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Abstract

Resources including various assets of supply chains, face random demand over time and can be

shared by others. We consider an operational setting where a resource is shared by two different

classes of customers, the primary class (existing customers) and the secondary class (new firms)

customers, under a service level based pricing contract with the secondary class customers which

specifies the unit price of service as well as the quality of service offered. We assume that the

Poisson arrival rate of secondary class of customers depends linearly on the unit price of service

as well as on the service level offered. In our model, we use delay dependent priority scheme for

queue management and stationary mean expected time as a quality of service measure. Given

an existing service level based contract between the service provider and the primary class of

customers, we analyze the impact of inclusion of secondary class of customers has on the system

utilization and service level of the existing customers. We study the joint problem of optimally

pricing and operation of the resource with the inclusion of the secondary class of customers,

while continuing to offer a pre-specified quality of service to primary class of customers. This

non-convex constrained optimization problem has two pricing (contract) decision variables and

two operational decision variables. While the two decision variables, the unit price of service and

quality of service level offered constitute the pricing parameters, the allowable rate of secondary

class customers and a parameter capturing the relative delay dependent queue priority form the

two operational decision variables. We observe that in our model, we can first find the optimal

operating parameters and then use them to find the optimal contract (pricing) parameters.

This follows from separability property of linear demand function. We search exhaustively for

Karush-Kuhn-Tucker points of the optimization problem to obtain the global optimum point.

We propose an algorithm that finds these optimal parameters in closed form expressions for

various possible values of input parameters. We also study in detail the structure and the non-

linear nature of these optimal decisions along with their sensitivity to various input parameters.
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The study has implications in settings where a new firm enters into business requiring high

infrastructural set up cost and is willing to use the infrastructure of an existing firm after

entering into a pricing contract. An example is the entry of private firms into the inland rail

container movement business in India.

Key words: Queueing, quality of service, dynamic priority schemes, linear demand func-

tion, non-convex optimization

1 Introduction

In addition to cost minimization, guaranteeing assured levels of service has been a dom-

inant concern while operating resources. In practice, it is possible that resources remain

under-utilized because of the random nature of demand and usage. Owners of such re-

sources may want to share the existing resources with others, including new firms, requir-

ing such resources. In such a scenario, the resource will be used by two different classes or

types of customers; the primary class customers (existing customers) and secondary class

customers (customers of other or new firms). Queueing systems are natural models for

resource allocation to customers who arrive over time. In this paper, we propose a priority

queue based model for the optimal use of excess capacity of a resource when customers of

both classes arrive over time and these customers will be offered pre-specified Quality of

Service (QoS) level guarantees. In particular, we consider the issue of optimal pricing of

excess capacity of a server for an independent Poisson stream of secondary class customers

whose arrival rate is sensitive to both the offered mean waiting time (QoS level) as well as

to the price charged per customer while simultaneously ensuring that the mean waiting

time (QoS level) of the primary class customers is less than a pre-specified level.

We assume that the resource owner has a long term agreement with the primary class

customers which specifies a QoS level to the primary class customers. The agreement

assumes a Poisson demand for the primary class customers. The inclusion of secondary

class customers into the system increases the traffic intensity at the resource, which in

turn, affects not only the system utilization but also the effective service level offered

to the primary class customers. Therefore, one needs to control the arrival rate of the

secondary class customers into the system. We assume that the demand of the secondary

class customers depends not only on the price charged but also on the assured service

level. Such a pricing scheme will influence the secondary class customers’ demand and

hence it can be viewed as a mechanism to control the traffic intensity at the resource.

The customer’s service level depends on the queueing discipline at the resource. A

queue discipline used will therefore affect the secondary class customers’ arrival rate whose

demand is sensitive to unit admission price as well as to the assured service level. That,

in turn, also affects the effective service level offered to the primary class customers.
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Thus, the queue discipline employed can be viewed as another mechanism to control the

traffic intensity at the resource. The simplest queueing discipline is first come first serve

(FCFS). But, FCFS queueing discipline does not provide differentiated service level. A

differentiated service level between customers of different classes can be achieved using

priority queue management discipline. Such a priority scheme can be either static or

dynamic. The static priority scheme may cause long delays to the jobs of low priority

customers. A dynamic priority scheme eliminates the disadvantages of FCFS and static

priority disciplines as jobs for service are now selected based on their actual waiting times

as well as their priority class. In our model for resource sharing we use a delay dependent

priority queue management scheme originally proposed by Kleinrock (1964).

In this paper, we restrict ourselves to the case when QoS levels of a class are measured

in terms of the stationary expected waiting time in queue of customers of that class.

An assured service level for a class implies that the stationary expected waiting time of

customers in queue of that class will be less than or equal to the assured mean waiting

time. We also assume that the potential mean arrival rate of the secondary class customers

is a linear function of unit admission price and assured service level. The resource owner

aims to select a pair of operating parameters, a queue discipline management parameter

characterizing the dynamic priority policy and an appropriate arrival rate of the secondary

class customers along with a suitable pair of pricing parameters, i.e., unit admission price

and assured mean waiting time for the secondary class customers, that will maximize

its expected revenue from the inclusion of secondary class customers while ensuring the

prevailing mean waiting time level to the primary class customers. Such a constrained

resource sharing problem can be viewed as a design of a QoS level based contract that

the resource owner wants to enter with the secondary customers. Given that secondary

customers’ Poisson arrival rate is linear in unit admission price and assured service (mean

waiting time in queue) level, the resource owner would like to quote optimal values for

these two quantities that also ensures pre-assigned QoS (mean waiting time in queue)

level to the primary customers. The secondary customers’ market will offer an additional

steady Poisson demand for the resource owner while availing a certain QoS (mean waiting

time) that is specified in the contract by the resource owner. The resource owner will

employ a dynamic priority management scheme to meet these QoS levels of both the

classes of customers. The stationary waiting time of a class in the queueing model can

be interpreted as the sample path based customer average of waiting times of members of

that class in a regenerative system like ours (Wolff 1989). This suggests a practical way

to implement such a long term contract that the resource owner may want to enter into

with the secondary class customers.

The assumption on the nature of demand function and the definition of customers’

service level help us to reformulate the resource owner’s constrained problem. The de-

cision variables of the reformulated problem are the operating parameters, the arrival
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rate of the secondary class customers and the queue discipline management parameter,

while the suitable pair of pricing (contract) parameters, i.e., the unit admission price and

the assured mean waiting time for the secondary class customers, are derived using the

values of the decision variables at optimality of the reformulated problem. By choosing

various possible values of the Lagrange variables in the Karush-Kuhn-Tucker first order

necessary conditions of this reformulated optimization problem, we exhaustively search

for its Karush-Kuhn-Tucker points. One of the decision variables, the queue discipline

management parameter, can take the value of infinity (corresponding to head-of-the-line

static high priority to the secondary class customers) and hence constitutes a valid deci-

sion in our optimization problem. Therefore, we also separately analyze the constrained

optimization problem with arrival rate of secondary class customers as a single decision

variable, by setting the queue discipline management parameter as infinity. We next

compare the optimal solutions of these two optimization problems to obtain the global

optimal solution of the original constrained resource sharing problem. We identify its

global optimal solution for all possible values of input parameters, except for one finite

interval of Sp, the prevailing QoS level of primary class customers. Based on our analysis

and numerical experimentation, we conjecture an optimal solution for this finite inter-

val of Sp also. This leads to an algorithm that terminates in finite steps with closed

form expressions for optimal values of both the pairs of operating parameters and pricing

parameters.

A consequence of the use of the linear demand function in the context of sharing a

resource over time is that the joint problem of optimal pricing and operation of excess

capacity can be separated; one can find optimal operating variables first and then use

them to find the optimal pricing parameters. Also, it turns out that the optimal decision

variables remain insensitive to the price sensitivity coefficient of the demand function.

One of our findings is that there exits an interval for the ratio of co-efficients of linear

demand function such that it is beneficial for the resource owner to offer static high

priority to the secondary class customers. For values of the above ratio to the right of this

interval, it may be optimal to use dynamic priority scheme. In such a case, a part of the

feasible values of Sp will have three intervals and in these intervals exactly one of the two

operating parameters, either the optimal arrival rate of the secondary class of customers,

λ∗s, or the parameter corresponding to optimal dynamic priority queue management, β∗,

remains constant. But, the optimum contract (pricing) parameters θ∗ and S∗s are different

non-linear functions in the different intervals of Sp.

The sensitivity analysis of optimal parameters with respect to demand coefficients

shows that the increase in the maximum attainable demand rate of the secondary class

customers means that a delay dependent priority queue discipline needs to be used as part

of optimal policy over a wider range of Sp values. The increase in service level sensitivity

coefficient of secondary class customer leads to the use of the delay dependent priority
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queue discipline for a smaller range of Sp values.

This work is motivated by the recent opening up of the inland rail container movement

in India to both the private and public sector players, which till recently was solely

managed by Container Corporation of India Ltd (Concor), a public firm. The interested

companies have to arrange for a rail-linked inland container depot (ICD). Due to the high

infrastructural set up cost involved, new firms may be seeking to lease some resources like

ICDs from Concor (presently the only one to possess a rail-linked ICD) in the initial years

of operations. In a shared ICD, the existing customers of Concor are the primary class

customers whereas customers of the new firms constitute the secondary class customers

(Sinha et al. 2008). The framework we consider is optimal pricing of surplus capacity in

a general commitment based resource sharing model and can be potentially relevant in

many settings, e.g., a in-house manufacturing unit of a firm utilizing its excess capacity to

cater an outside firm’s demands, a third party logistics service provider serving multiple

customers. Other type of situations can be communication networks providing service to

different classes of customers. A contemporary example could be the determination of

charges a mobile telephony service provider can use while providing roaming services to

customers of another service provider.

Similar studies of Palaka et al. (1998), Pekgun et al. (2008), Ray and Jewkes (2004)

and So and Song (1998) determine an optimum pair of price and quoted lead-time for

customers sensitive to price as well as quoted lead time. The quoted lead time is identical

to assured service level. These studies assume a single class of customers and employ

FCFS queueing discipline. Palaka et al. (1998) and Pekgun et al. (2008) model customer

demand as a linear function of price and quoted lead time. The linear demand nature will

mean that secondary customers view price and service level as substitutes (Palaka et al.

1998). Such demand functions also exhibit nice elasticity properties that we summarize

later. Palaka et al. (1998) model the system as M/M/1 queue and consider that the

firm incurs congestion cost as well as pays lateness penalties. They find the optimal

decisions of the resulting profit maximization problem and study the impact of varying

parameters values on those optimal decisions. They also examine a situation in which it is

possible for the firm to expand capacity marginally. Pekgun et al. (2008) consider a firm

where pricing and lead time decisions are made by two independent functions, marketing

and production, respectively. They model the firm’s operations as a M/M/1 queue and

the sequence of decisions as a Stackelberg game. They show the inefficiencies resulting

from decentralized decision making and present a coordination scheme to overcome those

inefficiencies. Their focus is on the desirability of coordination issues in this setting.

Ray and Jewkes (2004) extend the linear customer demand model by assuming that

price itself is function of lead time. They assume that the firm can reduce the lead time

by investment in capacity. They first determine the profit maximizing optimal policy
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and thereafter investigate the behaviour of the optimal policy under various changes of

the system parameters. They specifically present the conditions under which overlooking

price and lead time dependence will lead to a sub-optimal decision. They also extend

the model by incorporating economies of scale to unit operating cost. In contrast, So

and Song (1998) consider log-linear Cobb-Douglas demand function to reflect customer’s

sensitivity to price and lead time and model a service facility as a G/G/1 queue. They

determine the optimal price, lead (delivery) time quote and short-term capacity expansion

level which maximizes the average net profit while maintaining a predetermined level of

delivery reliability. We restrict ourselves to a linear demand model. We advocate the use

of dynamic queue management schemes as part of service level based pricing in multi-class

queueing models.

Hall et al. (2002) study a similar setting where a resource is shared by two different

classes of customers. They assume FCFS queue discipline at resource and also assume

that the demand is sensitive to just unit price. They focus on dynamic pricing policies

which depend on the production system (queue) status. They demonstrate the properties

of the optimal policies and show that a policy of uniform pricing up to cutoff state is

superior according to a certain performance/complexity ratio measure. We, in contrast,

focus on static pricing scheme with dynamic queue discipline management.

We present the details of the operational setting and the optimal constrained resource

sharing problem in Section 2. Analysis of this optimization problem are given in Section

3. Based on it, we present in Section 4 the algorithm to select the optimal contract

parameters for secondary class customers and optimal parameters to operate the resource

and also illustrate the algorithm by several numerical examples that correspond to various

possible cases of the input data parameters of the model. Further, we present details of

our understanding of the model and sensitivity analysis of its optimal solutions in Section

5. A preliminary version of the algorithm along with a numerical example are presented

in Sinha et al. (2008). In the present paper, we present detailed arguments that lead to

the algorithm along with an extensive sensitivity analysis.

