IE 605: Engineering Statistics

Tutorial 10

Exercise 1. Let X_{1}, \ldots, X_{n} be a random sample from a $N\left(\theta, \sigma^{2}\right)$ population, σ^{2} known. An LRT of $H_{0}: \theta=\theta_{0}$ versus $H_{1}: \theta \neq \theta_{0}$ is a test that rejects H_{0} if $\frac{\left|\bar{X}-\theta_{0}\right|}{\sigma / \sqrt{n}}>$ c. Find an expression, in terms of standard normal probabilities, for the power function of this test.
$f: \mathcal{E} \rightarrow \mathcal{C}=\{1,2, \ldots C\}$ s.t. $f($ fusion embedding $)=$ class

Let $f_{1}: \mathcal{X}_{1} \rightarrow \mathcal{E}_{1}, f_{2}: \mathcal{X}_{2} \rightarrow \mathcal{E}_{2}$ and $f_{1}: \mathcal{X}_{3} \rightarrow \mathcal{E}_{3}$
We want to learn: $g_{\text {fusion }}=f_{1} \oplus f_{2} \oplus f_{3}: \mathcal{X} \rightarrow \mathcal{E}$
where $\mathcal{X}=\phi\left(\mathcal{X}_{1} \oplus \mathcal{X}_{2} \oplus \mathcal{X}_{3}\right)$ and $\mathcal{E}=\phi^{\prime}\left(\mathcal{E}_{1} \oplus \mathcal{E}_{2} \oplus \mathcal{E}_{3}\right)$ for some $\phi($.$) and \phi^{\prime}($.
Exercise 2. Suppose we observe m i.i.d. Bernoulli(θ) random variables, denoted by Y_{1}, \ldots, Y_{m}. Show that the LRT of $H_{0}: \theta \leq \theta_{0}$ versus $H_{1}: \theta>\theta_{0}$ will reject H_{0} if $\sum_{i=1}^{m} Y_{i}>b$.

Exercise 3. "If $f(x \mid \theta)$ is the pmf of a discrete random variable, then the numerator $\lambda(x)$, the LRT statistic, is the maximum probability of the observed sample when the maximum is computed over parameters in the null hypothesis. Furthermore, the denominator of $\lambda(x)$ is the maximum probability of the observed sample over all possible parameters."- Prove the above text.

Exercise 4. A random sample X_{1}, \ldots, X_{n} is drawn from a Pareto population with $p d f$,

$$
f(x \mid \theta, \nu)=\frac{\theta \nu^{\theta}}{x^{\theta+1}} \mathbb{I}_{[\nu, \infty]}(x), \quad \theta>0, \quad \nu>0 .
$$

1. Find the MLEs of θ and ν.
2. Show that the LRT of

$$
H_{0}: \theta=1, \nu \text { unknown versus } \quad H_{1}: \theta \neq 1, \nu \text { unknown, }
$$

has critical region of the form $\left\{x: T(x) \leq c_{1}\right.$ or $\left.T(x) \geq c_{2}\right\}$, where $0<$ $c_{1}<c_{2}$ and

$$
T=\log \left[\frac{\prod_{i=1}^{n} X_{i}}{\left(\min _{i} X_{i}\right)^{n}}\right] .
$$

3. Show that, under H_{0}, 2T has a chi-squared distribution, and find the number of degrees of freedom. (Hint: Obtain the joint distribution of the $n-1$
non-trivial terms $X_{i} /\left(\min _{i} X_{i}\right)$ conditional on $\min _{i} X_{i}$. Put these $n-1$ terms together, and notice that the distribution of T given $\min _{i} X_{i}$, does not depend on $\min _{i} X_{i}$, so it is the unconditional distribution of T.)

Exercise 5. Suppose that we have two independent samples X_{1}, \ldots, X_{n} are Exponential (θ), and Y_{1}, \ldots, Y_{m} are Exponential(μ).

1. Find the LRT of

$$
H_{0}: \theta=\mu \quad \text { versus } \quad H_{1}: \theta \neq \mu
$$

2. Show that the test in part (1) can be based on the statistic

$$
T=\frac{\sum_{i=1}^{n} X_{i}}{\sum_{i=1}^{n} X_{i}+\sum_{i=1}^{m} Y_{i}}
$$

3. Find the distribution of T when H_{0} is true.

Exercise 6. Let X_{1}, \ldots, X_{n} be i.i.d. Poisson (λ), and let λ have a $\operatorname{Gamma}(\alpha, \beta)$ distribution, the conjugate family for the Poisson distribution.

1. Find the posterior distribution of λ, including the posterior mean and variance.
2. Consider the Bayesian test of

$$
H_{0}: \lambda \leq \lambda_{0} \quad \text { versus } \quad H_{1}: \lambda>\lambda_{0}
$$

(a) Calculate the expressions for the posterior probabilities of H_{0} and H_{1}.
(b) If $\alpha=\frac{1}{2}$ and $\beta=2$, the prior distribution is a chi-squared distribution with 5 degrees of freedom. Explain how a chi-squared table could be used to perform a Bayesian test.

Exercise 7. For samples of size $n=1,4,16,64,100$ from a normal population with mean μ and known variance σ^{2}, plot the power function of the following LRTs. Take $\alpha=0.05$.

1. $H_{0}: \mu \leq 0$ versus $H_{1}: \mu>0$.
2. $H_{0}: \mu=0$ versus $H_{1}: \mu \neq 0$.

Exercise 8. The random variable X has pdf $f(x)=e^{-x}, x>0$. One observation is obtained on the random variable $Y=X^{\theta}$, and a test of $H_{0}: \theta=1 \mathrm{vs} . H_{1}: \theta=2$ needs to be constructed. Find the UMP level $\alpha=0.10$ test and compute the Type II error probability.

Exercise 9. Let X be a random variable whose pmf under H_{0} and H_{1} is given by:
Use the Neyman-Pearson Lemma to find the most powerful test for H_{0} versus H_{1} with size $\alpha=0.04$. Compute the probability of Type II error for this test.

Exercise 10. Suppose X is one observation from a population with beta $(\theta, 1)$ pdf. Is there a UMP test of $H_{0}: \theta \leq 1$ versus $H_{1}: \theta>1$.? Is so, find it. If not, prove so.

x	1	2	3	4	5	6	7
$f\left(x \mid H_{0}\right)$	0.01	0.01	0.01	0.01	0.01	0.01	0.94
$f\left(x \mid H_{1}\right)$	0.06	0.05	0.04	0.03	0.02	0.01	0.79

