
Thwarting Piracy: Anti-debugging Using
GPU-assisted Self-healing Codes

Adhokshaj Mishra
Uptycs India Pvt. Ltd.

Bengaluru, India
me@adhokshajmishraonline.in

Manjesh K. Hanawal
IEOR, IIT Bombay

Mumbai, India
mhanawal@iitb.ac.in

Abstract—Software piracy is one of the concerns in the IT
sector. Pirates leverage the debugger tools to reverse engineer the
logic that verifies the license keys or bypass the entire verification
process. Anti-debugging techniques are used to defeat piracy
using self-healing codes. However, anti-debugging methods can
be defeated when the licensing protections are limited to CPU-
based implementation by writing custom codes to deactivate the
anti-debugging methods. In the paper, we demonstrate how GPU
implementation can prevent pirates from deactivating the anti-
debugging methods by using the limitations of debugging on
GPU. Generally, GPUs do not support debugging directly on
the hardware, and therefore all the debugging is limited to CPU-
based emulation. Also, a process running on CPU generally does
not have any visibility on codes running on GPU, which comes as
an added benefit for our work. We provide an implementation on
GPU to show the feasibility of our method. As GPUs are getting
widespread with the raise in popularity of gaming software,
our technique provides a method to protect against piracy. Our
method thwarts any attempts to bypass the license verification
step thus offering a better anti-piracy mechanism.

Index Terms—Cyber security, Anti piracy, Anti-debugging,
GPU-assisted Self-healing

I. INTRODUCTION

Anti-debugging techniques are specially crafted chunks of
code that involve one or more methods to detect, and possibly
prevent debugging attempts on the target process. Most of
the time, these codes are integrated into the final binary blob
of the program they are trying to protect; however ”out of
process” anti-debugging is also possible by employing system-
level hooking in user mode, or kernel mode.

Since most of the debuggers rely on modification of de-
buggee process to large extent (e.g. break-points are set by
overwriting instructions, changing permissions, altering error
handler chains, etc.), anti-debugging techniques mostly rely
on detecting such modifications and possibly reverting them
to their original state. Since reverting to the original state
requires modification of our own process, we commonly see
some variation of self-modifying codes being used for such
purposes.

Self-healing codes are a special case of self-modifying
codes, which have the ability to detect any modifications in
their code and revert it to its original state before executing
it. Although these techniques can restore sufficiently large
modifications, in practice these are kept limited to only critical

parts of the code. These are often used to subvert debugging
techniques allowing the protected processes to evade from the
eyes of debugger tools (e.g. process not stopping on a break-
point).

Anti-debugging techniques generally can be grouped in the
following categories though not all techniques are applicable
to all platforms:
1. Timing and Latency Analysis: These techniques rely on
the difference in time taken to run a known calibrated code.
Debugging tools generally make the underlying process run a
bit slower due to their invasive nature.
2. Process Detection: These techniques rely on detecting the
presence of known debugging and related tools. If such tools
are running on a system, the chances of the process being
under watch is fairly high.
3. Memory Analysis: Many debugging tools tend to alter
memory maps in different ways (different parts of code and
data being loaded in slightly different locations, differences in
stack, heap, etc), which can be used to detect debugging in
such cases.
4. Break-point Detection: These techniques rely on the
fact that setting a software break-point alters machine code
in memory. The program scans its own memory to search
machine code for software break-point (e.g. 0xCC on x86 and
AMD64) in code regions.
5. Patching Detection: These techniques are one step ahead
of techniques described in (4), and these are able to detect
arbitrary patching (machine code modification) in process
memory.
6. Monitoring Debugger APIs: These techniques rely on the
fact that only one process can act as a debugger for another
given process at a time. In other variations, debugger APIs
exposed by the platform are hooked and monitored globally
to detect debugging attempts (e.g. DebugActiveProcess(...) /
WaitForDebugEvent(...) on Windows, ptrace on Linux).
7. Monitoring Exception Handlers: Many times when a
debugger is attached to a process, exceptions are trapped and
handled by the debugger without passing the exception back
to the application for continued execution. Occasionally these
exceptions can even crash or terminate a process when run
under a debugger and be handled gracefully when running
without a debugger attached. These discrepancies can be used

to detect debugging attempts.
8. Blocking Debuggers: These techniques rely on either
blocking Debugger APIs (using self-debugging codes), or
removing debugger-related artifacts like break-points or in-
memory patching from protected code.

Software piracy is one of the biggest problems facing the
IT industry. The act of piracy revolves around figuring out
the licensing method used by the target software, reverse
engineering it, or making the software bypass license checks.
Debuggers are the go-to tools for this purpose. To defeat
this, anti-debugging codes are commonly used for anti-piracy,
IP protection, and digital rights management. These codes
generally make it hard for pirates to figure out licensing or
IP/digital rights protection logic, making it infeasible or more
costly to bypass license checks than paying for a legitimate
copy of the software. In certain cases, such techniques may
also make it almost impossible to pirate content without using
special hardware. For example, video streaming platforms
often rely on High-Bandwidth Digital Content Protection
(HDPC) copy-protection which encrypts the signals between
computer and display, thereby making it almost impossible
to copy the video content in order to pirate it. Most of
the software licensing protections are limited to CPU-based
implementations which can be defeated by writing custom
tools (e.g. custom key management server implementations
used to be really popular to illegally activate Windows OS
installations [], or by employing techniques specific to anti-
debugging techniques being used. We will cover a survey
of common CPU-based anti-debugging techniques and their
shortcomings in upcoming sections.

