IE 605: Engineering Statistics

Solutions of tutorial 11

Solution 1

1. Given: $L(x)$ and $U(x)$ satisfy $\mathbb{P}\{L(X) \leq \theta\}=1-\alpha_{1}$ and $\mathbb{P}\{U(X) \geq \theta\}=$ $1-\alpha_{2}$, and $L(x) \leq U(x)$ for all x .

To show: $\mathbb{P}\{L(X) \leq \theta \leq U(X)\}=1-\alpha_{1}-\alpha_{2}$.

Solution:

$$
\begin{aligned}
\text { Denote } A & =\{x: L(x) \leq \theta\} \\
\text { and } B & =\{x: U(x) \geq \theta\} \\
\text { Then } A \cap B & =\{x: L(x) \leq \theta \leq U(x)\} \\
\text { and } 1 \geq \mathbb{P}\{A \cup B\} & =\mathbb{P}\{L(X) \leq \theta \text { or } \theta \leq U(X)\} \\
& \geq \mathbb{P}\{L(X) \leq \theta \text { or } \theta \leq L(X)\}=1, \quad \text { since } L(x) \leq U(x), \forall x .
\end{aligned}
$$

Therefore, $P(A \cap B)=P(A)+P(B) P(A \cup B)$

$$
=1-\alpha_{1}+1-\alpha_{2}-1=1-\alpha_{1}-\alpha_{2}
$$

2. Given: T is a continuous random variable with $\operatorname{cdf} F_{T}(t \mid \theta)$ and $\alpha_{1}+\alpha_{2}=\alpha$.

To show: An α level of acceptance region of the hypothesis $H_{0}: \theta=\theta_{0}$ is $\left\{t: \alpha_{1} \leq F_{T}\left(t \mid \theta_{0}\right) \leq 1-\alpha_{2}\right\}$, with associated confidence $(1-\alpha)$ set $\left\{\theta: \alpha_{1} \leq F_{T}(t \mid \theta) \leq 1-\alpha_{2}\right\}$.

Solution: Recall that if θ is the true parameter, then $F_{T}(T \mid \theta) \sim$ uniform $(0,1)$.

Thus, $\mathbb{P}_{\theta_{0}}\left(\left\{T: \alpha_{1} \leq F_{T}\left(T \mid \theta_{0}\right) \leq 1-\alpha_{2}\right\}\right)=P\left(\alpha_{1} \leq U \leq 1-\alpha_{2}\right)=1-\alpha_{2}-\alpha_{1}$,
where $U \sim$ uniform $(0,1)$.

$$
\text { Since } t \in\left\{t: \alpha_{1} \leq F_{T}\left(t \mid \theta_{0}\right) \leq 1-\alpha_{2}\right\} \Longleftrightarrow \theta \in\left\{\theta: \alpha_{1} \leq F_{T}(t \mid \theta) \leq 1-\alpha_{2}\right\}
$$

the same calculation shows that the interval has confidence $1-\alpha_{2}-\alpha_{1}$.

Solution 2

Given: Let X_{1}, \ldots, X_{n} be a random sample from a $N\left(0, \sigma_{X}^{2}\right)$ and Y_{1}, \ldots, Y_{n} be a random sample from a $N\left(0, \sigma_{Y}^{2}\right)$, independent of the $X^{\prime} s$. Define $\lambda=\frac{\sigma_{Y}^{2}}{\sigma_{X}^{2}}$.

1. To find: The level α LRT of $H_{0}: \lambda=\lambda_{0}$ vs $H_{1}: \lambda \neq \lambda_{0}$.

Solution: $\lambda(x, y)=\frac{\sup _{\lambda=\lambda_{0}} L\left(\sigma_{X}^{2}, \sigma_{Y}^{2} \mid x, y\right)}{\sup _{\lambda \in(0,+\infty)} L\left(\sigma_{X}^{2}, \sigma_{Y}^{2} \mid x, y\right)}$
The unrestricted MLEs of σ_{X}^{2} and σ_{Y}^{2} are $\hat{\sigma}_{X}^{2}=\frac{\sum X_{i}^{2}}{n}$ and $\hat{\sigma}_{Y}^{2}=\frac{\sum Y_{i}^{2}}{m}$, as usual. Under the restriction, $\lambda=\lambda_{0}, \sigma_{Y}^{2}=\lambda_{0} \sigma_{X}^{2}$, and