2 A queueing model for a shared resource

Let λp and λs be independent Poisson arrival rates of the customers of the primary and

secondary classes respectively. As the service requirements of the primary and secondary

class customers are identical in nature, we assume that the service times, i.e., time taken

by the resource to complete a job irrespective of customers’ class, are independent and

identically distributed random variables with mean 1/µ and variance σ2. Further, the

queue discipline employed at the resource is head-on-line (non-preemptive) delay depen-

dent priority scheme. A schematic view of the system is shown in Figure 1.
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Service Rule
Head−on−Line Delay Dependent Priority

Figure 1: Schematic view of the shared resource

The delay dependent priority scheme is an example of dynamic priority scheme. A

queueing system with delay dependent priority scheme was first studied by Kleinrock

(1964). It consists of P priority classes associated with a set of variable parameters

{bp}P
1 , where 0 ≤ b1 ≤ b2 ≤ . . . ≤ bP . The instantaneous priority at time t of a class

p job that arrived at time Tp is given by qp(t) = (t − Tp)bp. After a service completion,

the server chooses the next job with highest instantaneous priority qp(·) from all available

jobs. If there is a tie for the highest instantaneous priority, then it is broken by using

FCFS rule. Here, a higher priority job gains priority at faster rate than lower priority jobs.

The steady state expected waiting time in queue for a class p job in M/G/1 head-on-line

delay dependent queue is given by the following recursion (Kleinrock 1964, Kanet 1982):

Wp =

W0

1− ρ
−

p−1∑
i=1

ρiWi

(
1− bi

bp

)

1−
P∑

i=p+1

ρi

(
1− bp

bi

) , p ∈ {1, 2, . . . , P} (1)

where ρi =
λi

µi

, ρ =
P∑

p=1

ρi, W0 =
P∑

p=1

λp

2

(
σ2

p +
1

µ2
p

)
and 0 ≤ ρ < 1. We note that the

queue parameters {bp}P
1 only appear as ratios bp/bp+1 in the expression for Wp. Also,

the conservation law for M/G/1 system with non-preemptive work-conserving queueing

discipline (a system in which work is neither created nor destroyed within the system)

(Kleinrock 1976) states that

P∑
p=1

ρpWp =





ρW0

1− ρ
ρ < 1

∞ ρ ≥ 1

Let bp and bs be the associated parameters of the primary and secondary class cus-

tomers respectively in our system. Alternatively, we define relative priority queue dis-

cipline management parameter β as a ratio of the associated queue parameters to the

primary and the secondary class customers, i.e., β := bs/bp. The selection of the rela-

tive priority control parameter β defines different regimes of the delay dependent priority
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queue.

• β < 1 (bs < bp). This implies that the primary class customers get higher priority

than the secondary class customers. When β approaches zero, the queuing system

becomes equivalent to a static priority queue with high priority to primary class

customers.

• β = 1 (bs = bp). This implies that both classes of customers get equal priorities.

Thus, the queueing discipline is FCFS.

• β > 1 (bs > bp). This implies that the secondary class customers get higher priority

than the primary class customers. When β approaches infinity the queuing system

becomes equivalent to a static priority queue with high priority to secondary class

customers.

Figure 2 summarizes the relationship between the control parameter β and priorities of

the primary and secondary class customers.

bp<bsbp>bs

Static high priority
to primary customer

FCFS Static high priority
to secondary customer

β = 0 β = 1 β = ∞

 β →

Delay dependent, high priority
to primary customer

Delay dependent, high priority
to secondary customer

Figure 2: Effect of queue discipline management parameter on queue discipline

Recall that we assume that the prevailing agreement between the resource owner

and the primary class customers results in a Poisson arrival rate λp of the primary class

customers. In the absence of the secondary class customers, it is assumed that the resource

owner is able to fulfill the assured mean waiting time requirement of the primary class

customers, given by Sp, and still the facility is under-utilized. This assumption holds if

and only if Sp ≥ Ŝp, where Ŝp is the expected waiting time in queue for the primary class

customers when the resource is dedicated to the primary class customers. In the M/G/1

setting, Ŝp = λpψ

µ(µ−λp)
where ψ = [1 + σ2µ2] /2.

Let Λs(θ, Ss) be the corresponding potential Poisson arrival rate of the secondary class

customers with a charged unit admission price of θ per completed job and assured service

level of Ss. We assume that this rate is a linear function of the unit admission price and

assured service level, i.e.,

Λs(θ, Ss) = a− bθ − cSs (2)
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for some given constants a, b, c > 0. The coefficients a, b and c represent the maximum

attainable mean arrival rate (market potential), price sensitivity and service level sensi-

tivity respectively. We have assumed linear demand function because it is convenient and

it exhibits the following desirable properties (Palaka et al. 1998).

1. The demand function is separable in price and assured service level and thus makes

price and service level as substitutes.

2. The price elasticity of demand, −bθ/(a − bθ − cSs), increases with increase in θ

and Ss. This results in higher price elasticity of demand at higher unit price θ and

higher service level Ss. Thus, customers are more sensitive to high prices when they

wait for longer periods of time in the queue. A similar property is valid regarding

service level elasticity.

As the arrival rate of the primary class customers remains fixed at λp, the expected

waiting times of the customers depend only on the mean arrival rate of the secondary class

customers λs and relative queue discipline management parameter β. Let Wp(λs, β) and

Ws(λs, β) be the expected waiting times in the queue for the primary and the secondary

class customers respectively.

The resource owner aims to select an appropriate arrival rate of the secondary class

customers λs, a suitable pair of pricing parameters θ and Ss for the secondary class

customers and a queue discipline management parameter β that will maximize its expected

revenue from the inclusion of secondary class customers while ensuring the prevailing mean

waiting time to the primary class customers. The resulting constrained resource sharing

problem of the resource owner is as follows

P0: max
λs,θ,Ss,β

θλs (3)

Subject to: Wp(λs, β) ≤ Sp (4)

Ss ≥ Ws(λs, β) (5)

λs ≤ µ− λp (6)

λs ≤ a− bθ − cSs (7)

λs, θ, Ss, β ≥ 0. (8)

Here, constraint (4) ensures that the resource owner does not violate the prevailing service

level commitment to the primary class customers while sharing the resource. Constraint

(5) restricts the resource owner to offer a service level commitment to secondary class

customers within system capability. Constraint (6) sets a restriction on maximum per-

missible mean arrival rate of secondary class customers based on processing capability

of the system, i.e., it avoids instability of the multi-class queue. Later we show that

this constraint indeed remains non-binding at the optimum and ensures stability of the
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multi-class queue. Constraint (7) ensures that the mean arrival rate of secondary class

customers should not exceed the demand generated by charged price θ and offered ser-

vice level Ss. The last constraint captures the non-negativity of the mean arrival rate

of secondary class customers λs, price θ, assured service level Ss and queue discipline

management parameter β.

Constraint (7) will hold as an equality in an optimal solution given that the demand

is a separable function of both price and assured service level (Palaka et al. 1998). Next,

we claim that constraint (5) will also hold as an equality in an optimal solution. For,

suppose that the optimal solution of the optimization problem is given by mean arrival

rate of secondary class customers λ∗s, price θ∗, assured service level S∗s and queue discipline

management parameter β∗ that satisfy S∗s > Ws(λ
∗
s, β

∗). We already know that constraint

(7) will hold as an equality in an optimal solution. Therefore, the objective function can

be rewritten as 1
b
[aλs − λ2

s − cλsSs]. Since the objective function is a decreasing function

of Ss, an assured service level S ′s such that S∗s > S ′s ≥ Ws(λ
∗
s, β

∗) will increase the earned

revenue of the resource owner. Therefore, the constraint (5) must hold as an equality in

the optimal solution.

In view of the fact that the above constraints are binding at optimality, the resource

sharing problem of the facility owner, (P0) can be rewritten as

P1: max
λs,β

1

b

[
aλs − λ2

s − cλsWs(λs, β)
]

(9)

Subject to: Wp(λs, β) ≤ Sp (10)

λs ≤ µ− λp (11)

λs, β ≥ 0. (12)

Once the optimal mean arrival rate of secondary class customers λ∗s and queue discipline

management parameter β∗ is known, the optimal price θ∗ and assured service level S∗s is

obtained using equalities λ∗s = a− bθ∗− cS∗s and S∗s = Ws(λ
∗
s, β

∗). The objective function

(9) indicates that the optimal choices of λs and β remain insensitive to price sensitivity

co-efficient b of the secondary class customers.

Further, we claim that the constraint (11) should remain non-binding at the optimal

point, i.e., the constraint (11) will hold with strict inequality at optimality, λ∗s < µ−λp. To

arrive at a contradiction, let us assume that the constraint (11) is binding at the optimal

point, i.e., λ∗s = µ−λp . We note that as Sp is finite, Wp(λ
∗
s, β

∗) will be finite at optimality.

Suppose Ss > a−bθ
c

; then, the demand function (2) results in λs < 0. Thus, λs ≥ 0 if and

only if Ss ≤ Ŝs(θ) where Ŝs(θ) = a−bθ
c

. As Ŝs(θ) is a finite number, the optimum S∗s will

remain finite. Also, at optimality S∗s = Ws(λ
∗
s, β

∗). Therefore, Ws(λ
∗
s, β

∗) should take a

finite value at optimality. When λp + λ∗s = µ, it is not possible to have finite Wp(λ
∗
s, β)

and Ws(λ
∗
s, β) simultaneously for any feasible β. This contradicts the initial assumption
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that the constraint (11) is binding at optimality, i.e., λ∗s = µ− λp. Hence, the constraint

(11) will remain non-binding at the optimal solution.

3 Optimal pricing and operation of the resource shar-

ing model

Using recursion (1), the expected waiting times in queue for the primary and the secondary

class customers are given by

Wp(λs, β) =
λψ [µ− λ [1− β]]

µ [µ− λ] [µ− λp [1− β]]
11{β≤1} +

λψ

[µ− λ]
[
µ− λs

[
1− 1

β

]]11{β>1} (13)

Ws(λs, β) =
λψ

[µ− λ] [µ− λp [1− β]]
11{β≤1} +

λψ
[
µ− λ

[
1− 1

β

]]

µ [µ− λ]
[
µ− λs

[
1− 1

β

]]11{β>1} (14)

where λ = λp + λs, ψ = [1 + σ2µ2] /2 and 11{.} denotes the indicator function which is

equal to 1 if the statement between braces is true and 0 otherwise. We note that the

objective function and the constraint (10) of the resource sharing problem P1 are defined

differently in the regions corresponding to β ≤ 1 and β > 1. This aspect distinguishes

the optimization problem P1 from a classical optimization problem.

First, we note some useful properties of Wp(λs, β) and Ws(λs, β) whose details are

given in Appendix. Next, we show that the above optimization problem is a non-convex

problem.

1. Wp(λs, β) and Ws(λs, β) are increasing convex function of λs in the interval [0, µ− λp).

2. Wp(λs, β) is an increasing concave function of β ≥ 0 whereas Ws(λs, β) is a decreas-

ing convex function of β ≥ 0.

3. Wp(λs, β) is neither a convex nor a concave function of (λs, β) where λs ∈ [0, µ−λp)

and β ≥ 0. Also, Wp(λs, β) is not quasi-convex function of (λs, β); a numerical

example is given below.

4. λsWs(λs, β) is neither a convex nor a concave function of (λs, β) where λs ∈ [0, µ−λp)

and β ≥ 0.

We demonstrate below by a numerical example that the Wp(λs, β) is also not a quasi-

convex function of (λs, β) where λs ∈ [0, µ − λp) and β ≥ 0. Let us assume that λp = 8,

µ = 10 and σ = 0.1. We note that Wp(1.5, 0) = 0.475, Wp(0.5, 1) = 0.567, Wp(1, 0.5) =

0.825 and

Wp(0.5(1.5, 0) + 0.5(0.5, 1)) = Wp(1, 0.5) > max {Wp(1.5, 0), Wp(0.5, 1)} .
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The above inequality violates the necessary condition for a function to be a quasi-convex

function (Bazaraa et al. 1993); hence, Wp(λs, β) is not a quasi-convex function over λs ∈
[0, µ − λp) and β ≥ 0. This means that, because constraint (10), the feasible region will

be non-convex. Also, the Hessian matrix of λsWs(λs, β) at (λs = 0.1, β = 0.5) is

(
0.972 −1.009

−1.009 0.253

)
.