Since hardware components like GPU are becoming com-
monplace, and are coming with general compute capabilities,
even in consumer-grade versions, these can also be potentially
used to implement various anti-debugging techniques almost
entirely on GPU. This can be done even more easily for
software that needs a dedicated GPU to function properly, like
image editing, video editing, gaming, rendering software, and
CAD software. Since the GPU stack generally does not have
very detailed debugging, analysis, and instrumentation capa-
bilities similar to CPU stack, these techniques can raise the
bar very significantly. For example, NVIDIA toolkit provides
GPU code debugging using GPU emulation on many cards
but not on the GPU card itself.

In the past, pirated copies of many licensed software were
distributed widely (e.g., Photoshop). This was possible as they
implemented CPU-based piracy protection mechanisms which
could be bypassed by disabling anti-debugging features. To
overcome these issues, software license verification is moved
to the cloud, but this needs an additional layer of authentica-
tion. However, for many software, especially, gaming software,
it is preferable that the license verification is performed locally.
Our method provides a mechanism for such verification with-
out requiring additional layer authentication while overcoming
the issues faced in CPU-based license verification.

In this paper, we present another technique that involves
running anti-debugging code on GPU, and monitoring the

process on CPU to protect it from getting debugged. Our
method exploits the fact that CPU hardware breakpoints do
not have visibility in GPU code. We run the anti-debugging
code to remove the breakpoints in GPU. The GPU performs
the task by using Direct Memory Access (DMA) on which
the CPU does not have visibility. Due to the lack of visibility,
it is not possible to prevent breakpoints erasures in the CPU.
Once breakpoints are erased, the CPU continues the normal
execution of the verification process. Thus our method thwarts
any attempt to deactivate the anti-debugging method and
achieve piracy.

The paper is organized as follows: In Section II-F we discuss
various anti-debugging methods in CPU and discuss their
limitations in III. In Section IV demonstrates how GPU can
assist in improving the ant-debugging capabilities of the CPUs
and provide develop a robust mechanism for thwarting piracy.
Section V gives conclusion.

A. Related Work

Piracy has been one of the long concerns of the software
industry and several works have addressed the issue. [1] give
an early roadmap of the security concerns. Since then several
methods are proposed various methods to improve software
piracy, like smartcard based method [2], code obfuscation [3],
and through digital rights management systems [4].

Recently studies have been undertaken to understand how
personality traits [5] and economic conditions [6] influence
software privacy. Various methods are also proposed to detect
attempts at software privacy. [7] proposed a method to detect
distribution of Windows Executable Programs via bit torrent
and [8] proposed MetaSPD that performs metamorphic anal-
ysis to automatically detect pirated software copies.

Anti-bugging is a feature used to prevent reverse engi-
neering of code through debugging process and has been
extensively used to achieve anti-piracy [9]. However, pirates
have been able to evade it using techniques similar to that used
by malware [10], [11].

Our work proposed to enhance the anti-bugging feature
by using GPU-assisted self-healing code. To the best of
our knowledge, GPU-assisted anti-piracy techniques are not
studied in the literature.

II. ANTI-DEBUGGING ON CPU

This section will discuss various modes to detect if a
debugger is attached to the code and how to use it in anti-
debugging. We begin with a discussion of types of breakpoints.

A. Type of breakpoints

A breakpoint is an intentional “pause” in the normal
execution of a program, generally used to inspect the
internals of said process in more detail. This is the most used
feature of any debugger. On x86 CPU, there are two types of
breakpoints: hardware breakpoints and software breakpoints.
While they overlap to a certain degree they are not exactly
the same.

Software breakpoint: In most of debugging cases software
breakpoints are used, which do not need any special hardware
support. These are implemented using the interrupt mechanism
provided by CPU. On x86 interrupt number 03 is used to
implement a software breakpoint by convention. When a
breakpoint is set, the debugger overwrites the target address
where we want to put the break-point with INT 03H (0xCC
in hex). When this instruction gets executed, debugger gets
the control back from target process, and can inspect its state
(registers, memory etc). To resume the execution, the debugger
will silently remove the break-point, execute the instruction,
and set the break-point again before letting the process resume
until it terminates or breaks. Generally, we can set any number
of software breakpoints; however these cannot be set on non-
code address, i.e., these can break the program only when
target address content is executed; but not if the address is
read from or written to.
Hardware breakpoint: Hardware breakpoints, on the other
hand, are much more powerful and flexible than software
breakpoints. These can be set to break not only on execution
but also on memory access (read and write both), I/O port
access, etc. These debuggers are set by writing into special
“debug registers” which are largely platform specific. Not all
platforms will have support for hardware breakpoints.

