IE 605: Engineering Statistics

Tutorial 6

Example 1. Let $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$ be a sample from $N(0,4)$. Find $\mathbb{P}\left\{\sum_{i=1}^{5} X_{i}^{2} \geq 5.75\right\}$.

Example 2. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from Poisson (λ). Find $\operatorname{var}\left(S^{2}\right)$, and compare it with $\operatorname{var}(\bar{X})$.

Example 3. Show that for a random sample of size 2 from $\mathcal{N}\left(0, \sigma^{2}\right)$ population, $\mathbb{E}\left[\left(X_{(1)}\right]=\frac{-\sigma}{\sqrt{\pi}}\right.$.

Example 4. Let X, Y and Z be independent uniform random variables on the interval $(0, a)$. Let $W=\min \{X, Y, Z\}$. What is the expected value of $\left(1-\frac{W}{a}\right)^{2}$

Example 5. $\operatorname{Let} X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a population X with uniform distribution on the interval $[0,1]$. What is the probability distribution of the sample range $W:=X_{(n)}-X_{(1)}$?

Example 6. Let X be a random variable with an $F_{p, q}$ distribution.

- Derive the pdf of X.
- Derive the mean and variance of X.
- Show that $\frac{\frac{p}{q} X}{1+\frac{p}{q} X}$ has a beta distribution with parameters $p / 2$ and $q / 2$.

Example 7. Show that in odd samples of size n from $\operatorname{Unif}(O, 1)$ population, the mean and variance of the distribution of median are $1 / 2$ and $\frac{1}{4(n+2)}$ respectively, i.e., find the expectation and variance of the median $X_{(m+1)}$ where $n=2 m+1$.

Example 8. Show that sample standard deviation is not unbiased, but is consistent.
Example 9. Let $U_{i}, i=1,2, \ldots$, be independent uniform $(0,1)$ random variables, and let X have distribution

$$
P(X=x)=\frac{c}{x!}, \quad x=1,2,3, \ldots
$$

where $c=\frac{1}{e-1}$. Find the distribution of

$$
Z=\min \left\{U_{1}, \ldots, U_{X}\right\}
$$

Example 10. Let $X_{i}, i=1,2,3$, be independent with $n\left(i, i^{2}\right)$ distribution. For each of the following situations, use the X_{i} to construct a statistic with the indicated distribution

1. chi squared with 3 degrees of freedom
2. t distribution with 2 degrees of freedom
3. F distribution with 1 and 2 degrees of freedom

Example 11. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a population with $p d f$.

$$
\begin{equation*}
f(x)=(1 / \theta) \quad \text { for all } 0 \leq x \leq \theta \tag{1}
\end{equation*}
$$

Let $X_{1}<X_{2} \cdots<X_{n}$ be the order statistics. Show that X_{1} / X_{n} and X_{n} are independent random variables.

Example 12. Discuss how can you generate $F_{p, q}$ distribution from Uniform random variables. Assume p, q are integers.