The eigenvalues of this Hessian matrix are 1.684 and -0.459. This implies that λsWs(λs, β),i.e.,

third term of the objective function, is neither a convex nor a concave function of (λs, β).

Hence, optimization problem P1 is a non-convex constrained optimization problem.

The Lagrangian function corresponding to the non-linear programming (NLP) problem

P1 can be expressed as

L1(λs, β, u1, u2, u3) =
1

b

[
aλs − λ2

s − cλsWs(λs, β)
]
+u1 [Wp(λs, β)− Sp]+u2λs+u3β (15)

where u1, u2 and u3 are the Lagrangian multipliers. The optimum value of the vector

(λs, β, u1, u2, u3) should satisfy the Karush-Kuhn-Tucker first order necessary conditions.

These are given as follows (Bazaraa et al. 1993):

a− 2λs − c

[
Ws + λs

∂Ws

∂λs

]
+ bu1

∂Wp

∂λs

+ bu2 = 0 (16)

−cλs
∂Ws

∂β
+ bu1

∂Wp

∂β
+ bu3 = 0 (17)

u1 [Wp − Sp] = 0 (18)

u2λs = 0 (19)

u3β = 0 (20)

Wp ≤ Sp and λs < µ− λp (21)

u1 ≤ 0; λs, β, u2, u3 ≥ 0. (22)

A Karush-Kuhn-Tucker (KKT) point is defined by a specific vector (λs, β, u1, u2, u3) that

satisfies the conditions (16)-(22). If the KKT point also satisfies the second order sufficient

conditions then it can be either a local or a global optimum point of the NLP P1. We

note that if the Lagrangian multiplier u2 is such that u2 > 0, then the KKT condition

(19) is satisfied if and only if λs = 0, in which case objective function value is zero. As

the objective of the resource owner is to earn a strict positive revenue, we ignore values

of u2 > 0 in further analysis and assume throughout that u2 = 0. The analysis below

exhaustively searches for all possible KKT points of the optimization problem P1 where

u2 = 0, i.e., assigns specific values to the remaining four unknown elements of a possible

KKT point.
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First, we investigate the KKT conditions (17), (20) and (22) in detail. Let us assume

that β > 0 at optimum. If β > 0, then the KKT condition (20) is satisfied iff u3 = 0.

Given u3 = 0, the KKT condition (17), using work conservation relation, results in

u1 =
cλs

∂Ws

∂β

b∂Wp

∂β

= −cλp

b
. (23)

Next, let us consider that β = 0 at optimum. The simplification of the KKT condition

(17) at β = 0 results in

u3 = − λsλψ[cλp + bu1]

b[µ− λ][µ− λp]2
. (24)

We note that u3 ≥ 0 iff u1 ≤ − cλp

b
given that 0 < λs < µ− λp and λp ≥ 0. In particular,

u3 = 0 at u1 = − cλp

b
. Thus, the KKT conditions (17), (20) and (22) are satisfied if and

only if one of the following hold true:

C1: u1 = − cλp

b
, u3 = 0 and β ≥ 0.

C2: u1 < − cλp

b
, u3 = − λsλψ[cλp + bu1]

b[µ− λ][µ− λp]2
and β = 0.

The above investigation explicitly assigns specific values to two unknown elements of a

possible KKT point. The remaining two unknown elements of a possible KKT point is

obtained by solving the Equations (16) and (18) (note that u2 = 0 at optimum).

Next, we investigate the KKT condition (18) considering the fact that the constraint

(10) can be either binding or non-binding at optimum. If the constraint (10) is binding

at the optimum, then the KKT condition (18) gets automatically satisfied irrespective of

the value of u1. On the other hand, if the constraint (10) is non-binding at optimum, then

the KKT condition (18) is satisfied if and only if u1 = 0. But, we note from conditions

C1-C2 that u1 should be less than or equal to − cλp

b
to satisfy (17), (20) and (22). As

cλp

b
6= 0, the KKT conditions (17), (18), (20) and (22) are not satisfied simultaneously at

u1 = 0. This implies that it is not possible to have a KKT point with the constraint (10)

non-binding. Therefore, the constraint (10) will always be binding at optimum.

Further, we note that the classical optimization theory and thereby the KKT first

order necessary conditions inherently assumes finite values of the decision variables. The

above analysis which results in a particular value of Lagrangian multipliers also considers

that both λs and β are finite. But, β = ∞ is a valid decision in our optimization problem.

Therefore, we separately analyze the resulting one-dimensional optimization problem (by

setting β = ∞ in the NLP P1) in Section 3.2. In Section 3.3, we aim to identify global

optimal point using both these solutions.
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3.1 Relative queue discipline management parameter β < ∞
The above analysis establishes that a KKT point should satisfy either condition C1 or

condition C2. Also, the constraint (10) is binding at the optimum. In the analysis below,

we consider C1 and C2 individually and solve the equality relationship Wp(λs, β) = Sp

and Equation (16) for unknown elements of the KKT points. The analysis assuming that

KKT point satisfies condition C1 results in Theorem 1 below.

Theorem 1. Suppose
a

c
>

λp (2µ− λp)

µ (µ− λp)
2 ψ. Then, there exists λ

(1)
s which is the unique

root of the cubic G(λs) in the interval (0, µ− λp):

G(λs) = 2µλ3
s − [cψ + µ(a + 4φ0)]λ

2
s + 2φ0[cψ + µ(a + φ0)]λs− aµφ2

0 + cψλp(µ + φ0) (25)

where φ0 = µ− λp. Denote λ1 = λp + λ
(1)
s and further assume that Sp lies in the interval

I ≡
[

ψλ1

µ[µ− λp]
,

ψλ1

[µ− λ
(1)
s ][µ− λ1]

)
and β(1) is given by

β(1) =





[µ− λ1][µSp[µ− λp]− ψλ1]

ψλ2
1 − µSpλp[µ− λ1]

for
ψλ1

µ[µ− λp]
≤ Sp ≤ ψλ1

µ[µ− λ1]
,

Spλ
(1)
s [µ− λ1]

ψλ1 − Sp[µ− λ
(1)
s ][µ− λ1]

for
ψλ1

µ[µ− λ1]
< Sp <

ψλ1

[µ− λ
(1)
s ][µ− λ1]

.

(26)

Then, λ
(1)
s and β(1) is a strict local maximum of the NLP P1 and the constraint (10) is

binding at this point.

Proof. First, we show that λ
(1)
s is the unique root of the cubic G(λs) in the interval

(0, µ− λp).

Claim 1. If
a

c
>

λp (2µ− λp)

µ (µ− λp)
2 ψ, then, the cubic G(λs) has an unique root in the interval

(0, µ− λp).

Proof. See Appendix.

The work conservation law applied to our setting results in

λsWs + λpWp =
λ2ψ

µ [µ− λ]
. (27)

Let us assume that the Lagrangian multipliers are u1 = − cλp

b
, u2 = 0 and u3 = 0. Note

that the constraint (10) is binding at the optimum; therefore, these values of the La-

grangian multipliers satisfy KKT conditions (17)-(20). When the Lagrangian multipliers

14



are u1 = − cλp

b
, u2 = 0 and u3 = 0, then the KKT condition (16) can be rewritten as

a− 2λs − c
∂

∂λs

[λsWs + λpWp] = 0. (28)

Using equation (27) in equation (28) results in a cubic equation given as

G(λs) ≡ 2µλ3
s − [cψ + µ(a + 4φ0)]λ

2
s + 2φ0[cψ + µ(a + φ0)]λs − aµφ2

0 + cψλp(µ + φ0) = 0

where φ0 = µ−λp. As λ
(1)
s is the unique root of the cubic G(λs) in the interval (0, µ−λp),

solving G(λs) = 0 for λs ∈ (0, µ− λp) results in λs = λ
(1)
s .

Claim 2. There exists a queue discipline management parameter β̄ ≥ 0 which satisfies

the equality Wp(λs, β) = Sp if λp ≥ 0, λs ≥ 0, λp + λs < µ and Sp lies in the interval[
ψλ

µ[µ− λp]
,

ψλ

[µ− λs][µ− λ]

)
, where λ = λp + λs. The value of β̄ is

β̄ =





[µ− λ][µSp[µ− λp]− ψλ]

ψλ2 − µSpλp[µ− λ]
for

ψλ

µ[µ− λp]
≤ Sp ≤ ψλ

µ[µ− λ]

Spλs[µ− λ]

ψλ− Sp[µ− λs][µ− λ]
for

ψλ

µ[µ− λ]
< Sp <

ψλ

[µ− λs][µ− λ]

(29)

Proof. See Appendix.

Let β(1) = β̄ for λs = λ
(1)
s and Sp ∈ I. From Claim 2, we know that Wp(λ

(1)
s , β(1)) = Sp.

The point given by λ
(1)
s , β(1), u1 = − cλp

b
, u2 = 0 and u3 = 0 satisfies KKT conditions

(16)-(22) and is a KKT point of the problem P1.

The restricted Lagrangian function L̃1(λs, β), (page no. 168, Bazaraa et al. (1993)), at

this KKT point is given by L1

(
λs, β; u1 = − cλp

b
, u2 = 0, u3 = 0

)
. Using Equations (27)

and (15), we get

L̃1 (λs, β) =
1

b

[
aλs − λ2

s − c
λ2ψ

µ [µ− λ]
+ cλpSp

]
. (30)

We note that the restricted Lagrangian function is independent of β. The Hessian of the

restricted Lagrangian function HL̃1
(λs, β) is given by



−2

b

(
1 + cµψ

(µ−λ)3

)
0

0 0


 .

The above matrix is negative semi-definite as µ−λ > 0. It is evident that at Sp = ψλ1

µ[µ−λp]
,

the constraints g1(λs, β) ≡ Wp(λs, β) ≤ Sp and g2(λs, β) ≡ β ≥ 0 are binding for this KKT
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point. Also, the constraint g1(λs, β) is strongly active (i.e., the associated Lagrangian

multiplier is non-zero) whereas the constraint g2(λs, β) is weakly active (i.e., the associated

Lagrangian multiplier is zero). The gradients of these binding constraints are given by

∇g1 (λs, β) =




κ1

κ2


 and ∇g2

(
λ(2)

s , 0
)

=




0

1




where κ1 = ∂Wp

∂λs
and κ2 = ∂Wp

∂β
. We know that ∂Wp

∂λs
, ∂Wp

∂β
> 0 for λs ∈ (0, µ−λp) and β ≥ 0.

A non-zero vector d ≡ (d1, d2) that satisfies d.∇g1(λ
(1)
s , β(1)) = 0 and d.∇g2(λ

(1)
s , β(1)) ≥ 0

simultaneously is given by d1 = −κ2d2

κ1
such that d2 > 0. We note that

dHL̃1

(
λ(1)

s , β(1)
)
dT = −2

b

(
1 +

cµψ

(µ− λ1)3

)(
−κ2d2

κ1

)2

< 0 for all d2 > 0.

Next, if Sp > ψλ1

µ[µ−λp]
, then only constraint g1(λs, β) ≡ Wp(λs, β) ≤ Sp is binding at that

KKT point and also it is strongly active. A non-zero vector d ≡ (d1, d2) that satisfies

d.∇g1(λ
(1)
s , β(1)) = 0 is given by d1 = −κ2d2

κ1
such that d2 6= 0. Again, we note that

dHL̃1

(
λ(1)

s , β(1)
)
dT = −2

b

(
1 +

cµψ

(µ− λ1)3

)(
−κ2d2

κ1

)2

< 0 for all d2 6= 0.

Hence, the KKT point λ
(1)
s , β(1), u1 = − cλp

b
, u2 = 0 and u3 = 0 is strict local maximum

of the NLP P1 if Sp lies in the interval I.

Corollary 1. The mean arrival rate of the secondary customer λ
(1)
s which is a local optima

point, is independent of Sp in the interval I.

Proof. The optimal λ
(1)
s is the root of cubic G(λs) which is independent of Sp. Therefore,

λ
(1)
s is independent of Sp in the interval I.

We now find KKT points which satisfy condition C2. This results in a strict local

maximum of the NLP P1 for Sp lying left to the interval I. Theorem 2 below states this

result.

Theorem 2. Suppose
a

c
>

λp (2µ− λp)

µ (µ− λp)
2 ψ and Sp lies in the interval I− ≡

(
ψλp

µ[µ−λp]
, ψλ1

µ[µ−λp]

)

where λ1 = λp +λ
(1)
s and λ

(1)
s is the unique root of the cubic G(λs) of Equation (25) in the

interval (0, µ−λp). Then, λ
(2)
s =

µ[µ− λp]Sp

ψ
−λp and β(2) = 0 is a strict local maximum

of the NLP P1 and the constraint (10) is binding at this point.