In x86 architecture, the debugger uses a set of Debug
Registers in order to apply hardware breakpoints. There exits
8 debug registers to control the debugging procedure, ranging
from DR0 to DR7. These registers are not accessible from
ring3 privileges but only accessible from Current Privilege
Levels, ring0 (CPL0). Thus, an attempt to read or write the
debug registers when executing at a privilege level other than
CPL0 causes a general protection fault. The debug registers
allow the debugger to interrupt program execution and transfer
the control to it when accessing memory to read or write.

x86 has the following debug registers:
1) DR0-DR3: Linear break-point address 0-3. The stored

address can be the same as the physical address or it
needs to be translated to the physical address.

2) DR4-DR5: Reserved. Not defined by Intel
3) DR6: Break-point status, which indicates which break-

point is activated.
4) DR7: Break-point control, which defines the break-point

activation mode by the access modes: read, write, or
execute.

Some debuggers can also feature other types of breakpoints:
Memory breakpoint: Memory breakpoints are implemented
by a debugger using guard pages. when a page of mem-
ory is marked as PAGE GUARD and is accessed, a
STATUS GUARD PAGE VIOLATION exception is raised,
which can then be handled by the debugger. However, such
implementations can be Windows-specific.

B. Detecting Software Break-point

Since we know that software breakpoints are set by over-
writing 0xCC at the first byte of instruction, we can easily
check for such breakpoints in our code:

1) Find offsets of all instructions in the target function,
starting from the location of the first instruction.

2) Find where our target function, or any chunk of code,
is located in memory

3) Read one byte from all offsets
4) If any byte is 0xCC, a break-point has been set

A simple implementation code in C++ is as follows:

bool isBreakpointPresent(
const unsigned char *func,
const std::vector<unsigned int>&

offsets)
{

bool result = false;
for (auto &i : offsets)
{

if (*(func + i) == 0xCC)
{

result = true;
break;

}
}
return result;

}

For the above technique, an analyst can reverse engineer it,
find its location in compiled binary (or memory address at run-
time), and modify it so that it always returns the value which
is expected by rest of the code. In our case, it will be boolean
value ”false”, because this is what we are returning when no
breakpoint is present. Once this function is modified, rest of
the code will not be able to detect presence of breakpoints, and
will continue working normally, which will assist the analyst
further in reverse engineering rest of the code.

To deal with this, one can try to detect function patching,
which can be done by the following two methods:

1) By matching monitored code byte by byte with a known
good copy of code

2) By calculating a checksum of code, and comparing it
with known good checksum

The first one is simple to implement but inferior to the
other option as multiple copies of the same code have to be
maintained, which increases size. For sake of simple imple-
mentation of technique (2), we can use CRC, and compare it
with known good value. A reference implementation is given
in the appendix:

CRC based implementation can also be bypassed by modi-
fying protected code as well as hard-coded correct checksum
values. This is mitigated by not hard coding the checksum,
but using it as a parameter for some other code instead. Using
checksum to decrypt some other stuff, or using it in some
jump/lookup table are some possible methods.

C. Detecting Hardware Break-point
Detecting hardware breakpoint involves OS-specific tech-

niques, as different operating systems expose underlying hard-
ware details in different ways. On Windows, this can be done

using GetThreadContext API to get thread context for
given thread, and then inspecting values of debug registers. On
Linux/BSD, this can be achieved by installing a system-wide
hook for ptrace system call, and monitoring parameters for
PT_GETDBREGS, PT_SETDBREGS, PTRACE_PEEKUSER
and PTRACE_POKEUSER trace calls.

We note that unlike GetThreadContext example, the
above example cannot be used by the process itself. One has to
monitor/protect the desired process from the outside process.

D. Evading Software Break-point

Since we already know how a software break-point works,
we can create a method to evade from such break-points as
follows:

1) Check if a software break-point present on target code.
2) Find the offsets (or locations) where a break-point is

applied.
3) Disable memory protection on memory block containing

the target code.
4) Restore original bytes at affected offsets
5) Restore original memory protection
This method can be trivially enhanced to restore code in

case of function patching. A reference implementation for
the above pseudocode and its enhancements are given in the
appendix.

E. Evading Hardware Break-point

Just like the detection of hardware breakpoints, their evasion
is also tightly coupled to the specific platforms.

First, we present a possible algorithm, and its reference
implementation for Windows, which removes hardware break-
point using custom installed Structured Exception Handler
(called SEH henceforth). This mechanism is commonly seen
in Windows malware. which is done using the following
routines:

Routine ClrHwBpHandler: This routine works in the fol-
lowing steps.

1) Zero out a suitable register (we use EAX)
2) Find address of CONTEXT structure in the stack (this

is at an offset of 0xC from the current position in stack
when our routine is triggered from SEH chain

3) Reset values of DR0-DR3, DR6, and DR7 to 0, by writ-
ing at proper offsets from the beginning of CONTEXT
structure.

4) Once our handler completes, OS will try to resume
the process from the same instruction where the fault
occurred. Since we do not want to repeat that instruction
anymore, we will modify the instruction pointer, and
the process will resume from whatever address/offset
we provide in instruction pointer. Since CONTEXT
structure takes offset in the instruction pointer, we have
to put the size of the instruction (as the number of
bytes to skip) at Extended Instruction Pointer (EIP) in
CONTEXT structure.