$$
\begin{aligned}
L\left(\sigma_{X}^{2}, \lambda_{0} \sigma_{X}^{2} \mid x, y\right) & =\left(2 \pi \sigma_{X}^{2}\right)^{-n / 2}\left(2 \pi \lambda_{0} \sigma_{X}^{2}\right)^{-m / 2} e^{-\sum x_{i}^{2} /\left(2 \sigma_{X}^{2}\right)} \cdot e^{-\sum y_{i}^{2} /\left(2 \lambda_{0} \sigma_{X}^{2}\right)} \\
& =\left(2 \pi \sigma_{X}^{2}\right)^{-(m+n) / 2} \lambda_{0}^{-m / 2} e^{-\left(\lambda_{0} \sum x_{i}^{2}+\sum y_{i}^{2}\right) /\left(2 \lambda_{0} \sigma_{X}^{2}\right)}
\end{aligned}
$$

Differentiating the log likelihood gives

$$
\begin{aligned}
\frac{d \log L}{d\left(\sigma_{X}^{2}\right)^{2}} & =\frac{d}{d \sigma_{X}^{2}}\left[-\frac{m+n}{2} \log \sigma_{X}^{2}-\frac{m+n}{2} \log (2 \pi)-\frac{m}{2} \log \lambda_{0}-\frac{\lambda_{0} \sum x_{i}^{2}+\sum y_{i}^{2}}{2 \lambda_{0} \sigma_{X}^{2}}\right] \\
& =-\frac{m+n}{2}\left(\sigma_{X}^{2}\right)^{-1}+\frac{\lambda_{0} \sum x_{i}^{2}+\sum y_{i}^{2}}{2 \lambda_{0}}\left(\sigma_{X}^{2}\right)^{-2} \stackrel{\text { set }}{=} 0
\end{aligned}
$$

which implies

$$
\hat{\sigma}_{0}^{2}=\frac{\lambda_{0} \sum x_{i}^{2}+\sum y_{i}^{2}}{\lambda_{0}(m+n)}
$$

To see this is a maximum, check the second derivative:

$$
\begin{aligned}
\frac{d^{2} \log L}{d\left(\sigma_{X}^{2}\right)^{2}} & =\frac{m+n}{2}\left(\sigma_{X}^{2}\right)^{-2}-\left.\frac{1}{\lambda_{0}}\left(\lambda_{0} \sum x_{i}^{2}+\sum y_{i}^{2}\right)\left(\sigma_{X}^{2}\right)^{-3}\right|_{\sigma_{X}^{2}=\hat{\sigma}_{0}^{2}} \\
& =-\frac{m+n}{2}\left(\hat{\sigma}_{0}^{2}\right)^{-2}<0
\end{aligned}
$$

therefore $\hat{\sigma}_{0}^{2}$ is the MLE. The LRT statistic is

$$
\frac{\left(\hat{\sigma}_{X}^{2}\right)^{n / 2}\left(\hat{\sigma}_{Y}^{2}\right)^{m / 2}}{\lambda_{0}^{m / 2}\left(\hat{\sigma}_{0}^{2}\right)^{(m+n) / 2}}
$$

and the test is: Reject H_{0} if $\lambda(x, y)<k$, where k is chosen to give the test size α.
2. Express: The rejection region of the LRT of part (1) in terms of F-distributed random variable.
Under $H_{0}, \sum Y_{i}^{2} /\left(\lambda_{0} \sigma_{X}^{2}\right) \sim \chi_{m}^{2}$ and $\sum X_{i}^{2} / \sigma_{X}^{2} \sim X_{n}^{2}$, independent. Also, we can write

$$
\begin{aligned}
\lambda(X, Y) & =\left(\frac{1}{\frac{n}{m+n}+\frac{\left(\sum Y_{i}^{2} / \lambda_{0} \sigma_{X}^{2}\right) / m}{\left(\sum X_{i}^{2} / \sigma_{X}^{2}\right) / n} \cdot \frac{m}{m+n}}\right)^{n / 2}\left(\frac{1}{\frac{m}{m+n}+\frac{\left(\sum X_{i}^{2} / \sigma_{X}^{2}\right) / n}{\left(\sum Y_{i}^{2} / \lambda_{0} \sigma_{X}^{2}\right) / m} \cdot \frac{n}{m+n}}\right)^{m / 2} \\
& =\left[\frac{1}{\frac{n}{n+m}+\frac{m}{m+n} F}\right]^{n / 2}\left[\frac{1}{\frac{m}{m+n}+\frac{n}{m+n} F^{-1}}\right]^{m / 2}
\end{aligned}
$$