Proof. Let us first assume that the queue discipline management parameter β = 0 and the

Lagrangian multiplier u2 = 0 at the optimum. Note that the constraint (10) is binding
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at the optimum. Given β = 0, the equality relationship Wp(λs, β) = Sp results in

λ(2)
s ≡ λs =

µ[µ− λp]Sp

ψ
− λp. (31)

We note that λ
(2)
s is an increasing function of Sp as ∂λ

(2)
s

∂Sp
= µ[µ−λp]

ψ
> 0 for 0 < λp < µ

and ψ > 0. Also, λ
(2)
s = λ

(1)
s at Sp = ψλ1

µ[µ−λp]
. Therefore, 0 < λ

(2)
s < λ

(1)
s for Sp ∈ I−. As

u2 = 0 and β = 0, the KKT conditions (16) results in

u
(2)
1 ≡ u1 = −

[
a− 2λ(2)

s − cψ
µ(λ2 + λ

(2)
s )− λ2

2

(µ− λp)(µ− λ2)2

]
µ(µ− λp)

bψ
(32)

where λ2 = λp + λ
(2)
s . Also, we note that if 0 < λs < λ

(1)
s , then

cλp

b
−

[
a− 2λs − cψ

µ (λ + λs)− λ2

(µ− λp) (µ− λ)2

]
µ (µ− λp)

bψ
=

(µ− λp)G(λs)

bψ (µ− λ)2 < 0.

This inequality follows from the proof of Claim 1 which establishes that G(λs) < 0 when

0 < λs < λ
(1)
s and a

c
> λp(2µ−λp)

µ(µ−λp)2
ψ . This implies that u

(2)
1 < − cλp

b
as 0 < λ

(2)
s < λ

(1)
s . Take

u
(2)
3 = u3, obtained using λs = λ

(2)
s and u1 = u

(2)
1 in Equation (24). We note that u

(2)
3 > 0

as u
(2)
1 < − cλp

b
. The point λ

(2)
s , β = 0, u

(2)
1 , u2 = 0 and u

(2)
3 satisfies the KKT conditions

(16)-(22). Thus, it is a KKT point.

Given Sp ∈ I−, we note that the constraints g1(λs, β) ≡ Wp(λs, β) ≤ Sp and g2(λs, β) ≡
β ≥ 0 are binding for this KKT point. Also, these constraints are strongly active. The

gradients of these binding constraints at this KKT point are

∇g1

(
λ(2)

s , 0
)

=




ψ
µ−λp

λ
(2)
s λ2ψ

(µ−λp)(µ−λ2)2


 and ∇g2

(
λ(2)

s , 0
)

=




0

1




where λ2 = λp + λ
(2)
s . We observe the both terms of ∇g1(λ

(2)
s , 0) are strictly non zero

as λp, λ
(2)
s > 0 and λp + λ

(2)
s < µ. Hence, the gradients of these binding constraints,

∇g1(λ
(2)
s , 0) and ∇g2(λ

(2)
s , 0), at the KKT point are linearly independent. Therefore,

this KKT point is a strict local maximum (Corollary of Theorem 4.4.2, Bazaraa et al.

(1993)).

Corollary 2. λ
(2)
s is a linearly increasing function of Sp in the interval I−.

Proof. We have ∂λ
(2)
s

∂Sp
= µ[µ−λp]

ψ
> 0 as µ > λp > 0 and ψ > 0. Also, ∂2λ

(2)
s

∂S2
p

= 0.
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3.2 Relative queue discipline management parameter β = ∞
In this section, we analyze the resulting one-dimensional optimization problem by setting

β = ∞ in P1. Let W̃s(λs) = Ws(λs, β = ∞) and W̃p(λs) = Wp(λs, β = ∞). The resulting

optimization problem, P2, is given as

P2: max
λs

1

b

[
aλs − λ2

s − cλsW̃s(λs)
]

(33)

Subject to: W̃p(λs) ≤ Sp (34)

λs ≤ µ− λp (35)

λs ≥ 0 (36)

Let us define f1(λs) = aλs − λ2
s and f2(λs) = λsW̃s(λs). f1(λs) is concave function of

λs as ∂2f1

∂λ2
s

= −2 < 0. We observe that λs ≥ 0 and W̃s(λs) ≥ 0 for λs ∈ [0, µ− λp).

We note that λs is linear and W̃s(λs) convex increasing functions of λs in the interval

[0, µ− λp). We know that product of two positively valued, increasing convex functions

of the real variable defined on the same interval is an increasing convex function. This

implies that f2(λs) is an increasing convex function of λs in the interval [0, µ− λp). As

objective function is 1
b
[f1(λs) − cf2(λs)], it is a concave function of λs in the [0, µ− λp).

Also, we know that W̃p(λs) is a convex function of λs in the interval [0, µ− λp). So, if

the objective function and constraints of the optimization problem P2 satisfy the KKT

sufficiency conditions, the KKT point, if it exists, will be a global optimum. Further, we

note that the first term of the objective function is increasing whereas the last two terms

are decreasing functions of λs in the interval [0, µ). Therefore, the objective function is a

unimodal function of λs in the interval [0, µ).

Following the earlier arguments, we observe that the constraint (35) will remain non-

binding at the optimum. The Lagrangian function corresponding to the NLP P2 can be

expressed as

L2(λs, v1, v2) =
1

b

[
aλs − λ2

s − cλsW̃s(λs)
]

+ v1

[
W̃p(λs)− Sp

]
+ v2λs (37)

where v1 and v2 are the Lagrangian multipliers. The KKT first order necessary conditions

for the NLP P2 are given as follows:

a− 2λs − c

[
W̃s + λs

∂W̃s

∂λs

]
+ bv1

∂W̃p

∂λs

+ bv2 = 0 (38)

v1

[
W̃p − Sp

]
= 0 (39)

v2λs = 0 (40)

W̃p ≤ Sp and λs < µ− λp (41)

v1 ≤ 0; λs, v2 ≥ 0 (42)
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A KKT point is defined by a specific (λs, v1, v2) that satisfies the conditions (38)-(42).

Again, note that if the Lagrangian multiplier v2 > 0 then the KKT condition (40) is

satisfied if and only if λs = 0, in which case objective function value is zero. As the

objective of the resource owner is to earn a strict positive revenue, we ignore values of

v2 > 0 in further analysis and assume throughout that v2 = 0. The analysis below look

for all possible KKT points of the revenue maximization problem P2 with v2 = 0, i.e.,

assign specific values to the remaining two unknown elements of a possible KKT point.

We also know that the constraint (34) will be either strictly binding or non-binding at

the optimum. Theorem 3 identifies an interval of Sp where the constraint (34) is strictly

non-binding at optimality.

Theorem 3. Suppose
a

c
>

λp

µ2
ψ and

µ− λp

µλp

>
aλp − cψ

2µλ2
p + cψ(µ + λp)

. Then, there exists

λ
(3)
s which is the unique root of the cubic G̃(λs) in the interval (0, µ− λp):

G̃(λs) = 2µλ3
s −

[
aµ + cψ + 4µ2

]
λ2

s + 2µ
[
aµ + cψ + µ2

]
λs − µ

[
aµ2 − cψλp

]
(43)

Denote λ3 = λp+λ
(3)
s and further assume that Sp lies in the interval J ≡

(
ψλ3

[µ− λ
(3)
s ][µ− λ3]

,∞
)

.

Then, λ
(3)
s is the global maximum of the NLP P2 and the constraint (34) is non-binding

at this point.

Proof. First, we show that λ
(3)
s is the the unique root of the cubic G̃(λs) in the interval

(0, µ).

Claim 3. If
a

c
>

λp

µ2
ψ, then, cubic G̃(λs) has unique root in in the interval (0, µ).

Proof. See Appendix.

Observe that given µ−λp

µλp
> aλp−cψ

2µλ2
p+cψ(µ+λp)

, the unique root of cubic G̃(λs) in the interval

(0, µ) indeed is strictly less than µ − λp. This follows from the fact that G̃(µ − λp) =

(µ− λp)(2µλ2
p + cψ(µ + λp))− µλp(aλp − cψ) > 0 as µ−λp

µλp
> aλp−cψ

2µλ2
p+cψ(µ+λp)

.

Let us assume that the Lagrangian multiplier v1 = 0 at optimum. Given v1 = v2 = 0,

the KKT condition (38) results in a cubic equation given as

G̃(λs) ≡ 2µλ3
s −

[
aµ + cψ + 4µ2

]
λ2

s + 2µ
[
aµ + cψ + µ2

]
λs − µ

[
aµ2 − cψλp

]
= 0

Note that under assumptions of a
c

> λp

µ2 ψ and µ−λp

µλp
> aλp−cψ

2µλ2
p+cψ(µ+λp)

, λ
(3)
s is the unique

root of the cubic G̃(λs) in the interval (0, µ − λp). Therefore, solving G̃(λs) = 0 for

λs ∈ (0, µ−λp) results in λs = λ
(3)
s . Further, W̃p(λ

(3)
s ) = ψλ3

[µ−λ
(3)
s ][µ−λ3]

where λ3 = λp +λ
(3)
s .

We note that W̃p(λ
(3)
s ) < Sp for Sp ∈ J . The λ

(3)
s , v1 = 0 and v2 = 0 satisfies KKT
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conditions (38)-(42) and therefore it is a KKT point. This point is global maximum of

P2 for Sp ∈ J as P2 is a convex optimization problem.

Let us assume that the input parameters satisfy the assumptions of Theorem 3. This

implies that λ
(3)
s < µ − λp and interval J is defined. Earlier, we demonstrated that

the objective function of the revenue maximization problem P2, say O2(λs), is unimodal

function of λs in the interval [0, µ). Given Sp ∈ J , each constraint of P2 is strictly non-

binding at λs = λ
(3)
s . Therefore λ

(3)
s should also correspond to the unimodal point of the

objective function. This implies that the objective function is increasing in the interval

[0, λ
(3)
s ]. Now, we claim that the constraint (34) is binding at optimum for Sp /∈ J . This

is proved using contradiction. Note that Sp /∈ J lies left to the interval J . Let us assume

that λ̄s is an optimum point for Sp /∈ J and the constraint (34) is strictly non-binding at

the optimum, i.e., W̃p(λ̄s) < Sp. Note that, if λ̄s > λ
(3)
s , then W̃p(λ

(3)
s ) < Sp also holds

as W̃p(λs) is an increasing function of λs ∈ [0, µ − λp). This contradicts the assumption

that λ̄s is optimum because λ
(3)
s is unimodal point of the objective function. Therefore,

λ̄s < λ
(3)
s . Assume that λs = λ̂s satisfies W̃p(λ̂s) = Sp for the same Sp /∈ J . As W̃p(λs)

is an increasing function of λs ∈ [0, µ − λp), the inequality λ̄s < λ̂s ≤ λ
(3)
s will hold.

This results in O2(λ̄s) < O2(λ̂s) as the the objective function is increasing in the interval

[0, λ
(3)
s ]. This contradicts the initial assumption that λ̄s is optimum and the constraint

(34) strictly non-binding at the optimum. Hence, the constraint (34) should be binding

at optimum for Sp /∈ J . A graphical illustration of this argument is given in Figure 3.

s

O2( s) or Wp( s)

Wp

O2

Sp

s
(3)

s
(4)

Figure 3: Illustration of the optimization problem P2

Also, we note that if µ−λp

µλp
≤ aλp−cψ

2µλ2
p+cψ(µ+λp)

, then the unimodal point of the objective

function lies outside the interval [µ − λp). Again, the similar arguments establish that

the constraint (34) should be binding at optimum for Sp > Ŝp. The above discussion

asserts that the constraint (34) is binding at optimum for Sp /∈ J . Theorem 4 defines such

intervals of Sp where the constraint (34) is binding.
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Theorem 4. Suppose
a

c
>

λp

µ2
ψ and Sp lies in the interval J− that is defined as:

J− =





(
ψλp

µ [µ− λp]
,

ψλ3

[µ− λ
(3)
s ][µ− λ3]

]
if

µ− λp

µλp

>
aλp − cψ

2µλ2
p + cψ(µ + λp)

,

(
ψλp

µ [µ− λp]
,∞

)
otherwise

(44)

where λ3 = λp + λ
(3)
s and λ

(3)
s is the unique root of the cubic G̃(λs) of Equation (43) in

the interval (0, µ− λp) whenever µ−λp

µλp
> aλp−cψ

2µλ2
p+cψ(µ+λp)

.

Then, λ
(4)
s =

1

2Sp

[
Sp [2µ− λp] + ψ −

√
[Spλp + ψ]2 + 4µψSp

]
is the global maximum of

the NLP P2 and the constraint (34) is binding at this point.