5) Return from the routine. After this, system will resume
execution from our specified EIP.

Routine ClearHardwareBreakpoints: This routine works in
the following steps.

1) Setup routine ClrHwBpHandler as SEH handler
2) Perform some operation which triggers fault. We are

using divide by 0.
3) Add rest of the code as usual. This is the code which is

to be protected from debugging.

; routine has to be declared before we
can refer to it

ClrHwBpHandler proto
.safeseh ClrHwBpHandler

; routine ClearHardwareBreakpoints starts
here

ClearHardwareBreakpoints proc
; step (1) starts here
assume fs:nothing
push offset ClrHwBpHandler
push fs:[0]
mov dword ptr fs:[0], esp ; Setup SEH

; step (2) starts here
xor eax, eax
div eax ; Cause an exception

; step (3) starts here
pop dword ptr fs:[0] ; Execution

continues here
add esp, 4
ret

ClearHardwareBreakpoints endp

; routine ClearHardwareBreakpoints ends
here

; routine ClrHwBpHandler starts here
ClrHwBpHandler proc

; step (1) starts here
xor eax, eax

; step (2) starts here
mov ecx, [esp + 0ch] ; This is a

CONTEXT structure on the stack

; step (3) starts here
mov dword ptr [ecx + 04h], eax ; Dr0
mov dword ptr [ecx + 08h], eax ; Dr1
mov dword ptr [ecx + 0ch], eax ; Dr2
mov dword ptr [ecx + 10h], eax ; Dr3
mov dword ptr [ecx + 14h], eax ; Dr6
mov dword ptr [ecx + 18h], eax ; Dr7

; step (4) starts here

add dword ptr [ecx + 0b8h], 2 ; We
add 2 to EIP to skip the div eax

; step (5) starts here
ret

ClrHwBpHandler endp

; routine ClrHwBpHandler ends here

On Linux (and BSD platforms), hardware registers cannot
be cleared by the protected process itself. Just like detection,
these have to be done via a different process, or via a system-
level hook. A sample implementation of hardware breakpoint
removal via different processes is given below:

#define DR_OFFSET(x) (user->u_debugreg +
x)

unsigned long long setDebugRegister(
const user* user,
const pid_t pid,
unsigned char index, unsigned long

long value)
{

unsigned long long result = 0;
result = ptrace(PTRACE_PEEKUSER, pid,

user->u_debugreg[index], 0);

ptrace(PTRACE_POKEUSER, pid, user->
u_debugreg[index], &value);

return result;
}

void RemoveHardwareBreakpointPresent(
const user* user,
const pid_t pid)

{
unsigned long long dr[4];

for (int i = 0; i < 4; ++i)
{

dr[i] = setDebugRegister(user,
pid, i, 0);

}
}

F. Evading Memory Breakpoint

Since these are implemented in different debuggers in differ-
ent ways, we need to figure out specific implementation used
by debuggers that we are trying to protect from. Assuming
that a debugger is using implementation given earlier, we can
detect it by using following logic:

1) Allocate a dynamic buffer
2) Write machine code for RET in the beginning of the

buffer

3) Mark the page as a guard page
4) Push a return address (starting address of code which

will be run on successful return) on the stack
5) Make an unconditional jump to guard page
6) If the code at our custom return address gets executed, it

means that exception was caught by a debugger. There-
fore, our process is being debugged. Once detected, we
evade anti-bugging process by either exiting the process
or change the behaviour.

III. LIMITATIONS OF ANTI-DEBUGGING ON CPU

All the techniques that we have covered so far run entirely
on CPU, and therefore can eventually be circumvented by
an analyst. For sake of completeness, we document different
techniques and their detection and evasion mechanisms below:

1) Detecting software breakpoint: This can be detected
by setting up hardware breakpoints for memory read on
suspected memory addresses.

2) Detecting hardware breakpoint: This can be detected
by monitoring calls to GetThreadContext() API in
Windows and ptrace() system call in (Linux / BSD)
at system level.

3) Evading software breakpoint: This can be detected by
setting up hardware breakpoints for memory writing on
suspected memory addresses. This can also be detected
by comparing process memory snapshots taken at differ-
ent timestamps to see if there are any changes in code
in memory.

4) Evading hardware breakpoint: This can be detected
by monitoring SetThreadContext() API and SEH
handlers in process in Windows, or ptrace() system
call at system level in Linux / BSD.

IV. GPU-ASSISTED ANTI-DEBUGGING

To tackle the limitations of anti-debugging techniques run-
ning on CPU, we propose a new technique, which involves
running part of the code on GPU. It gives us the following
benefits:

1) Code running on GPU is normally visible in system. In
very special cases it can be visibility, but this visibility
is limited, like run information cannot be extracted.

2) Due to the popularity of toolkits like CUDA/Open-
CL/AMD APP, programming a GPU is almost as easy
as writing a program for CPU.

3) If a process invokes a code on GPU, it looks like a
vague instruction from the process’s point of view, i.e.,
it invokes and then waits for it to complete, while the
GPU code is running on GPU.

4) Tools to debug and reverse engineer GPU-specific codes
are not as common as their CPU counterparts. To com-
plicate it more, many tools either simulate the hardware
instead of debugging on real hardware or are specific to
certain vendors and/or models of GPUs.

