IE 605: Engineering Statistics

Tutorial 6

Example 1. Let X_1, X_2, X_3, X_4, X_5 be a sample from N(0, 4). Find $\mathbb{P}\left\{\sum_{i=1}^{5} X_i^2 \ge 5.75\right\}$.

Example 2. Let X_1, X_2, \ldots, X_n be a random sample from $Poisson(\lambda)$. Find $var(S^2)$, and compare it with $var(\bar{X})$.

Example 3. Show that for a random sample of size 2 from $\mathcal{N}(0, \sigma^2)$ population, $\mathbb{E}\left[(X_{(1)}\right] = \frac{-\sigma}{\sqrt{\pi}}$.

Example 4. Let X, Y and Z be independent uniform random variables on the interval (0, a). Let $W = \min\{X, Y, Z\}$. What is the expected value of $\left(1 - \frac{W}{a}\right)^2$

Example 5. Let $X_1, X_2, ..., X_n$ be a random sample from a population X with uniform distribution on the interval [0, 1]. What is the probability distribution of the sample range $W := X_{(n)} - X_{(1)}$?

Example 6. Let X be a random variable with an $F_{p,q}$ distribution.

- Derive the pdf of X.
- Derive the mean and variance of X.
- Show that $\frac{\frac{p}{q}X}{1+\frac{p}{q}X}$ has a beta distribution with parameters p/2 and q/2.

Example 7. Show that in odd samples of size n from Unif(O, 1) population, the mean and variance of the distribution of median are 1/2 and $\frac{1}{4(n+2)}$ respectively, i.e., find the expectation and variance of the median $X_{(m+1)}$ where n = 2m + 1.

Example 8. Show that sample standard deviation is not unbiased, but is consistent.

Example 9. Let U_i , i = 1, 2, ..., be independent uniform(0, 1) random variables, and let X have distribution

$$P(X = x) = \frac{c}{x!}, \quad x = 1, 2, 3, ...,$$

where $c = \frac{1}{e-1}$. Find the distribution of

$$Z = \min\{U_1, ..., U_X\}.$$

Example 10. Let X_i , i = 1, 2, 3, be independent with $n(i,i^2)$ distribution. For each of the following situations, use the X_i to construct a statistic with the indicated distribution

- 1. chi squared with 3 degrees of freedom
- 2. t distribution with 2 degrees of freedom
- 3. F distribution with 1 and 2 degrees of freedom

Example 11. Let X_1, X_2, \ldots, X_n be a random sample from a population with pdf.

$$f(x) = (1/\theta) \quad \text{for all } 0 \le x \le \theta \tag{1}$$

Let $X_1 < X_2 \cdots < X_n$ be the order statistics. Show that X_1/X_n and X_n are independent random variables.

Example 12. Discuss how can you generate $F_{p,q}$ distribution from Uniform random variables. Assume p, q are integers.