

And the LRT is to reject H_{0} if $\lambda(x, y) \leq c$.
2. The LRT is given by,

$$
\begin{aligned}
\lambda & =\frac{(n+m)^{n+m}}{n^{n} m^{m}}\left(\frac{\sum_{i} x_{i}}{\sum_{i} x_{i}+\sum_{j} y_{j}}\right)^{n}\left(\frac{\sum_{j} y_{j}}{\sum_{i} x_{i}+\sum_{j} y_{j}}\right)^{m} \\
& =\frac{(n+m)^{n+m}}{n^{n} m^{m}} T^{n}(1-T)^{m}
\end{aligned}
$$

Therefore λ is a function of $T . \lambda$ is a unimodal function of T which is maximized when $T=\frac{n}{m+n}$. Rejection for $\lambda \leq c$ is equivalent to rejection for $T \leq a$ or $T \geq b$, where a and b are constants that satisfy $a^{n}(1-a)^{m}=$ $b^{n}(1-b)^{m}$.
3. When H_{0} is true, $\sum_{i} X_{i} \sim \operatorname{Gamma}(n, \theta)$ and $\sum_{j} Y_{j} \sim \operatorname{Gamma}(m, \theta)$ and they are independent. So by an extension of the following exercise, $T \sim$ Beta (n, m).

Example 1. If $X_{i}, i=1,2$ are independent $\operatorname{Gamma}\left(\alpha_{i}, 1\right)$ random variables.
Find the marginal distribution of $Y_{1}=\frac{X_{1}}{X_{1}+X_{2}}$ and $Y_{2}=\frac{X_{2}}{X_{1}+X_{2}}$.
Proof: Make the transformation $y_{1}=\frac{x_{1}}{x_{1}+x_{2}}, y_{2}=x_{1}+x_{2}$ then $x_{1}=y_{1} y_{2}, \quad x_{2}=y_{2}\left(1-y_{1}\right)$ and $|J|=y_{2}$. Then
$f\left(y_{1}, y_{2}\right)=\left[\frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)} y_{1}^{\alpha_{1}-1}\left(1-y_{1}\right)^{\alpha_{2}-1}\right]\left[\frac{1}{\Gamma\left(\alpha_{1}+\alpha_{2}\right)} y_{2}^{\alpha_{1}+\alpha_{2}-1} e^{-y_{2}}\right]$
thus $Y_{1} \sim \operatorname{Beta}\left(\alpha_{1}, \alpha_{2}\right), Y_{2} \sim \operatorname{Gamma}\left(\alpha_{1}+\alpha_{2}, 1\right)$ and are independent.

Solution 6

1. Let $Y=\sum_{i} X_{i}$. The posterior distribution of $\lambda \mid y$ is $\operatorname{Gamma}(y+\alpha, \beta /(n \beta+$ 1)). [Verify]
2. (a)

$$
\mathbb{P}\left\{\lambda \leq \lambda_{0} \mid y\right\}=\frac{(n \beta+1)^{y+\alpha}}{\Gamma(y+\alpha) \beta^{y+\alpha}} \int_{0}^{\lambda_{0}} t^{y+\alpha-1} e^{-t(n \beta+1) / \beta} d t
$$

$$
\mathbb{P}\left\{\lambda>\lambda_{0} \mid y\right\}=1-\mathbb{P}\left\{\lambda \leq \lambda_{0} \mid y\right\} .
$$

(b) Because $\beta /(n \beta+1)$ is a scale parameter in the posterior distribution, $(2(n \beta+1) \lambda / \beta) \mid y$ has a $\operatorname{Gamma}(y+\alpha, 2)$ distribution. If 2α is an integer, this is a $\chi_{2 y+2 \alpha}^{2}$ distribution. So, for $\alpha=5 / 2$ and $\beta=2$,

$$
\begin{aligned}
\mathbb{P}\left\{\lambda \leq \lambda_{0} \mid y\right\} & =\mathbb{P}\left\{\left.\frac{2(n \beta+1) \lambda}{\beta} \leq \frac{2(n \beta+1) \lambda_{0}}{\beta} \right\rvert\, y\right\} \\
& =\mathbb{P}\left\{\chi_{2 y+5}^{2} \leq 3 \lambda_{0}\right\}
\end{aligned}
$$

For given value of λ_{0}, we can apply chi-square table to get the answer.