Proof. We note that J−∩J = ∅; therefore, the constraint (34) will be binding at optimum

for Sp ∈ J−. We first show that there exists unique λs ∈ (0, µ−λp) that satisfy the equality

W̃p(λs) = Sp for Sp > λpψ

µ[µ−λp]
.

Claim 4. Given Sp > λpψ

µ[µ−λp]
, there exists unique λ̃s in the interval (0, µ− λp) that satisfy

the equality W̃p(λs) = Sp. It is given by

λ̃s =
1

2Sp

[
Sp [2µ− λp] + ψ −

√
[Spλp + ψ]2 + 4µψSp

]

Proof. See Appendix.

Take λ
(4)
s = λ̃s. As W̃p(λ

(4)
s ) = Sp, the point λs = λ

(4)
s satisfies the KKT condition

(39) irrespective of the value of the Lagrangian multiplier v1. Given λs = λ
(4)
s and v2 = 0,

the KKT condition (38) results in

v
(4)
1 ≡ v1 = −


a− 2λ(4)

s − cψ
µ

[
λp + 2λ

(4)
s

]
−

[
λ

(4)
s

]2

µ
[
µ− λ

(4)
s

]2




[µ− λ4]
2
[
µ− λ

(4)
s

]2

bψ [µ (µ + λp)− λ2
4]

(45)

where λ4 = λp + λ
(4)
s . We note that v

(4)
1 ≤ 0 if and only if a−2λ

(4)
s

cψ
≥ µ

h
λp+2λ

(4)
s

i
−
h
λ
(4)
s

i2
µ
h
µ−λ

(4)
s

i2 as

λp > 0 and 0 < λ
(4)
s < µ−λp. The rearrangement of this inequality results in G̃(λ

(4)
s ) ≤ 0.

Given a
c

> λp

µ2 ψ, the Claim 3 has already established that G̃(λs) ≤ 0 in the interval (0, λ
(3)
s ]

where λ
(3)
s is the unique root of the cubic G̃(λs) in the interval (0, µ). This implies that

if λ
(4)
s ≤ λ

(3)
s then the inequality v

(4)
1 ≤ 0 will hold true.

To establish that λ
(4)
s ≤ λ

(3)
s , first consider the case when µ−λp

µλp
≤ aλp−cψ

2µλ2
p+cψ(µ+λp)

and

thereby the interval J− =
(

λpψ

µ[µ−λp]
,∞

)
. Given µ−λp

µλp
≤ aλp−cψ

2µλ2
p+cψ(µ+λp)

, we note from the
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proof of Theorem 3 that λ
(3)
s , the root of the cubic G̃(λs), will always be greater than or

equal to µ − λp. We have established in the Claim 4 that λ
(4)
s < µ − λp and therefore

λ
(4)
s < λ

(3)
s under this assumption. Next, consider the case when µ−λp

µλp
> aλp−cψ

2µλ2
p+cψ(µ+λp)

and thereby the interval J− =
(

λpψ

µ[µ−λp]
, ψλ̃

[µ−λ
(3)
s ][µ−λ̃]

]
. As the constraint (34) is binding at

optimum, we note that λ
(4)
s = λ

(3)
s at Sp = ψλ̃

[µ−λ
(3)
s ][µ−λ̃]

. We also know that W̃p(λs) is an

increasing convex function of λs in the interval [0, µ−λp). Therefore, Sp < ψλ̃

[µ−λ
(3)
s ][µ−λ̃]

will

always result in λ
(4)
s < λ

(3)
s . This completes the argument that λ

(4)
s ≤ λ

(3)
s for Sp ∈ J−.

The λs = λ
(4)
s , v1 = v

(4)
1 , v2 = 0 satisfies KKT conditions (38)-(42). Therefore, it is a

KKT point and thereby a global maximum of the optimization problem P2.

Corollary 3. λ
(4)
s is an increasing function of Sp for Sp ∈ J−.

Proof. Given λ
(4)
s , as defined in Theorem 4, we note that

∂λ
(4)
s

∂Sp

= − ψ

2S2
p


1− Sp(2µ + λp) + ψ√

[Spλp + ψ]2 + 4ψµSp


 .

We note that ∂λ
(4)
s

∂Sp
≥ 0 as

[Sp(2µ + λp) + ψ]2 = [Spλp + ψ]2 + 4ψµSp + 4µ(µ + λp)S
2
p

≥ [Spλp + ψ]2 + 4ψµSp

which implies that

∣∣∣∣ Sp(2µ+λp)+ψ√
[Spλp+ψ]2+4ψµSp

∣∣∣∣ ≥ 1.

3.3 Search for global optima

The analysis in Section 3.1 establishes that if a
c

> λp(2µ−λp)

µ(µ−λp)2
ψ, then the optimization

problem P1 will have a local optimal solution with β∗ < ∞ provided that Sp ∈ I− ∪ I.

The analysis in Section 3.2 establishes that if a
c

> λp

µ2 ψ, then the optimization problem

P2 will have a local optimal solution for Sp > Ŝp = λpψ

µ[µ−λp]
. Note that the local optimal

solution of P2 also corresponds to the local optimal solution of the optimization problem

P1 with β∗ = ∞. Further, we observe that

a

c
>

λp (2µ− λp)

µ (µ− λp)
2 ψ =

[
2

µ− λp

+
λp

(µ− λp)2

]
λp

µ
ψ >

λp

µ(µ− λp)
ψ >

λp

µ2
ψ.

The above inequalities follow as 0 < λp < µ. The above inequality implies that if
a
c

> λp(2µ−λp)

µ(µ−λp)2
ψ then a

c
> λp

µ2 ψ automatically holds. Also, if a
c
≤ λp

µ2 ψ, then the roots

of cubics G(λs) and G̃(λs) are negative and doesn’t constitute feasible points for the
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optimization problems P1 and P2. Given Sp > Ŝp, the relationship among the input

parameters results in the following possibilities:

D1: a
c
≤ λp

µ2 ψ: There does not exist optimum solutions to the optimization problems P1

and P2.

D2: λp

µ2 ψ < a
c
≤ λp(2µ−λp)

µ(µ−λp)2
ψ: There exists an optimum solution to the optimization prob-

lem P2, but there does exist any optimum solution to the optimization problem

P1.

D3: a
c

> λp(2µ−λp)

µ(µ−λp)2
ψ: There exist optimum solutions to both the optimization problems

P1 and P2 for Sp ∈ I− ∪ I. Equivalently, the original optimization problem P1 has

two local optimal solutions; one with β∗ < ∞ and another with β∗ = ∞. But, for

Sp > Iu where Iu = ψλ1

[µ−λ
(1)
s ][µ−λ1]

is the upper limit of the interval I, there exists an

optimal solution to the optimization problem P2 only.

Given a
c

> λp(2µ−λp)

µ(µ−λp)2
ψ, let

(
λf

s, β
f
)

and
(
λi

s,∞
)

are optimal solutions of the optimization

problems P1 and P2 respectively for given Sp ∈ I−∪ I. Also, let the corresponding values

of objective function are O∗
1

(
λf

s, β
f
)

and O∗
2

(
λi

s,∞
)
. Below, we seek to establish that

O∗
1

(
λf

s, β
f
) ≥ O∗

2

(
λi

s,∞
)
.

First, observe from Theorems 3-4 that the feasible region of Sp, i.e., (Ŝp,∞), is divided

into intervals J− and J . Note that each of the constraints of the optimization problem

P2 is non-binding at optimum for Sp ∈ J , while, constraint (34) of the optimization

problem P2 is binding at optimum for Sp ∈ J−. Further, if µ−λp

µλp
> aλp−cψ

2µλ2
p+cψ(µ+λp)

, then

intervals J− = (Ŝp, J`] and J = (J`,∞) where J` = ψλ3

[µ−λ
(3)
s ][µ−λ3]

. On the other hand, if

µ−λp

µλp
≤ aλp−cψ

2µλ2
p+cψ(µ+λp)

, then J− = (Ŝp,∞) and J = ∅. Given µ−λp

µλp
> aλp−cψ

2µλ2
p+cψ(µ+λp)

, we will

now establish that J` > Iu, i.e., J` lies to the right of Iu. This means that for Sp ∈ I−∪ I,

in both the local solutions given by optimization problems P1 and P2 the service level

constraint corresponding to primary class customers is binding. We note that Iu = ξ(λ
(1)
s )

and J` = ξ(λ
(3)
s ) where ξ(λs) = ψλ

[µ−λs][µ−λ]
and λ = λp + λs. As ∂ξ(λs)

∂λs
= [µ(µ+λp)−λ2]ψ

[µ−λs]2[µ−λ]2
> 0

for λp > 0, λs > 0 and λp + λs < µ, the inequality J` > Iu will hold if λ
(3)
s > λ

(1)
s . We

argue below that λ
(3)
s > λ

(1)
s .

We observe from Claim 1 that λ
(1)
s is the unique root of the cubic G(λs) of Equation

(25) in the interval (0, µ− λp) whenever a
c

> λp(2µ−λp)

µ(µ−λp)2
ψ. That is, λ

(1)
s ∈ (0, µ − λp)

for a ∈ (a`,∞) where a` = λp(2µ−λp)

µ(µ−λp)2
cψ. We further observe from Claim 3 and proof of

Theorem 3 that λ
(3)
s is the unique root of the cubic G̃(λs) of Equation (43) in the interval

(0, µ− λp) whenever µ−λp

µλp
> aλp−cψ

2µλ2
p+cψ(µ+λp)

and a
c

> λp

µ2 ψ. That is, λ
(3)
s ∈ (0, µ − λp) for

a ∈ (ã`, ãu) where ã` = λp

µ2 cψ and ãu = 2(µ− λp) + cψ
λp

[
1 + (µ−λp)2

µλp

]
. We also note that if

µ−λp

µλp
≤ aλp−cψ

2µλ2
p+cψ(µ+λp)

, i.e., a ≥ ãu, then µ − λp ≤ λ
(3)
s < µ. From λp

µ2 ψ < λp(2µ−λp)

µ(µ−λp)2
ψ, we

have that ã` < a`. Note that λ
(1)
s = 0 at a = a`, λ

(3)
s = 0 at a = ã` and λ

(3)
s = µ − λp at

a = ãu. Based on relative values of a`, ã` and ãu, we observe following:
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• If a` < ãu, then

1. λ
(1)
s ≤ 0 and 0 < λ

(3)
s < µ− λp for a ∈ (ã`, a`].

2. 0 < λ
(1)
s < µ− λp and 0 < λ

(3)
s < µ− λp for a ∈ (a`, ãu).

3. 0 < λ
(1)
s < µ− λp and µ− λp ≤ λ

(3)
s < µ for a ≥ ãu.

• If a` ≥ ãu, then

1. λ
(1)
s < 0 and 0 < λ

(3)
s < µ− λp for a ∈ (ã`, ãu).

2. λ
(1)
s ≤ 0 and µ− λp ≤ λ

(3)
s < µ for a ∈ [ãu, a`].

3. 0 < λ
(1)
s < µ− λp and µ− λp < λ

(3)
s < µ for a > a`.

It is evident from above that λ
(1)
s < λ

(3)
s in all possible values of a except when a` < ãu

and a ∈ (a`, ãu). When a ∈ (a`, ãu) and a` < ãu, then both λ
(1)
s and λ

(3)
s lie in (0, µ− λp).

Given a` < ãu, we notice that λ
(3)
s > λ

(1)
s at a = ãu as λ

(1)
s < µ − λp and λ

(3)
s = µ − λp.

Below, we will establish that λ
(3)
s < λ

(1)
s for a ∈ (a`, ãu) whenever a` < ãu.

Claim 5. The root of the cubic G(λs), λ
(1)
s , is an increasing function of demand function

coefficient a.

Proof. See Appendix.

Similar arguments result that the root of the cubic G̃(λs), λ
(3)
s , is increasing function

of a. Note that ∂G̃(λs,a)
∂a

= −µ(µ − λs)
2 < 0. The Figure 4 illustrates variations in λ

(1)
s

s

(1)

or s

(3)

s

(3)

s

(1)

a

p

ã ãua

Figure 4: Variation in λ
(1)
s and λ

(3)
s with respect to a

and λ
(3)
s with respect to a in a ∈ (ã`, ãu). As ∂G(λs,a)

∂a
and ∂G̃(λs,a)

∂a
is independent of a, the
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gap between λ
(3)
s and λ

(1)
s will always exist. This implies that λ

(3)
s > λ

(1)
s . The possible

orderings of a`, ã` and ãu determine the existence of feasible λ
(1)
s and λ

(3)
s for a given input

parameter a. Note that the intervals of Sp, as defined in Theorems 1-4, depend on these

values of λ
(1)
s and λ

(3)
s and the optimum choice of the decision variables depend on these

intervals of Sp. We consider all possible cases in Algorithm.