where $F=\frac{\sum Y_{i}^{2} / \lambda_{0} m}{\sum X_{i}^{2} / n} \sim F_{m, n}$ under H_{0}. The rejection region is

$$
\left\{(x, y)=\frac{1}{\left[\frac{n}{n+m}+\frac{m}{m+n} F\right]^{n / 2}} \cdot \frac{1}{\left[\frac{m}{m+n}+\frac{n}{m+n} F^{-1}\right]^{m / 2}}<c_{\alpha}\right\}
$$

where c_{α} is chosen to satisfy

$$
P\left\{\left[\frac{n}{n+m}+\frac{m}{m+n} F\right]^{-n / 2}\left[\frac{m}{m+n}+\frac{n}{m+n} F^{-1}\right]^{-m / 2}<c_{\alpha}\right\}=\alpha
$$

3. To find: $(1-\alpha)$ confidence interval for λ.

Solution: To ease notation, let $a=m /(n+m)$ and $b=a \sum y_{i}^{2} / \sum x_{i}^{2}$. From the duality of hypothesis tests and confidence sets, the set

$$
c(\lambda)=\left\{\lambda:\left(\frac{1}{a+b / \lambda}\right)^{n / 2}\left(\frac{1}{(1-a)+\frac{a(1-a)}{b} \lambda}\right)^{m / 2} \geq c_{\alpha}\right\}
$$

is a $1-\alpha$ confidence set for λ. We now must establish that this set is indeed an interval. To do this, we establish that the function on the left hand side of the inequality has only an interior maximum. That is, it looks like an upside-down bowl. Furthermore, it is straightforward to establish that the function is zero at both $\lambda=0$ and $\lambda=\infty$. These facts imply that the set of λ values for which the function is greater than or equal to c_{α} must be an interval. We make some further simplifications. If we multiply both sides of the inequality by $[(1-a) / b]^{m / 2}$, we need be concerned with only the behaviour of the function

$$
h(\lambda)=\left(\frac{1}{a+b / \lambda}\right)^{n / 2}\left(\frac{1}{b+a \lambda}\right)^{m / 2}
$$

Moreover, since we are most interested in the sign of the derivative of h, this is the same as the sign of the derivative of $\log h$, which is much easier to work with. We have

$$
\begin{aligned}
\frac{d}{d \lambda} \log h(\lambda) & =\frac{d}{d \lambda}\left[-\frac{n}{2} \log (a+b / \lambda)-\frac{m}{2} \log (b+a \lambda)\right] \\
& =\frac{n}{2} \frac{b / \lambda^{2}}{a+b / \lambda}-\frac{m}{2} \frac{a}{b+a \lambda} \\
& =\frac{1}{2 \lambda^{2}(a+b / \lambda)(b+a \lambda)}\left[-a^{2} m \lambda^{2}+a b(n-m) \lambda+n b^{2}\right]
\end{aligned}
$$

The sign of the derivative is given by the expression in square brackets, a parabola. It is easy to see that for $\lambda \geq 0$, the parabola changes sign from positive to negative. Since this is the sign change of the derivative, the function must increase then decrease. Hence, the function is an upside-down bowl, and the set is an interval.

Solution 3

Given: Let \bar{X} be the mean of a random sample of size n from $N(\mu, 16)$.
To find: The smallest sample size n such that $(\bar{X}-1, \bar{X}+1)$ is a 0.90 level confidence interval for μ.

