IE 605: Engineering Statistics

Tutorial 7

Example 1. Consider generating random number from the following distributions starting by generating a random number from $U \sim \operatorname{Uniform}(0,1)$.

- Show that both $-\log U$ and $-\log (1-U)$ are exponential random variables
- Show that $X=\frac{U}{1-U}$ is a logistic $(0,1)$ random variable.

Note: You can find PDF and more about the logistic distribution here
Example 2. The Box-Muller method for generating normal pseudo-random variables is based on the transformation

$$
X_{1}=\cos \left(2 \pi U_{1}\right) \sqrt{-2 \log \left(U_{2}\right)}, \quad X_{2}=\sin \left(2 \pi U_{1}\right) \sqrt{-2 \log \left(U_{2}\right)}
$$

where U_{1} and U_{2} are iid $\operatorname{Uniform}(0,1)$. Prove that X_{1} and X_{2} are independent Normal $(0,1)$ random variables.

Example 3. Park et.al. (1996) describe a method for generating correlated binary variables based on the following scheme:

Let X_{1}, X_{2}, X_{3} be independent Poisson random variables with mean $\lambda_{1}, \lambda_{2}, \lambda_{3}$ respectively, and create the random variables

$$
Y_{1}=X_{1}+X_{3} \quad \text { and } \quad Y_{2}=X_{2}+X_{3} .
$$

1. Show that $\operatorname{Cov}\left(Y_{1}, Y_{2}\right)=\lambda_{3}$.
2. Define $Z_{i}=\mathbb{I}\left(Y_{i}=0\right)$ and $p_{i}=e^{-\left(\lambda_{i}+\lambda_{3}\right)}$. Show that Z_{i} are $\operatorname{Bernoulli}\left(p_{i}\right)$ with

$$
\operatorname{Corr}\left(Z_{1}, Z_{2}\right)=\frac{p_{1} p_{2}\left(e^{\lambda_{3}}-1\right)}{\sqrt{p_{1}\left(1-p_{1}\right)} \sqrt{p_{2}\left(1-p_{2}\right)}} .
$$

Example 4. Let us propose an algorithm to generate a random variable $Y \sim$ $\operatorname{Beta}(a, b)$:

- Step 1: Generate $(U, V), U$ and V are independent $\operatorname{Uniform}(0,1)$
- Step 2: If $U<\frac{1}{c} f_{Y}(V)$ where $c \geq \max _{y} f_{Y}(y)$, set $Y=V$; otherwise return to Step 1.

Does the above algorithm actually generate a $\operatorname{Beta}(a, b)$ random variable? If yes, prove. If no, why? (Hint: Try to check $P(Y \leq y)$ and write in terms of something of the form $P(V \mid U)$)

Example 5. Solve the following:

1. Suppose it is desired to generate $Y \sim \operatorname{Beta}(a, b)$, where a and b are not integers. Show that using $V \sim \operatorname{Beta}([a],[b])$ will result in a finite value of $M=\sup _{y} \frac{f_{Y}(y)}{f_{V}(y)}$.
2. Suppose it is desired to generate $Y \sim \operatorname{Gamma}(a, b)$, where a and b are not integers. Show that using $V \sim \operatorname{Gamma}([a], b)$ will result in a finite value of $M=\sup _{y} \frac{f_{Y}(y)}{f_{V}(y)}$.
3. Show that, in each of parts (1) and (2), if V had parameter $[a]+1$, then M would be infinite.