Suppose a
c

> λp(2µ−λp)

µ(µ−λp)2
ψ and let

(
λf

s, β
f
)

and
(
λi

s,∞
)

are optimal solutions of the

optimization problems P1 and P2 respectively for given Sp ∈ I− ∪ I. Also, let the

corresponding values of objective function are O∗
1

(
λf

s, β
f
)

and O∗
2

(
λi

s,∞
)
. Above we

established that J ` > Iu. This implies that optimization problem P2 has constraint

(34) binding at optimum for Sp ∈ I− ∪ I. From the interpretation of the Lagrangian

duality, it is known that the marginal rate of change in the objective function value

due to incremental increase in the right hand side coefficient of the constraint is given

by negative of the Lagrangian multiplier value at the optimality, provided that the KKT

point is a regular point (i.e., gradients of the binding constraints are linearly independent).

We note from the proofs of Theorems 1 and 2 that the local optimum points corresponding

to the optimization problem P1 are regular points. Also, the optimization problem P2

has only one binding constraint at the global optimum point. Thus,

∂O∗
1

∂Sp

= −uf
1 and

∂O∗
2

∂Sp

= −vi
1

where uf
1 and vi

1 are the corresponding values of the Lagrangian multipliers associated

with the constraint Wp(λs, β) = Sp of the optimization problems P1 and P2 respectively.

The rearrangement of Equations (32) and (45) result in

uf
1 =

(µ− λp) G(λf
s)

bψ (µ− λp − λf
s)

2 −
cλp

b
and vi

1 =

(
µ− λp − λi

s

)2
G̃(λi

s)

bψµ
[
µ (µ + λp)− (λp + λi

s)
2] .

We note that λf
s = λ

(1)
s for Sp ∈ I where λ

(1)
s is the root of the cubic G(λs). Therefore,

uf
1 = − cλp

b
in the interval I. As uf

1, v
i
1 ≤ 0, it implies that both O∗

1

(
λf

s, β
f
)

and O∗
2

(
λi

s,∞
)

are increasing functions of Sp. Also,

∂uf
1

∂λf
s

=
2µ (µ− λp)

bψ

[
1 +

cµψ

(µ− λp − λf
s)

]
≥ 0

∂vi
1

∂λi
s

=
1

bψµ

[
−2µ

(
µ− λi

s

) (
µ− λp − λi

s

)
[
µ (µ + λp)− (λp + λi

s)
2]2 G̃(λi

s) +

(
µ− λp − λi

s

)2

[
µ (µ + λp)− (λp + λi

s)
2]G̃′(λi

s)

]
≥ 0.

The above inequalities follow as λf
s, λ

i
s < µ − λp, λi

s ≤ λ
(3)
s where λ

(3)
s is the root of the

cubic G̃(λs). Also, G̃(λs) ≤ 0 and is an increasing function of λs for 0 ≤ λs ≤ λ
(3)
s .
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Further,

∂2O∗
1

∂S2
p

= −∂uf
1

∂Sp

= −∂uf
1

∂λf
s

∂λf
s

∂Sp

and
∂2O∗

2

∂S2
p

= − ∂vi
1

∂Sp

= −∂vi
1

∂λi
s

∂λi
s

∂Sp

.

We note from the results of the Corollaries (1) and (2) that ∂λf
s

∂Sp
> 0 in the interval I−

and ∂λf
s

∂Sp
= 0 in the interval I. Therefore,

∂2O∗1
∂S2

p
= − ∂uf

1

∂Sp
< 0 and

∂2O∗1
∂S2

p
= − ∂uf

1

∂Sp
= 0 in the

intervals I− and I respectively. This implies that O∗
1 is an increasing concave function of

Sp in the interval I− and is a linearly increasing function of Sp in the interval I. Also,

the slope of O∗
1 with respect to Sp is decreasing in the interval I− and remains constant

in the interval I. Similarly, we note from the result of the Corollary (3) that ∂λi
s

∂Sp
≥ 0.

Therefore,
∂2O∗2
∂S2

p
= − ∂vi

1

∂Sp
≤ 0. This implies that O∗

2 is an increasing concave function of Sp

and the slope of O∗
2 is decreasing function of Sp.

Note that βf → ∞ as Sp → Iu, the upper limit of the interval I. Given Sp > Ŝp, the

equality Wp(λs,∞) = Sp results in a quadratic equation of λs with unique root in the

interval (0, µ − λp). This implies that λf
s → λi

s and thereby O∗
1

(
λf

s, β
f
) → O∗

2

(
λi

s,∞
)

as

Sp → Iu. Both optimization problems P1 and P2 are identical at Sp = Iu and therefore

vi
1 → uf

1, i.e.,
∂O∗1
∂Sp

→ ∂O∗2
∂Sp

as Sp → Iu. As slope of O∗
2

(
λi

s,∞
)

is a decreasing function of Sp

whereas slope of O∗
1

(
λf

s, β
f
)

remains constant in the interval I. Therefore, O∗
2

(
λi

s,∞
)

<

O∗
1

(
λf

s, β
f
)

in the interval I as these curves intersect at point Iu.

Further, at Sp = Ŝp, λf
s = λi

s = 0, O∗
1 = O∗

2 = 0 and

∂O∗
1

∂Sp

∣∣∣
Ŝp

− ∂O∗
2

∂Sp

∣∣∣
Ŝp

= −uf
1

∣∣∣
λf

s=0
+ vi

1

∣∣∣
λi

s=0

=
1

bψ

[
µ

[
a (µ− λp)

2 − cψλp

]

µ− λp

+
(µ− λp)

2 [−aµ2 + cψλp]

µ (µ + λp)− λ2
p

]

=
1

bψ

[
λp(2µ− λp)

[
aµ (µ− λp)

2 − cψλp(2µ− λp)
]

(µ− λp)
[
µ (µ + λp)− λ2

p

]
]

> 0.

The last inequality follows as λp < µ and a
c

> λp(2µ−λp)

µ(µ−λp)2
ψ. Therefore, O∗

1 > O∗
2 at Ŝp + ε

where ε is a small positive number. Figure 5 illustrates objective function values of P1 and

P2 at optimum in the interval I− ∪ I given that a
c

> λp(2µ−λp)

µ(µ−λp)2
ψ. The above analysis only

suggests that the O∗
2

(
λi

s,∞
)

< O∗
1

(
λf

s, β
f
)

at Ŝp + ε where ε is a small positive number.

We summarise these conclusions below.

Theorem 5. 1. Suppose a
c
≤ λp

µ2 ψ. Then, the constrained resource sharing optimiza-

tion problem P0 is infeasible for Sp ∈ (Ŝp,∞).

2. Suppose λp

µ2 ψ < a
c
≤ λp(2µ−λp)

µ(µ−λp)2
ψ. Then, we can write (Ŝp,∞) as (Ŝp,∞) = J− ∪ J

with interval J being possibly empty. Then, optimization problem P2 has a solution

but optimization problem P1 is infeasible. For Sp ∈ (Ŝp,∞), the optimal solution to
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Figure 5: Optimum values of P1 and P2 in interval I− ∪ I whenever a
c

> λp(2µ−λp)

µ(µ−λp)2
ψ. J`

(possibly infinity) always lies right to Iu.

P0 is given by optimal solutions to P2 with β∗ = ∞ and λ∗s is either λ
(3)
s or λ

(4)
s .

3. Suppose a
c

> λp(2µ−λp)

µ(µ−λp)2
ψ. Then, we can write (Ŝp,∞) as (Ŝp,∞) = I− ∪ I ∪ I+ ∪ J

with possibly J being an empty interval. Then, optimization problem P1 and P2

have optimal solutions. There exists an ε > 0 such that for Sp ∈ (Ŝp, Ŝp + ε) ∪ I

the optimal solutions to P0 is given by optimal solution to P1 with β∗ < ∞ and λ∗s
is either λ

(1)
s or λ

(2)
s . For Sp ∈ I+ ∪ J , the optimal solution to P0 is given by the

optimal solution to P2 with β∗ = ∞ and λ∗s is either λ
(3)
s or λ

(4)
s .

It is possible that the O∗
2

(
λi

s,∞
)

> O∗
1

(
λf

s, β
f
)

in the interval I−. We are not able to

verify analytically that the above inequality will never hold, but our numerical experiments

suggest that O∗
2

(
λi

s,∞
)

< O∗
1

(
λf

s, β
f
)

in the interval I− always. Based on this, we have

the following conjecture and remark.

Conjecture. For Sp ∈ I−, the optimal solution of P0 is given by optimal solution of P1

Remark. We assume henceforth in arriving at an algorithm and in our computations

that the conjecture is true.

4 Algorithm and numerical illustrations

Based on the earlier analysis, we propose an algorithm, that converges in finite steps,

for selection of the optimum mean arrival rate of secondary class customers λ∗s > 0

and the relative priority queue discipline management parameter β∗ that maximizes the

revenue of the resource owner while ensuring an agreed upon service level to the primary

class customers. We recall that both contract parameters, the optimum assured service
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level to the secondary class customers S∗s and the optimal unit admission price charged

to the secondary class customers θ∗ can be computed as S∗s = Ws(λ
∗
s, β

∗) and θ∗ =

[a− cS∗s − λ∗s] /b. The algorithm finds the contract parameters by finding the optimal

points of non-convex optimization problem P0 in closed form expressions.

4.1 Algorithm

We have noted in Section 2 that even a dedicated resource will be unable to meet the

prevailing service level commitment Sp to the primary class customers if Sp < Ŝp whereas

just able to meet this for Sp = Ŝp. Therefore, the inclusion of the secondary class cus-

tomers into the system is possible if and only if Sp > Ŝp. This condition corresponds

to the system capability. We also noted that λs ≥ 0 if and only if Ss ≤ Ŝs(θ) where

Ŝs(θ) = a−bθ
c

. Therefore even a free service to secondary class customers, i.e., θ = 0, will

be unable to result in λs > 0 for Ss ≥ a
c
. The best value of the assured service level to

secondary class customers is achieved by β = ∞, i.e., assigning the static high priority to

the secondary class customers. This follows from the fact that Ws(λs, β) is a decreasing

function of β. We have Ws(λs = ε,∞) ≈ λp

µ2 ψ where ε is strictly positive and ε ≈ 0. This

implies that λs > 0 if and only if a
c

> λp

µ2 ψ. This condition captures economic viability

of secondary class customers. A feasible solution of the revenue maximization problem

is possible if and only if both system capability and economic viability is satisfied for a

given set of input parameters, i.e. λp, µ, σ, a, b, c and Sp. Step one of the algorithm

demonstrates this. This also follows from the first point of Theorem 5.

Step 2 of the algorithm describes the possibility of having a unconstrained solution of

the optimization problem P0. This follows from Theorem 3. Note that each constraint of

the optimization problem P0 remains strictly non-binding at the optimum point described

in Theorem 3. Step 3 and Steps 4-5 of the algorithm follows from second and third parts

of Theorem 5 respectively. Note that the Step 5(a) follows from the conjecture. The

algorithm is given as follows:

Inputs: λp, µ, σ, a, b, c and Sp. Define ψ = [1 + σ2µ2] /2.

Steps:

1. If either Sp ≤ Ŝp ≡ λpψ

µ [µ− λp]
or

a

c
≤ λp

µ2
ψ, then there does not exist a feasible

solution. Assign λ∗s = 0 and Stop. Else, go to the Step 2.

2. If
µ− λp

µλp

≤ aλp − cψ

2µλ2
p + cψ(µ + λp)

, then assign J` = ∞ and go to the Step 3. Else, find

λ
(3)
s the unique root of the cubic G̃(λs) which lies in the interval (0, µ− λp) where

G̃(λs) ≡ 2µλ3
s −

[
aµ + cψ + 4µ2

]
λ2

s + 2µ
[
aµ + cψ + µ2

]
λs − µ

[
aµ2 − cψλp

]
.
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Calculate J` = ψλ3

[µ−λ
(3)
s ][µ−λ3]

and define an interval J = (J`,∞) where λ3 = λp +λ
(3)
s .

If Sp ∈ J , then assign λ∗s = λ
(3)
s , β∗ = ∞ and directly go to Step 6. Else, go to the

Step 3.

3. If
a

c
≤ λp (2µ− λp)

µ (µ− λp)
2 ψ, then define an interval J− = (Ŝp, J`] when J` is finite other-

wise take J− = (Ŝp,∞). Assign λ∗s =
1

2Sp

[
Sp [2µ− λp] + ψ −

√
[Spλp + ψ]2 + 4µψSp

]
,

β∗ = ∞ for Sp ∈ J− and directly go to Step 6. Else, go to the Step 4.