Solution: According to the question, we have

$$
\begin{aligned}
& \mathbb{P}\{\bar{X}-1 \leq \mu \leq \bar{X}+1\}=0.90 \\
& \Longrightarrow \mathbb{P}\{-1 \leq \bar{X}-\mu \leq 1\}=0.90 \\
& \Longrightarrow \mathbb{P}\left\{\frac{-1}{4 / \sqrt{n}} \leq \frac{\bar{X}-\mu}{4 / \sqrt{n}} \leq \frac{1}{4 / \sqrt{n}}\right\}=0.90 \\
& \Longrightarrow \mathbb{P}\left\{\left|\frac{\bar{X}-\mu}{4 / \sqrt{n}}\right| \leq \frac{1}{4 / \sqrt{n}}\right\}=0.90 \\
& \Longrightarrow \mathbb{P}\left\{|Z| \leq \frac{1}{4 / \sqrt{n}}\right\}=0.90, \quad \text { where } Z=\frac{\bar{X}-\mu}{4 / \sqrt{n}} \\
& \Longrightarrow 2 \mathbb{P}\left\{Z \leq \frac{1}{4 / \sqrt{n}}\right\}-1=0.90 \\
& \Longrightarrow \mathbb{P}\left\{Z \leq \frac{1}{4 / \sqrt{n}}\right\}=0.95 \\
& \Longrightarrow \frac{1}{4 / \sqrt{n}} \approx 1.6 \\
& \Longrightarrow n \approx 41
\end{aligned}
$$

Solution 4

Given: Under the one-way ANOVA assumptions:

1. To show: The set of statistics $\left(\bar{Y}_{1}, \bar{Y}_{2}, \ldots, \bar{Y}_{k}, S_{p}^{2}\right)$ is sufficient for $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}, \sigma^{2}\right)$.

Solution: Under the ANOVA assumptions $Y_{i j}=\theta_{i}+\epsilon_{i j}$, where $\epsilon_{i j} \sim$ independent $N\left(0, \sigma^{2}\right)$, so $Y_{i j} \sim$ independent $N\left(\theta_{i}, \sigma^{2}\right)$. Therefore the sample pdf is

$$
\begin{aligned}
& \prod_{i=1}^{k} \prod_{j=1}^{n_{i}}\left(2 \pi \sigma^{2}\right)^{-1 / 2} e^{-\frac{\left.y_{i j}-\theta_{i}\right)^{2}}{2 \sigma^{2}}} \\
& =\left(2 \pi \sigma^{2}\right)^{-\sum_{i} n_{i} / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(y_{i j}-\theta_{i}\right)^{2}\right\} \\
& =\left(2 \pi \sigma^{2}\right)^{-\sum_{i} n_{i} / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{k} n_{i} \theta_{i}^{2}\right\} \times \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} y_{i j}^{2}+\frac{2}{2 \sigma^{2}} \sum_{i=1}^{k} \theta_{i} n_{i} \bar{Y}_{i 0}\right\}
\end{aligned}
$$

Therefore, by the Factorization Theorem,

$$
\left(\bar{Y}_{10}, \bar{Y}_{20}, \ldots, \bar{Y}_{k 0}, \sum_{i} \sum_{j} Y_{i j}^{2}\right)
$$

is jointly sufficient for $\left(\theta_{1}, \ldots, \theta_{k}, \sigma^{2}\right)$. Since $\left(\bar{Y}_{10}, \bar{Y}_{20}, \ldots, \bar{Y}_{k 0}, S_{p}^{2}\right)$ is a 1-to-1 function of this vector. Hence $\left(\bar{Y}_{10}, \bar{Y}_{20}, \ldots, \bar{Y}_{k 0}, S_{p}^{2}\right)$ is also jointly sufficient.
2. To show: $S_{p}^{2}=\frac{1}{N-k} \sum_{i=1}^{k}\left(n_{i}-1\right) S_{i}^{2}$ is independent of each $\bar{Y}_{i}, i=1,2 \ldots, k$.

Solution: We can write

$$
\begin{aligned}
& \left(2 \pi \sigma^{2}\right)^{-\sum_{i} n_{i} / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(y_{i j}-\theta_{i}\right)^{2}\right\} \\
& =\left(2 \pi \sigma^{2}\right)^{-\sum_{i} n_{i} / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(\left|y_{i j}-\bar{y}_{i 0}\right|+\left|\bar{y}_{i 0}-\theta_{i}\right|\right)^{2}\right\} \\
& =\left(2 \pi \sigma^{2}\right)^{-\sum_{i} n_{i} / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(\left|y_{i j}-\bar{y}_{i 0}\right|\right)^{2}\right\} . \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{k} n_{i}\left(\left|\bar{y}_{i 0}-\theta_{i}\right|\right)^{2}\right\}
\end{aligned}
$$

so, by the Factorization Theorem, $\bar{Y}_{i 0}, i=1, \ldots, n$, is independent of $Y_{i j}-$ $\bar{Y}_{i 0}, j=1, \ldots, n_{i}$, so S_{p}^{2} is independent of each $\bar{Y}_{i 0}$.