CAD softwares, Gaming, Photoshop, Rendering and Ani-
mation tools.

Since most of the GPUs are connected to the motherboard
and CPU using PCI express bus (a high-speed serial computer
expansion bus providing a common interface for general
hardware like GPU, storage adapters, network adapters, etc.
It also provides advanced error detection and reporting, hot-
swapping, and I/O virtualization. We can set up ”direct mem-
ory access” (called DMA hereafter) between GPU and host
memory (RAM). The DMA setup allows us to read/write
from/to host memory without having to involve a CPU. In
common implementations, CPU and other peripherals are
connected to a common bus, and many of these devices can
take control of the bus, to read/write into some other hardware
via memory mapped I/O or host memory itself. Since the
DMA does not involve CPU, it can be used to evade certain
hardware-enabled monitoring features.

We also end up having to deal with the following disadvan-
tages:

1) We cannot use these techniques where a dedicated GPU
is not present, or is not available for some reason (e.g.
we are on host, but GPU is connected to some VM via
PCI pass-through)

2) Not all GPU programming toolkits are equal (different
set of features, different support for various hardware
and their capabilities). It may limit us to some specific
toolkits, which can further limit us to hardware from
specific vendor and/or specific model / series.

In this paper, we will convert the method of software
breakpoint detection and its corresponding removal method to
run on GPU. For this, we will follow the logic given below:

On GPU
1) Setup GPU to access protected function on host from

GPU
2) Call isBreakpointPresent() on GPU, and wait

for it to complete.
3) Copy the result from GPU to host, and check it to see

if there is any breakpoint or not.
4) Find memory pages which are hosting code correspond-

ing to protected function
5) Change memory permission on memory pages (from the

previous step) to read, write and execute.
6) Set up DMA between GPU and host memory (RAM),

and map the pages from step (6) to GPU memory.
7) Call RemoveBreakpoint() on GPU, and wait for it

to complete.

For reference implementation and its testing, we have used
the following setup:

• Host OS: Arch Linux x64 (Linux kernel: 5.18.7-arch1-1)
• Host CPU: Intel Core i7-6700HQ CPU
• GPU: NVIDIA Corporation GM107M [GeForce GTX

960M]
• GPU Driver: NVIDIA 515.48.07-13
• GPU Programming Toolkit: NVIDIA CUDA 11.7.0-2

We note that although we implemented and tested this
technique on Linux + NVIDIA combination, this can be ported

easily to non-Linux platforms as well for NVIDIA GPUs. For
GPUs from other vendors, corresponding toolkits may be used.

The reference implementation is as below:

#include <stdio.h>
#include <iostream>
#include <sys/mman.h>
#include <unistd.h>

// step (1) starts here
__global__ void isBreakpointPresent(

unsigned char *func,
int *result)

{
unsigned int offsets[] =

{0, 1, 4, 8, 15, 17, 24, 27, 34,
37, 42, 49, 52, 55, 60, 64, 68,
70, 71, 72, 73};

bool tmp = false;

for (int i = 0; i <= 20; ++i)
{

if (*(func + offsets[i]) == 0xCC)
{
tmp = true;

}
}

if (tmp)

*result = 1;
else

*result = 0;
}
// step (1) ends here

// step (2) starts here
__global__ void removeBreakpoint(unsigned

char *func)
{

unsigned int offsets[] =
{0, 1, 4, 8, 15, 17, 24, 27, 34,
37, 42, 49, 52, 55, 60, 64, 68,
70, 71, 72, 73};

unsigned char original_bytes[] =
{0x55, 0x48, 0x48, 0xc7, 0xeb,
0x48, 0x48, 0x48, 0x48, 0xe8,
0x48, 0x48, 0x48, 0xe8, 0x83,
0x83, 0x7e, 0x90, 0x90, 0xc9,
0xc3};

for (int i = 0; i <= 20; ++i)
{

if (*(func + offsets[i]) !=
original_bytes[i]) {

*(func + offsets[i]) =
original_bytes[i];

}
}

}
// step (2) ends here

// protected function, referenced in step
(3)

void secret()
{

for (int i = 0; i < 10; ++i)
{

std::cout << "Try a breakpoint at
secret()" << std::endl;

}
}

int main(void)
{

int *result;
int h_result;

// initialize CUDA
cudaMalloc(&result, sizeof(int));

// change memory permission to
// read/write/execute. This is needed
// to change memory contents from GPU

// step (6) starts here
long pagesize = sysconf(_SC_PAGESIZE)

;
unsigned long page_start = (unsigned

long)secret & ˜(pagesize - 1);
// step (6) ends here

// step (7) starts here
if (mprotect((void*)page_start,

pagesize, PROT_READ | PROT_WRITE |
PROT_EXEC) != 0)

{
std::cerr << "mprotect() failed"

<< std::endl;
}
// step (7) ends here

// setup GPU to access host memory
// (system RAM) from GPU via direct
// memory access

// step (8) starts here
cudaError err = cudaHostRegister((

void*)secret, 75,
cudaHostRegisterMapped);

if (err != cudaSuccess) {

fprintf(stderr, "Host register
failed for function with error
%d\n", err);

