IE605:Engineering Statistics

Tutorial 3

Exercise 1 Let X and Y be independent exponential random variables with respective parameters λ_{1} and λ_{2}. Find the distribution of the following.

- $\min (X, Y)$
- $\max (X, Y)$

Exercise 2 Let X, Y, Z be discrete random variables. Show the following:

- $\mathbb{E}(Z)=\mathbb{E}(\mathbb{E}(Z \mid Y))$
- $\mathbb{E}(Z)=\mathbb{E}(\mathbb{E}(Z \mid X, Y))$

Exercise 3 A bag contains 3 white, 6 red and 5 blue balls. A ball is selected at random, it's color is noted and is then replaced in the bag before making the next selection. In all 6 selections are made. Let $X=$ the number of white balls selected and $Y=$ number of blue balls selected. Find $E[X \mid Y=3]$.

Exercise 4 If X_{1} and X_{2} are independent binomial random variables with respective parameters $\left(n_{1}, p\right)$ and $\left(n_{2}, p\right)$. Calculate the conditional probability mass function of X_{1} given that $X_{1}+X_{2}=m$.

Exercise 5 Give an example of two random variables X and Y that are uncorrelated but not independent.

Exercise 6 Suppose X and Y have joint density function $f_{X, Y}(x, y)=c(1+x y)$ if $2 \leq x \leq 3$ and $1 \leq y \leq 2$, and $f_{X, Y}(x, y)=0$ otherwise.

1. Find c.
2. Find f_{X} and f_{Y}.

Exercise 7 An insurance company supposes that the number of accidents that each of its policyholders will have in a year is Poisson distributed, with the mean of the Poisson depending on the policyholder. If the Poisson mean of a randomly chosen policyholder has a gamma distribution with density function,

$$
g(\lambda)=\lambda e^{-\lambda}, \quad \lambda \geq 0
$$

what is the probability that a randomly chosen policyholder has exactly n accidents next year?

Exercise 8 Suppose that the number of people who visit a yoga studio each day is a Poisson random variable with mean λ. Suppose further that each person who visits is, independently, female with probability p or male with probability $1-p$. Find the joint probability that exactly n women and m men visit the academy today.

Exercise 9 A chicken lays n eggs. Each egg independently does or doesn't hatch, with probability p of hatching. For each egg that hatches, the chick does or doesn't survive (independently of the other eggs), with probability s of survival. Let N $\operatorname{Bin}(n, p)$ be the number of eggs which hatch, X be the number of chicks which survive, and Y be the number of chicks which hatch but don't survive (so $X+Y=$ N). Find the marginal PMF of X.