4. Find λ
(1)
s , the unique root of the cubic G(λs) in the interval (0, µ− λp) with φ0 =

µ− λp and

G(λs) = 2µλ3
s − [cψ + µ(a + 4φ0)]λ

2
s + 2φ0[cψ + µ(a + φ0)]λs− aµφ2

0 + cψλp(µ + φ0).

Calculate I` = ψλ1

µ[µ−λp]
and Iu = ψλ1

[µ−λ
(1)
s ][µ−λ1]

where λ1 = λp + λ
(1)
s .

5. Define intervals: I− = (Ŝp, I`), I = [I`, Iu) and I+ = [Iu, J`] when J` is finite,

otherwise take I+ as I+ = [Iu,∞).

(a) If Sp ∈ I−, then assign λ∗s = µ[µ−λp]Sp

ψ
− λp and β∗ = 0

(b) If Sp ∈ I, then assign λ∗s = λ
(1)
s and

β∗ =





[µ− λ1][µSp[µ− λp]− ψλ1]

ψλ2
1 − µSpλp[µ− λ1]

for
ψλ1

µ[µ− λp]
≤ Sp ≤ ψλ1

µ[µ− λ1]

Spλ
(1)
s [µ− λ1]

ψλ1 − Sp[µ− λ
(1)
s ][µ− λ1]

for
ψλ1

µ[µ− λ1]
< Sp <

ψλ1

[µ− λ
(1)
s ][µ− λ1]

(c) If Sp ∈ I+, then assign λ∗s =
1

2Sp

[
Sp [2µ− λp] + ψ −

√
[Spλp + ψ]2 + 4µψSp

]

and β∗ = ∞.

6. If given problem is feasible, the optimum assured service level to the secondary class

customers is S∗s = Ws(λ
∗
s, β

∗) and the optimal unit admission price charged to the

secondary class customers is θ∗ = [a− cS∗s − λ∗s] /b.

Figures 6-9 illustrate the possible intervals of Sp and objective function values at optimum

within those intervals depending on the values of the input parameters.

4.2 Examples

We present numerical examples to illustrate the different possible cases of the algorithm

depending upon the relative values of the input parameters.
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Figure 6: Optimal values of P0 and possible intervals of Sp whenever a
c

> λp(2µ−λp)

µ(µ−λp)2
ψ and

µ−λp

µλp
≤ aλp−cψ

2µλ2
p+cψ(µ+λp)
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Figure 7: Optimal values of P0 and possible intervals of Sp whenever a
c

> λp(2µ−λp)

µ(µ−λp)2
ψ and

µ−λp

µλp
> aλp−cψ

2µλ2
p+cψ(µ+λp)

Example 1:
(

a
c

> λp(2µ−λp)

µ(µ−λp)2
ψ and µ−λp

µλp
≤ aλp−cψ

2µλ2
p+cψ(µ+λp)

)
. Let us assume that the sec-

ondary class customers’ demand function Λs(θ, Ss) = 100 − 0.2θ − 0.1Ss. Also, λp = 8

customers/hr, µ = 10 customers/hr and σ = 0.1 hr/customer. We get ψ = 1, Ŝp =

0.4 hr/customer, a
c

= 1000 hr/customer, λp

µ2 ψ = 0.08 hr/customer, λp(2µ−λp)

µ(µ−λp)2
ψ = 2.4

hr/customer, µ−λp

µλp
= 0.025 hr/customer and aλp−cψ

2µλ2
p+cψ(µ+λp)

= 0.624 hr/customer. We note
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µ2 ψ < a
c
≤ λp(2µ−λp)

µ(µ−λp)2
ψ
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≤ aλp−cψ

2µλ2
p+cψ(µ+λp)
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Figure 9: Optimal values of P0 and possible intervals of Sp whenever λp

µ2 ψ < a
c
≤ λp(2µ−λp)

µ(µ−λp)2
ψ

and µ−λp

µλp
> aλp−cψ

2µλ2
p+cψ(µ+λp)

that a feasible solution will exist if Sp > 0.40 as a
c

> λp

µ2 ψ. As µ−λp

µλp
< aλp−cψ

2µλ2
p+cψ(µ+λp)

and

a
c

> λp(2µ−λp)

µ(µ−λp)2
ψ, we directly go to Step 4. The calculations at Step 4 result in λ

(1)
s = 1.898,

I` = 0.4949 and Iu = 11.97. The intervals I−, I and I+ are (0.4, 0.4949), [0.4949, 11.97)

and [11.97,∞) respectively. A few results corresponding to distinct values of Sp are pre-

sented in Table 1.

Example 2:
(

a
c

> λp(2µ−λp)

µ(µ−λp)2
ψ and µ−λp

µλp
> aλp−cψ

2µλ2
p+cψ(µ+λp)

)
. Take demand function Λs(θ, Ss)
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Table 1: Representative results of Example 1
Sp Priority Arrival rate Price Assured SL Revenue

β∗ λ∗s θ∗ S∗s O∗

0.41 0 0.2 497.86 2.28 99.57
0.42 0 0.4 496.69 2.62 198.68
0.45 0 1 492.75 4.5 492.75

0.4949 (=I`) 0 1.898 466.25 48.52 884.94
1 0.01 1.898 467.32 46.39 886.96
3 0.07 1.898 471.53 37.95 894.97
6 0.23 1.898 477.85 25.32 906.96

9.703 1 1.898 485.66 9.70 921.78
10 1.18 1.898 486.27 8.48 922.96
11 2.64 1.898 488.39 4.24 926.96

11.97 (=Iu) ∞ 1.898 490.46 0.1222 930.87
13 ∞ 1.905 490.41 0.1223 934.65
14 ∞ 1.912 490.37 0.1226 937.82
15 ∞ 1.918 490.35 0.1227 940.58

as 4 − 0.2θ − 0.1Ss in Example 1. This change results in a
c

= 30 hr/customer and
aλp−cψ

2µλ2
p+cψ(µ+λp)

= 0.0186 hr/customer. We note that a
c

> λp(2µ−λp)

µ(µ−λp)2
ψ = 2.4 and µ−λp

µλp
=

0.025 > aλp−cψ

2µλ2
p+cψ(µ+λp)

. A feasible solution will exist if Sp > 0.40 as a
c

> λp

µ2 ψ = 0.08. The

calculations in Steps 2 and 4 of algorithm result in λ
(3)
s = 1.493, λ

(1)
s = 1.002, I` = 0.4501,

Iu = 1.002 and J` = 2.201. The intervals I−, I, I+, J are (0.4, 0.4501), [0.4501, 1.002),

[1.002, 2.201] and (2.201,∞) respectively. A few results corresponding to distinct values

of Sp are presented in Table 2.

Table 2: Representative results of Example 2
Sp Priority Arrival rate Price Assured SL Revenue

β∗ λ∗s θ∗ S∗s O∗

0.41 0 0.2 12.86 2.28 2.58
0.435 0 0.7 9.83 3.35 6.88

0.4501 (= Il) 0 1.002 7.73 4.51 7.75
0.6 0.09 1.002 8.33 3.32 8.35
0.75 0.28 1.002 8.93 2.21 8.95
0.902 1 1.002 9.53 0.906 9.56
0.95 1.994 1.002 9.72 0.523 9.75

1.002 (= Iu) ∞ 1.002 9.942 0.100 9.958
1.3 ∞ 1.196 8.965 0.105 10.727
1.6 ∞ 1.328 8.307 0.108 11.030
1.9 ∞ 1.422 7.835 0.110 11.141

2.201 (= J`) ∞ 1.493 7.481 0.112 11.166
2.5 ∞ 1.493 7.481 0.112 11.166
3 ∞ 1.493 7.481 0.112 11.166

Example 3:
(

λp

µ2 ψ < a
c
≤ λp(2µ−λp)

µ(µ−λp)2
ψ and µ−λp

µλp
≤ aλp−cψ

2µλ2
p+cψ(µ+λp)

)
. Take demand function
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Λs(θ, Ss) as 100−0.2θ−400Ss in Example 1. This change results in a
c

= 0.25 hr/customer,

and aλp−cψ

2µλ2
p+cψ(µ+λp)

= 0.0472 hr/customer. Note that λp

µ2 ψ = 0.08 < a
c
≤ λp(2µ−λp)

µ(µ−λp)2
ψ = 2.4

and µ−λp

µλp
= 0.025 ≤ aλp−cψ

2µλ2
p+cψ(µ+λp)

. A feasible solution will exist if Sp > 0.40 as a
c

> λp

µ2 ψ.

The interval J− is (0.4,∞). A few results corresponding to distinct values of Sp are

presented in Table 3.

Table 3: Representative results of Example 3
Sp Priority Arrival rate Price Assured SL Revenue

β∗ λ∗s θ∗ S∗s O∗

0.41 ∞ 0.034 338.61 0.081 11.47
1 ∞ 1.000 295.00 0.100 295.00
4 ∞ 1.707 257.34 0.117 439.38
8 ∞ 1.849 249.09 0.120 460.56
13 ∞ 1.906 245.70 0.1219 468.28
15 ∞ 1.918 244.96 0.1227 469.88
20 ∞ 1.938 243.74 0.1232 472.47

Example 4:
(

λp

µ2 ψ < a
c
≤ λp(2µ−λp)

µ(µ−λp)2
ψ and µ−λp

µλp
> aλp−cψ

2µλ2
p+cψ(µ+λp)

)
. Take demand function

Λs(θ, Ss) as 100−0.2θ−550Ss in Example 1. This change results in a
c

= 0.182 hr/customer

and aλp−cψ

2µλ2
p+cψ(µ+λp)

= 0.0224 hr/customer. Note that λp

µ2 ψ = 0.08 < a
c
≤ λp(2µ−λp)

µ(µ−λp)2
ψ = 2.4

and µ−λp

µλp
= 0.025 > aλp−cψ

2µλ2
p+cψ(µ+λp)

. Feasible solution will exist if Sp > 0.40 as a
c

> λp

µ2 ψ. The

calculations in Steps 2 of algorithm result in λ
(3)
s = 1.908, and J` = 13.309. The intervals

J− and J are (0.4, 13.309] and (13.309,∞) respectively. A few results corresponding to

distinct values of Sp are presented in Table 4.

Table 4: Representative results of Example 4
Sp Priority Arrival rate Price Assured SL Revenue

β∗ λ∗s θ∗ S∗s O∗

0.41 ∞ 0.034 278.14 0.081 9.42
1 ∞ 1.000 220.00 0.100 220.00
4 ∞ 1.707 169.55 0.117 289.48
8 ∞ 1.849 158.47 0.120 293.01
11 ∞ 1.889 155.26 0.121 293.31

13.309 (= J`) ∞ 1.908 153.76 0.122 293.34
14 ∞ 1.908 153.76 0.122 293.34
15 ∞ 1.908 153.76 0.122 293.34
20 ∞ 1.908 153.76 0.122 293.34

5 Nature of the optimal pricing and operating points

The optimum values of the decision variables of the constrained optimization problem,

naturally depend on the prevailing QoS level to the primary class customers as well as

33



on two of the three coefficients of secondary class customers’ demand function. Also, the

algorithm, defined in Section 4.1, divides the feasible region of Sp into intervals. Observe

that either λ∗s or β∗ remain constant in those intervals. For example, the optimum queue

discipline management parameter β∗ remains unchanged in the intervals I−, I+ and J−

whereas the optimum mean arrival rate of the secondary class customers λ∗s remains

unchanged in the interval I. Section 5.1 elaborates on the qualitative nature of the optimal

decisions. We also analyze the effect of prevailing QoS level of primary class customers Sp

and coefficients of secondary class customers’ demand function on the optimum decisions

in Sections 5.2 and 5.3 respectively.

5.1 Key features of optimal operating points

The optimum decisions depend on the prevailing QoS level to the primary class customers

Sp as well as on the ratio a
c

of the coefficients of secondary class customers’ demand

function. The optimal constrained resource sharing model is infeasible if this ratio a
c

is less

than or equal to the threshold, λp

µ2 ψ. If this ratio lies in a finite interval (λp

µ2 ψ, λp(2µ−λp)

µ(µ−λp)2
ψ]

which is to the right of above threshold, then, the optimum policy always assigns static

high priority to the secondary class customers and allows the maximum possible arrival

rate of secondary class customers that does not violate the prevailing QoS level to the

primary class customers.