Solution 5

To show: To construct a t test for

1. $H_{0}: \sum_{i} a_{i} \theta_{i}=\delta$ vs $H_{1}: \sum_{i} a_{i} \theta_{i} \neq \delta$.

Solution: Under the oneway ANOVA assumptions, we have $T=\sum_{i} a_{i} \bar{Y}_{i} \sim$ $N\left(\sum_{i} a_{i} \theta_{i}, \sigma^{2} \sum_{i} a_{i}^{2} / n_{i}\right)$,
and under $H_{0}, \mathbb{E}[T]=\delta$. Thus, under $H_{0}, \frac{\sum_{i} a_{i} \bar{Y}_{i}-\delta}{\sqrt{S_{p}^{2} \sum_{i} a_{i}^{2} / n_{i}}} \sim t_{N-k}$, where $N=\sum_{i} n_{i}$.
Therefore, the test is to reject H_{0} if $\frac{\left|\sum_{i} a_{i} \bar{Y}_{i}-\delta\right|}{\sqrt{S_{p}^{2} \sum_{i} a_{i}^{2} / n_{i}}}>t_{\frac{\alpha}{2}, N-k}$.
2. $H_{0}: \sum_{i} a_{i} \theta_{i} \leq \delta$ vs $H_{1}: \sum_{i} a_{i} \theta_{i}>\delta$, where δ is a specified constant.

Solution: Similarly for $H_{0}: \sum_{i} a_{i} \theta_{i} \leq \delta$ vs $H_{1}: \sum_{i} a_{i} \theta_{i}>\delta$, where δ is a specified constant, we reject H_{0} if $\frac{\sum_{i} a_{i} \bar{Y}_{i}-\delta}{\sqrt{S_{p}^{2} \sum_{i} a_{i}^{2} / n_{i}}}>t_{\alpha, N-k}$.

Solution 6

To show: For any set of constants $a=\left(a_{1}, \ldots, a_{k}\right)$ and $b=\left(b_{1}, \ldots, d_{k}\right)$, we have to show that under one-way ANOVA assumptions,

$$
\operatorname{cov}\left(\sum_{i} a_{i} \bar{Y}_{i}, \sum_{i} b_{i} \bar{Y}_{i}\right)=\sigma^{2} \sum_{i} \frac{a_{i} b_{i}}{n_{i}}
$$

Solution: Under the ANOVA assumptions $Y_{i j}=\theta_{i}+\epsilon_{i j}$, where $\epsilon_{i j} \sim$ independent $N\left(0, \sigma^{2}\right)$, so $Y_{i j} \sim$ independent $N\left(\theta_{i}, \sigma^{2}\right)$. We have $\bar{Y}_{i 0}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} Y_{i j}$.

$$
\begin{aligned}
\bar{Y}_{i 0} & \sim N\left(\theta_{i}, \frac{\sigma^{2}}{n_{i}}\right) \\
\Longrightarrow \mathbb{E}\left[\bar{Y}_{i 0}\right]=\theta_{i} & \text { and } \operatorname{var}\left(\bar{Y}_{i 0}\right)=\frac{\sigma^{2}}{n_{i}} \\
\operatorname{cov}\left(\sum_{i} a_{i} \bar{Y}_{i}, \sum_{i} b_{i} \bar{Y}_{i}\right) & =\sum_{i} a_{i} b_{i} \operatorname{var}\left(\bar{Y}_{i 0}\right)+\sum_{i \neq j} a_{i} b_{j} \operatorname{cov}\left(\bar{Y}_{i 0}, \bar{Y}_{j 0}\right) \\
& =\sum_{i} a_{i} b_{i} \operatorname{var}\left(\bar{Y}_{i 0}\right) \quad \text { since } Y_{i j} \text { and } Y_{i^{\prime} j^{\prime}} \text { are independent } \forall i \neq i^{\prime}, j \neq j^{\prime} \\
& =\sigma^{2} \sum_{i} \frac{a_{i} b_{i}}{n_{i}}
\end{aligned}
$$