}
// step (8) ends here

// find address of protected function
// on system RAM
unsigned char* func = (unsigned char

*)secret;

// and convert it to address from GPU
cudaHostGetDevicePointer(&func, (void

*)secret, 0);

// check if breakpoint is present.
// this runs on GPU

// step (4) starts here
isBreakpointPresent<<<1,1>>>(func,

result);

cudaDeviceSynchronize();
err = cudaGetLastError();
if(err!=cudaSuccess)
{

fprintf(stderr,"ERROR: %s\n",
cudaGetErrorString(err));

exit(-1);
}
// step (4) ends here

// copy output of breakpoint check to
// variable in host memory

// step (5) starts here
cudaMemcpy(&h_result, result, sizeof(

int), cudaMemcpyDeviceToHost);

cudaDeviceSynchronize();
err = cudaGetLastError();
if(err!=cudaSuccess)
{

fprintf(stderr,"ERROR: %s\n",
cudaGetErrorString(err));

exit(-1);
}

cudaFree(result);
// step (5) ends here

if (h_result == 1) {
std::cerr << "secret() has been

hooked" << std::endl;

// remove breakpoint, breakpoint

// is present the following line
// will run on GPU

// step (9) starts here
removeBreakpoint<<<1,1>>>(func);
cudaDeviceSynchronize();
// step (9) ends here

func = (unsigned char*)secret;
if (*func == 0xCC)

std::cerr << "secret() is
hooked" << std::endl;

else
std::cerr << "hook at secret

() has been removed" <<
std::endl;

secret();
}
else
{

std::cerr << "secret() has not
been hooked" << std::endl;

secret();
}

// tear down everything
cudaHostUnregister((void*)secret);

}

Note that the above code can be extended to detect patching,
and restore protected function(s) to original state(s).

If we run the above code inside debugger and setup a
breakpoint manually on the secret() function, then set
a hardware watch-point to detect when the breakpoint is
removed; we will see that hardware watch-point does not
trigger:

$ gdb -q ./cuda
Reading symbols from ./cuda...
(gdb) break main
Breakpoint 1 at 0xc204: file ../main.cu,

line 55.
(gdb) run
Breakpoint 1, main () at ../main.cu:55
55 {
(gdb) disassemble secret
Dump of assembler code for function

_Z6secretv:
0x00005555555601b2 <+0>: push %rbp
...

End of assembler dump.
(gdb) set *((char*)0x00005555555601b2) =

0xCC
(gdb) watch *0x00005555555601b2
Hardware watchpoint 2: *0

x00005555555601b2
(gdb) continue

Continuing.
secret() has been hooked
hook at secret() has been removed
Try a breakpoint at secret()
...
[Inferior 1 (process 11907) exited

normally]

Please note that lines starting with $ are shell prompt, and
lines starting with (gdb) are debugger prompt.

In the above output, we have done the following:
• gdb -q ./cuda: cuda is the compiled binary here, which

we are starting to load via debugger (GNU debugger
in this case). The argument ’-q’ is passed to prevent
debugger from printing elaborate messages.

• (gdb) break main: We are setting a software breakpoint
on main() function, which is entry point of our PoC
code. We are doing this because we want actual addresses
where out functions get loaded at runtime.

• (gdb) run: We ask the debugger to run the given input
program (named cuda), and wait for any ”debug event”
like hitting a breakpoint. Please note that debugger stops
execution of input program as soon as breakpoint is hit,
and we get another debugger prompt.

• (gdb) disassemble secret: We ask the debugger to print
assembly listing of function named secret(). In output,
debugger prints starting addresses, as well as assembly
instructions line by line. We have stripped the listing to
keep it short.

• (gdb) set *((char*)0x00005555555601b2) = 0xCC :
Change first byte at address to 0xCC, which is machine
code for software breakpoint. This effectively sets a
software breakpoint on secret() function.

• (gdb) watch *0x00005555555601b2: Setup a hardware
breakpoint on given address. This breakpoint will trigger
if a write is performed on given address. For breaking on
read, we need to use rwatch instead of watch.

• (gdb) continue: Continue the execution, until some ”de-
bug event” happens.

After the last step, we see that:
• Input program continues execution
• Breakpoint on secret() is detected.
• Breakpoint on secret() is removed, but no hardware

breakpoint is triggered.
• Secret() is executed.
• Input program completes execution, and exits.

V. CONCLUSION

In this paper, we demonstrated feasibility of a anti-
debugging technique to thwart piracy. It relies on running
break-point detection and removal code on GPU, and protects
the target function by modifying its contents in host RAM
via DMA between GPU and host memory; thereby defeating
the hardware watch-point mechanism provided by host CPU
to monitor changes in host memory. We have demonstrated

the aforementioned technique on a Linux x64 machine having
NVIDIA GPU using the NVIDIA CUDA toolkit.

REFERENCES

[1] P. T. Devanbu and S. Stubblebine, “Software engineering for security: a
roadmap,” in Proceedings of the Conference on the Future of Software
Engineering, 2000, pp. 227–239.

