IE 605: Engineering Statistics

Tutorial 7

Example 1. Consider generating random number from the following distributions starting by generating a random number from $U \sim Uniform(0, 1)$:

- Show that both $-\log U$ and $-\log(1-U)$ are exponential random variables
- Show that $X = \frac{U}{1-U}$ is a logistic(0,1) random variable.

Note: You can find PDF and more about the logistic distribution here

Example 2. *The Box-Muller method for generating normal pseudo-random variables is based on the transformation*

$$X_1 = \cos(2\pi U_1)\sqrt{-2\log(U_2)}, \qquad X_2 = \sin(2\pi U_1)\sqrt{-2\log(U_2)}$$

where U_1 and U_2 are iid Uniform(0,1). Prove that X_1 and X_2 are independent Normal(0,1) random variables.

Example 3. *Park et.al. (1996) describe a method for generating correlated binary variables based on the following scheme:*

Let X_1, X_2, X_3 be independent Poisson random variables with mean $\lambda_1, \lambda_2, \lambda_3$ respectively, and create the random variables

$$Y_1 = X_1 + X_3$$
 and $Y_2 = X_2 + X_3$.

- 1. Show that $Cov(Y_1, Y_2) = \lambda_3$.
- 2. Define $Z_i = \mathbb{I}(Y_i = 0)$ and $p_i = e^{-(\lambda_i + \lambda_3)}$. Show that Z_i are $Bernoulli(p_i)$ with

$$Corr(Z_1, Z_2) = \frac{p_1 p_2(e^{\lambda_3} - 1)}{\sqrt{p_1(1 - p_1)}\sqrt{p_2(1 - p_2)}}$$

Example 4. Let us propose an algorithm to generate a random variable $Y \sim Beta(a, b)$:

- Step 1: Generate (U, V), U and V are independent Uniform(0, 1)
- Step 2: If $U < \frac{1}{c}f_Y(V)$ where $c \ge max_y f_Y(y)$, set Y = V; otherwise return to Step 1.

Does the above algorithm actually generate a Beta(a, b) random variable? If yes, prove. If no, why? (Hint: Try to check $P(Y \le y)$ and write in terms of something of the form P(V|U))

Example 5. *Solve the following:*

- Suppose it is desired to generate Y ~ Beta(a, b), where a and b are not integers. Show that using V ~ Beta([a], [b]) will result in a finite value of M = sup_y f_Y(y)/f_V(y).
- Suppose it is desired to generate Y ~ Gamma(a, b), where a and b are not integers. Show that using V ~ Gamma([a], b) will result in a finite value of M = sup_y ^{f_Y(y)}/_{f_V(y)}.
- 3. Show that, in each of parts (1) and (2), if V had parameter [a] + 1, then M would be infinite.