Solution 7

1. For $H_{0}: \mu \leq 0$ vs. $H_{1}: \mu>0$ the LRT is to reject H0 if $\bar{x}>c \sigma / \sqrt{n}$ (Example 8.3.3). For $\alpha=0.05$ take $c=1.645$. The power function is

$$
\beta(\mu)=\mathbb{P}\left\{\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}>1.645-\frac{\mu}{\sigma / \sqrt{n}}\right\}=\mathbb{P}\left\{Z>1.645-\frac{\mu}{\sigma / \sqrt{n}}\right\} .
$$

Note that the power will equal 0.5 when $\mu=1.645 \sigma / \sqrt{n}$.
2. For $H_{0}: \mu=0$ vs. $H_{A}: \mu \neq 0$ the LRT is to reject H 0 if $|\bar{x}|>c \sigma / \sqrt{n}$ (Example 8.2.2). For $\alpha=0.05$ take $c=1.96$. The power function is

$$
\beta(\mu)=\mathbb{P}\left\{-1.96-\frac{\sqrt{n} \mu}{\sigma} \leq Z \leq 1.96+\frac{\sqrt{n} \mu}{\sigma}\right\}
$$

In this case, $\mu= \pm 1.96 \sigma / \sqrt{n}$ gives power of approximately 0.5 .

Solution 8

The pdf of Y is

$$
f(y \mid \theta)=\frac{1}{\theta} y^{\frac{1}{\theta}-1} e^{-y^{\frac{1}{\theta}}} \quad, y>0
$$

By the Neyman-Pearson Lemma, the UMP test will reject if

$$
\frac{1}{2} y^{-\frac{1}{2}} e^{y-y^{1 / 2}}=\frac{f(y \mid 2)}{f(y \mid 1)}>k
$$

To see the form of this rejection region, we compute

$$
\frac{d}{d y}\left(\frac{1}{2} y^{-\frac{1}{2}} e^{y-y^{1 / 2}}\right)=\frac{1}{2} y^{-3 / 2} e^{y-y^{1 / 2}}\left(y-\frac{y^{1 / 2}}{2}-\frac{1}{2}\right)
$$

which is negative for $\mathrm{y}<1$ and positive for $\mathrm{y}>1$. Thus $\frac{f(y \mid 2)}{f(y \mid 1)}$ is decreasing for
$y \leq 1$ and increasing for $\mathrm{y}>1$. Hence, rejecting for $\frac{f(y \mid 2)}{f(y \mid 1)}>k$ is equivalent to rejecting for $y \leq c_{0}$ or $y \geq c_{1}$. To obtain a size α test, the constants c_{0} and c_{1} must satisfy
$\alpha=P\left(Y \leq c_{0} \mid \theta=1\right)+P\left(Y \geq c_{1} \mid \theta=1\right)=1-e^{-c_{0}}+e^{-c_{1}}$ and $\frac{f\left(c_{0} \mid 2\right)}{f\left(c_{0} \mid 1\right)}=\frac{f\left(c_{1} \mid 2\right)}{f\left(c_{1} \mid 1\right)}$
Solving these two equations numerically, for $\alpha=.10$, yields $c_{0}=.076546$ and c_{1} $=3.637798$. The Type II error probability is

$$
P\left(c_{0}<Y<c_{1} \mid \theta=2\right)=\int_{c_{0}}^{c_{1}} \frac{1}{2} y^{-1 / 2} e^{-y^{1 / 2}} d y==.609824
$$

Solution 9

By the Neyman-Pearson Lemma, the UMP test rejects for large values of $\frac{f\left(x \mid H_{1}\right)}{f\left(x \mid H_{0}\right)}$ Computing this ratio we obtain

x	1	2	3	4	5	6	7
$\frac{f\left(x \mid H_{1}\right)}{f\left(x \mid H_{0}\right)}$	6	5	4	3	2	1	0.84

The ratio is decreasing in x . So rejecting for large values of $\frac{f\left(x \mid H_{1}\right)}{f\left(x \mid H_{0}\right)}$ corresponds to rejecting for small values of x . To get a size test, we need to choose c so that $P\left(X \leq c \mid H_{0}\right)=\alpha$. The value $\mathrm{c}=4$ gives the UMP size $\alpha=.04$ test. The Type II error probability is $P\left(X=5,6,7 \mid H_{1}\right)=.82$

Solution 10