[2] M. J. Atallah and J. Li, “Enhanced smart-card based license manage-
ment,” in EEE International Conference on E-Commerce, 2003. CEC
2003. IEEE, 2003, pp. 111–119.

[3] S. Schrittwieser, S. Katzenbeisser, J. Kinder, G. Merzdovnik, and
E. Weippl, “Protecting software through obfuscation: Can it keep pace
with progress in code analysis?” ACM Computing Surveys (CSUR),
vol. 49, no. 1, pp. 1–37, 2016.

[4] P. Djekic and C. Loebbecke, “Software piracy prevention through digital
rights management systems,” in Seventh IEEE International Conference
on E-Commerce Technology (CEC’05), 2005, pp. 504–507.

[5] T. M. Ming, M. A. Jabar, K. Tieng Wei, and F. Sidi, “A preliminary
study of personality traits and their influence on software piracy,” in
9th Malaysian Software Engineering Conference (MySEC), 2015, pp.
252–258.

[6] A. Hossain, A. K. Das, N. Tasnim Mim, J. Hoque, and R. A. Tuhin,
“Software piracy: Factors and profiling,” in 2019 2nd International
Conference on Applied Information Technology and Innovation (ICAITI),
2019, pp. 213–219.

[7] Y. Kim, J. Moon, S. J. Cho, M. Park, and S. Han, “Efficient identification
of windows executable programs to prevent software piracy,” in Eighth
International Conference on Innovative Mobile and Internet Services in
Ubiquitous Computing, 2014, pp. 236–240.

[8] A. Khalilian, H. Golbaghi, A. Nourazar, H. Haghighi, and M. Vahidi-
Asl, “Metaspd: Metamorphic analysis for automatic software piracy
detection,” in 6th International Conference on Computer and Knowledge
Engineering (ICCKE), 2016, pp. 123–128.

[9] M. N. Gagnon, S. Taylor, and A. K. Ghosh, “Software protection through
anti-debugging,” IEEE Security & Privacy, vol. 5, no. 3, pp. 82–84,
2007.

[10] X. Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario, “Towards
an understanding of anti-virtualization and anti-debugging behavior in
modern malware,” in 2008 IEEE International Conference on Depend-
able Systems and Networks With FTCS and DCC (DSN), 2008, pp. 177–
186.

[11] A. Mishra, A. Roy, and M. K. Hanawal, “Evading malware analysis
using reverse execution,” in 14th International Conference on COMmu-
nication Systems & NETworkS (COMSNETS), 2022, pp. 1–6.

APPENDIX

std::array<std::uint_fast32_t, 256>
generate_crc_lookup_table() noexcept

{
auto const reversed_polynomial =

std::uint_fast32_t{0xEDB88320uL};
struct byte_checksum
{

std::uint_fast32_t operator()()
noexcept

{
auto checksum = static_cast

<std::uint_fast32_t>(n++)
;

for (auto i = 0; i < 8; ++i)
checksum =
(checksum >> 1) ˆ
((checksum & 0x1u) ?
reversed_polynomial : 0);

return checksum;

}
unsigned n = 0;

};
auto table =

std::array<std::uint_fast32_t,
256>{};

std::generate(table.begin(),
table.end(),
byte_checksum{});

return table;
}

template <typename InputIterator>
std::uint_fast32_t
crc(InputIterator first,

InputIterator last)
{
static auto const table =

generate_crc_lookup_table();
return std::uint_fast32_t{0xFFFFFFFFuL} &

˜std::accumulate(first, last,
˜std::uint_fast32_t{0} &
std::uint_fast32_t{0xFFFFFFFFuL},
[](std::uint_fast32_t checksum,

std::uint_fast8_t value)
{

return table[
(checksum ˆ value) &
0xFFu] ˆ (checksum >> 8);

});
}

bool isFunctionPatched(
const unsigned char *func,
const size_t& machine_code_size,
const std::uint32_t& checksum)

{
bool result = true;
std::vector<unsigned char>

machine_code;
for (auto i = 0;

i < machine_code_size;
++i)

{
machine_code.push_back(*(func+i))

;
}
uint32_t value =

crc(machine_code.begin(),
machine_code.end());

result = (value != checksum);
return result;

}

A. Reference implmentation for hardware breakpoint
A reference implementation for break-point detection using

GetThreadContext API is as below:

bool isHardwareBreakpointPresent(
const unsigned char *address,
const std::vector<unsigned int>&

offsets)
{

CONTEXT ctx;
ZeroMemory(&ctx, sizeof(CONTEXT));

ctx.ContextFlags =
CONTEXT_DEBUG_REGISTERS;

HANDLE hThread = GetCurrentThread();

if(GetThreadContext(hThread, &ctx) ==
0)
return -1;

bool result = false;
for (auto &i : offsets)
{

if (address + i == (unsigned char

*)ctx.Dr0)
{

result = true;
break;

}
if (address + i == (unsigned char

*)ctx.Dr1)
{

result = true;
break;

}
if (address + i == (unsigned char

*)ctx.Dr2)
{

result = true;
break;

}
if (address + i == (unsigned char

*)ctx.Dr3)
{

result = true;
break;

}
}

return result;
}

B. Reference implmentation for hardware breakpoint using
ptrace

A reference implementation for break-point detection using
ptrace system is given below:

