IE 605: Engineering Statistics

Tutorial 11

- **Exercise 1.** 1. If L(x) and U(x) satisfy $\mathbb{P}\{L(X) \le \theta\} = 1 \alpha_1$ and $\mathbb{P}\{U(X) \ge \theta\} = 1 \alpha_2$, and $L(x) \le U(x)$ for all x, show that $\mathbb{P}\{L(X) \le \theta \le U(X)\} = 1 \alpha_1 \alpha_2$.
 - 2. If T is a continuous random variable with cdf $F_T(t|\theta)$ and $\alpha_1 + \alpha_2 = \alpha$, show that an α level of acceptance region of the hypothesis $H_0: \theta = \theta_0$ is $\{t: \alpha_1 \leq F_T(t|\theta_0) \leq 1 - \alpha_2\}$, with associated confidence $(1 - \alpha)$ set $\{\theta: \alpha_1 \leq F_T(t|\theta) \leq 1 - \alpha_2\}$.

Exercise 2. Let X_1, \ldots, X_n be a random sample from a $N(0, \sigma_X^2)$ and Y_1, \ldots, Y_n be a random sample from a $N(0, \sigma_Y^2)$, independent of the X's. Define $\lambda = \frac{\sigma_Y^2}{\sigma_X^2}$.

- 1. Find the level α LRT of H_0 : $\lambda = \lambda_0$ vs H_1 : $\lambda \neq \lambda_0$.
- 2. Express the rejection region of the LRT of part (a) in terms of F-distributed random variable.
- *3. Find a* (1α) *confidence interval for* λ *.*

Exercise 3. Let \bar{X} be the mean of a random sample of size n from $N(\mu, 16)$. Find the smallest sample size n such that $(\bar{X} - 1, \bar{X} + 1)$ is a 0.90 level confidence interval for μ .

Exercise 4. Under the one-way ANOVA assumptions:

1. Show that the set of statistics $(\bar{Y}_1, \bar{Y}_2, \dots, \bar{Y}_k, S_p^2)$ is sufficient for $(\theta_1, \theta_2, \dots, \theta_k, \sigma^2)$.

2. Show that
$$S_p^2 = \frac{1}{N-k} \sum_{i=1}^k (n_i - 1) S_i^2$$
 is independent of each $\overline{Y}_i, i = 1, 2..., k$.

Exercise 5. Show how to construct a t test for

- 1. $H_0: \sum_i a_i \theta_i = \delta \text{ vs } H_1: \sum_i a_i \theta_i \neq \delta.$
- 2. $H_0: \sum_i a_i \theta_i \leq \delta$ vs $H_1: \sum_i a_i \theta_i > \delta$, where δ is a specified constant.

Exercise 6. For any set of constants $a = (a_1, ..., a_k)$ and $b = (b_1, ..., d_k)$, show that under one-way ANOVA assumptions,

$$cov(\sum_{i} a_i \bar{Y}_i, \sum_{i} b_i \bar{Y}_i) = \sigma^2 \sum_{i} \frac{a_i b_i}{n_i}.$$