#define DR_OFFSET(x) (user->u_debugreg +
x)

unsigned long long getDebugRegister(
const user* user,
const pid_t pid,
unsigned char index)

{
unsigned long long result = 0;
result = ptrace(PTRACE_PEEKUSER, pid,

user->u_debugreg[index], 0);
return result;

}

bool isHardwareBreakpointPresent(
const user* user,
const pid_t pid,
const unsigned char *address,
const std::vector<unsigned int>&

offsets)
{

unsigned long long dr[4];

for (int i = 0; i < 4; ++i)
{

dr[i] = getDebugRegister(user,
pid, i);

}

bool result = false;
for (auto& offset : offsets)
{

for (int i = 0; i < 4; ++i)
{

if (address + offset == (
unsigned char*)dr[i])

{
result = true;
break;

}
}

}

return result;
}

C. Evade software break-point

#include <iostream>
#include <sys/mman.h>
#include <unistd.h>
#include <vector>

bool removeBreakpoint(
unsigned char* func,

const std::vector<unsigned int>&
offsets,

const std::vector<unsigned char>&
original_bytes)

{
bool result = false;
if (offsets.size() > original_bytes.

size())
return false;

long pagesize =
sysconf(_SC_PAGESIZE);

unsigned long page_start =
(unsigned long)func &
˜(pagesize - 1);

if (mprotect(
(void*)page_start,
pagesize,
PROT_READ | PROT_WRITE |

PROT_EXEC) != 0)
{

std::cerr << "mprotect() failed"
<< std::endl;

return false;
}
for (auto i = 0; i < offsets.size();

++i)
{

if (*(func + offsets[i]) !=
original_bytes[i])

{

*(func + offsets[i]) =
original_bytes[i];

result = true;
}

}
return result;

}

bool isBreakpointPresent(
const unsigned char *func,
const std::vector<unsigned int>&

offsets)
{

bool result = false;
for (auto &i : offsets)
{

if (*(func + i) == 0xCC)
{

result = true;
break;

}
}
return result;

}

void secret()
{

for (int i = 0; i < 10; ++i)
{

std::cout << "Try a breakpoint at
secret()" << std::endl;

}
}

int main()
{

auto *ptr_secret = (unsigned char*)
secret;

std::vector<unsigned int> offsets =
{0, 1, 4, 8, 15, 19, 21, 28,
35, 40, 43, 50, 53, 56, 61,
65, 67, 68, 69};

std::vector<unsigned char>
original_bytes =
{0x55, 0x48, 0x48, 0xc7, 0x83,
0x7f, 0x48, 0x48, 0xe8, 0x48,
0x48, 0x48, 0x48, 0xe8, 0x83,
0xeb, 0x90, 0xc9, 0xc3};

if (isBreakpointPresent(ptr_secret,
offsets))

{
std::cerr << "Breakpoint detected

" << std::endl;
if (removeBreakpoint(

ptr_secret,
offsets,
original_bytes))

{
std::cout << "Breakpoint

removed" << std::endl;
secret();

}
else

std::cerr << "Cannot remove
breakpoint" << std::endl;

}
else

secret();
return 0;

}

This code can be trivially enhanced to restore code in case
of function patching, as shown below (code stripped to bare
minimum):

bool unpatchFunction(
unsigned char *func,

const std::vector<unsigned char>&
machine_code)

{
bool result = false;

long pagesize = sysconf(_SC_PAGESIZE)
;

unsigned long page_start =
(unsigned long)func &
˜(pagesize - 1);

if (mprotect(
(void*)page_start,
pagesize,
PROT_READ | PROT_WRITE |

PROT_EXEC) != 0)
{

std::cerr << "mprotect() failed"
<< std::endl;

return false;
}

for (auto i = 0; i < machine_code.
size(); ++i)

{
if (*(func + i) !=

machine_code[i])
{

*(func + i) =
machine_code[i];

result = true;
}

}

return result;
}

D. Memory break-point evasionr4

A reference implementation for the above is given in
appendix

bool isMemoryBreakpointPresent()
{
unsigned char *pMem = NULL;
SYSTEM_INFO sysinfo = {0};
DWORD OldProtect = 0;
void *pAllocation = NULL;

GetSystemInfo(&sysinfo);

pAllocation =
VirtualAlloc(
NULL,
sysinfo.dwPageSize,
MEM_COMMIT | MEM_RESERVE,
PAGE_EXECUTE_READWRITE);

if (pAllocation == NULL)
return false;

pMem = (unsigned char*)pAllocation;

*pMem = 0xc3;

if (VirtualProtect(
pAllocation,
sysinfo.dwPageSize,
PAGE_EXECUTE_READWRITE | PAGE_GUARD,
&OldProtect) == 0)
{
return false;
}

__try
{
__asm
{
mov eax, pAllocation
push MemBpBeingDebugged
jmp eax
}
}
__except(EXCEPTION_EXECUTE_HANDLER)
{
VirtualFree(
pAllocation,
NULL,
MEM_RELEASE);
return false;
}

__asm{MemBpBeingDebugged:}
VirtualFree(
pAllocation,
NULL,
MEM_RELEASE);
return true;
}