On the other hand, if the ratio a
c

to the right of above interval, then, the optimum

policy depends on the prevailing QoS level to the primary class customers, Sp. The three

intervals, I−, I and I+ correspond to low, moderate and high values of Sp. We note that

lower the value of Sp, higher the QoS level to the primary class customers. When QoS

level to primary class customers is high, (i.e., low Sp), then, the optimum operating policy

assigns static high priority to the primary class customers and allows a maximum possible

arrival rate of the secondary class customers as long as it does not violate the prevailing

QoS level to the primary class customers. Similarly, when QoS level to primary class

customers is low, (i.e., high Sp), then, the optimum operating policy assigns static high

priority to the secondary class customers and allows a maximum possible arrival rate of

the secondary class customers that does not violate the prevailing QoS level to the primary

class customers. On the contrary, when QoS level to primary class customers is moderate,

(i.e., moderate Sp), then, the optimum operating policy chooses a constant arrival rate of

the secondary class customers for any value of Sp in that interval but employs a dynamic

priority queue management scheme.

Also, we note below that across these intervals, both the pricing parameters, θ∗s and

S∗s are non-linear but well behaved functions as are the pair of operating parameters β∗

and λ∗s.

34



5.2 Sensitivity analysis of optimal pricing w.r.t. Sp

We observed earlier that the optimum queue discipline management parameter β∗ = 0

for any value of Sp ∈ I− and the optimum arrival rate of the secondary class customers

λ∗s is linearly increasing for Sp ∈ I− (from Corollary 2). Below, we study the effect of Sp

on the contract parameters, i.e, optimum price θ∗ and assured service level S∗s in interval

I−.

Lemma 1. In the interval I−, the optimum price θ∗ is a decreasing concave function and

the optimum assured service level S∗s is an increasing convex function of Sp.

Proof. The optimum assured service level S∗s = Ws(λ
∗
s, 0) for Sp ∈ I−. We note that

∂S∗s
∂Sp

=
∂Ws

∂Sp

=
∂Ws

∂λ∗s

∂λ∗s
∂Sp

≥ 0 and
∂2S∗s
∂S2

p

=
∂2Ws

∂λ∗s
2

(
∂λ∗s
∂Sp

)2

+
∂Ws

∂λ∗s

∂2λ∗s
∂S2

p

≥ 0.

The above inequalities follow because Ws(λs, β) is increasing convex function of λs and

λ∗s is linearly increasing function of Sp in the interval I−. The optimal price charged to

the secondary class customers θ∗ = [a− cS∗s − λ∗s] /b. We have

∂θ∗

∂Sp

= −1

b

[
c
∂S∗s
∂Sp

+
∂λ∗s
∂Sp

]
≤ 0 and

∂2θ∗

∂S2
p

= −1

b

[
c
∂2S∗s
∂S2

p

+
∂2λ∗s
∂S2

p

]
≤ 0.

Thus, θ∗ is decreasing concave function of Sp ∈ I−.

Corollary 1 established that the optimum mean arrival rate of the secondary class

customers λ∗s remains unchanged in the interval I. Below, we study the effect of Sp on

the optimal values of other decision variables in the interval I.

Lemma 2. The optimum relative priority β∗ and the optimum price θ∗ are increasing

convex functions of Sp in the interval I while the optimum assured service level S∗s a

decreasing concave function of Sp in the interval I.

Proof. We observe that β∗, from Step 5-(b) of algorithm, is a continuous function of

Sp ∈ I. The first order partial derivative of β∗ with respect to Sp is

∂β∗

∂Sp

=





µ2λ
(1)
s λ1ψ(µ− λ1)

[ψλ2
1 − µSpλp(µ− λ1)]2

for
ψλ1

µ[µ− λp]
≤ Sp ≤ ψλ1

µ[µ− λ1]

λ1λ
(1)
s ψ(µ− λ1)

[ψλ1 − Sp(µ− λ
(1)
s )(µ− λ1)]2

for
ψλ1

µ[µ− λ1]
< Sp <

ψλ1

[µ− λ
(1)
s ][µ− λ1]

.

We note that ∂β∗
∂Sp

≥ 0 as λp > 0, λ
(1)
s > 0 and λp + λ

(1)
s < µ. Also, ∂β∗

∂Sp
is continuous
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function of Sp ∈ I. The second order partial derivative of β∗ with respect to Sp is

∂2β∗

∂S2
p

=





2µ3λpλ
(1)
s λ1ψ(µ− λ1)

2

[ψλ2
1 − µSpλp(µ− λ1)]3

for
ψλ1

µ[µ− λp]
≤ Sp ≤ ψλ1

µ[µ− λ1]

2λ1λ
(1)
s ψ(µ− λ

(1)
s )(µ− λ1)

2

[ψλ1 − Sp(µ− λ
(1)
s )(µ− λ1)]3

for
ψλ1

µ[µ− λ1]
< Sp <

ψλ1

[µ− λ
(1)
s ][µ− λ1]

.

We note that ∂2β∗
∂S2

p
≥ 0 as λp > 0, λ

(1)
s > 0 and λp + λ

(1)
s < µ. Thus, β∗ is an increasing

convex function of Sp ∈ I. As S∗s = Ws(λ
∗
s, β

∗), we get,

∂S∗s
∂Sp

=
∂Ws

∂Sp

=
∂Ws

∂β∗
∂β∗

∂Sp

≤ 0 and
∂2S∗s
∂S2

p

=
∂2Ws

∂β∗2

(
∂β∗

∂Sp

)2

+
∂Ws

∂β∗
∂2β∗

∂S2
p

≤ 0.

The above inequalities follow because Ws(λs, β) is a decreasing concave function of β and

β∗ is an increasing convex function of Sp ∈ I. The optimal price θ∗ = [a− cS∗s − λ∗s] /b ≡
−f (S∗s ) if Sp ∈ I as λ∗s remains constant in this interval of Sp. Therefore, the optimum

price θ
∗

is an increasing convex function of Sp ∈ I.

Further, note that β∗ = ∞ for Sp in the intervals I+ and J− while λ∗s is increasing

function of Sp in these intervals (Corollary 3). Below, we study effect of Sp on the optimum

price θ∗ and assured service level S∗s in these intervals of Sp.

Lemma 3. The optimum price θ∗ is a decreasing function and the optimum assured

service level S∗s is an increasing function of Sp in both the intervals I+ and J−.

Proof. As S∗s = Ws(λ
∗
s,∞), we have

∂S∗s
∂Sp

=
∂Ws

∂Sp

=
∂Ws

∂λ∗s

∂λ∗s
∂Sp

≥ 0.

The above inequality follows because Ws(λs, β) and λ∗s are increasing functions of λs and

Sp respectively. The optimal price θ∗ = [a− cS∗s − λ∗s] /b. We note that

∂θ∗

∂Sp

= −1

b

[
c
∂S∗s
∂Sp

+
∂λ∗s
∂Sp

]
≤ 0.

This implies that θ∗ is a decreasing function of Sp.

The results are summarized in the Table 5. The effect of Sp on the optimum revenue

follows from the analysis done in Section 3.3. The optimal values remain constant in the

interval J . We observe from Table 5 that the optimum contract parameters θ∗ and S∗s are

different non-linear functions in the different intervals of Sp.
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Table 5: Effect on optimal decisions with increase in Sp within an interval
Interval Relative priority Arrival rate Price Assured service level Revenue

β∗ λ∗s θ∗ S∗s O∗

I− Constant (0) Increases Decreases Increases Increases
(linear) (concave) (convex) (concave)

I Increases Constant Increases Decreases Increases
(convex) (convex) (concave) (linear)

I+ and J− Constant (∞) Increases Decreases Increases Increases
(concave)

5.3 Sensitivity analysis of optimal decision variables w.r.t. de-

mand function coefficients

We investigate the role of the two co-efficients of demand function, a and c, on the optimal

choices of λs and β by looking at the dependence of the roots of cubics G(λs) and G̃(λs)

on these co-efficients.

We established in Claim 5 that the increase in a results in increase of λ
(1)
s . This and

similar arguments give the following results:

• The root of the cubic G(λs), λ
(1)
s , is an increasing function of a and is a decreasing

function of c.

• The root of the cubic G̃(λs), λ
(3)
s , is increasing function of a and is a decreasing

function of c.

Note that, ∂I`

∂λ
(1)
s

= ψ
µ[µ−λp]

> 0 and ∂Iu

∂λ
(1)
s

=
[µ(µ+λp)−λ2

1]ψ

[µ−λ
(1)
s ]2[µ−λ1]2

> 0. The above inequalities

follow as λp ≥ 0, λ
(1)
s > 0 and λ1 = λp + λ

(1)
s < µ. Thus, the increase in λ

(1)
s shifts I` and

Iu to the right. Similarly, increase in λ
(3)
s shifts J` to right as ∂J`

∂λ
(3)
s

> 0. Further, we note

that ∂2I`

∂λ
(1)
s

2 = 0 and ∂2Iu

∂λ
(1)
s

2 > 0, i.e., ∂I`

∂λ
(1)
s

is constant while ∂Iu

∂λ
(1)
s

is an increasing function of

λ
(1)
s . The minimum of ∂Iu

∂λ
(1)
s

=
[µ(µ+λp)−λ2

p]ψ

µ2[µ−λp]2
at λ

(1)
s = 0. As,

∂Iu

∂a
− ∂I`

∂a
=

[
∂Iu

∂λ
(1)
s

− ∂I`

∂λ
(1)
s

]
∂λ

(1)
s

∂a
>

[
[µ(µ + λp)− λ2

p]ψ

µ2[µ− λp]2
− ψ

µ[µ− λp]

]
∂λ

(1)
s

∂a

=

[
(2µ− λp)λpψ

µ2[µ− λp]2

]
∂λ

(1)
s

∂a
> 0,

the increase in demand coefficient a will widen the interval I. Note that the optimal

policy uses delay dependent priority queue discipline in the interval I. Thus, the increase

in a makes the delay dependent priority queue discipline to be used as part of optimal

policy for a wider range of Sp values. Similarly, the increase in c narrows interval I and

therefore, the delay dependent priority queue discipline is used as a part optimal policy

for a smaller range of Sp values. Note that optimum admission rate remains constant
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over such intervals. Continuing with Example 1 described in Section 4.2, Tables 6(a) and

6(b) exhibit the effect on key parameters with variation in demand coefficients a and c

respectively. We omit the infeasible values of λ
(1)
s and λ

(3)
s from the Tables 6(a) and 6(b).

Table 6: Effect of demand function co-efficient on key parameters

(a) Varying a; c = 0.1

a λ
(1)
s λ

(3)
s I` Iu

100 1.898 - 0.495 11.977
60 1.867 - 0.493 9.122
20 1.754 - 0.488 4.808
10 1.616 - 0.481 2.987
5 1.343 - 0.467 1.643
4 1.208 1.991 0.460 1.322
3 1.002 1.493 0.450 1.002
2 0.706 0.994 0.435 0.724
1 0.326 0.495 0.416 0.514

(b) Varying c; a = 100

c λ
(1)
s λ

(3)
s I` Iu

0.1 1.898 - 0.495 11.977
1 1.678 - 0.484 3.612
5 1.285 - 0.464 1.490
10 0.995 - 0.450 0.994
20 0.591 - 0.430 0.648
40 0.038 - 0.402 0.411
550 - 1.908 - -
600 - 1.696 - -
750 - 1.158 - -

6 Discussion

We present closed form expressions for unit admission price for the secondary class cus-

tomers and dynamic delay dependent queue discipline management parameter at a re-

source which is shared by two different classes of customers, primary class customers

(existing customers) and secondary class customers (of new firms), each class being guar-

anteed that their mean queue lengths do not exceed certain values. We incorporate

dynamic non-preemptive priority queue management discipline as a mechanism of admis-

sion control in this setting, to model the fact that the customers’ demand function have to

be sensitive to the admission price as well as to the assured service level. We find that in

some cases, it is beneficial to offer a high priority to the secondary class customers while

in other cases one has to employ the dynamic queueing discipline. We identify the regions

of the input parameter space corresponding to these cases. We also present an extensive

sensitivity analysis of these optimal decisions to various input parameters. We observe

that these optimal decisions are non-linear functions of input parameters, in most cases.

For example, the optimal unit admission price, θ∗, is concave decreasing in interval I− of

Sp and convex increasing in interval I of Sp but it is a decreasing function in interval I+

of Sp.

We defined quality of service level as the expected waiting time in queue. It is possible

to have waiting time distributions with large variances such that the expected values

satisfy the specified service level. This may result in poor service level to a few customers
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due to large variances. We also know that even though the multi class queues remain stable

under heavy traffic intensity, the resulting long queues are difficult to manage because

of limited waiting space. Therefore, further studies can incorporate more demanding

service levels such as variability in queue lengths or bounds on instances of unusually large

delays via bounds on tail probabilities of waiting times. We assumed that the demand of

secondary class customers is a linear function of the unit admission price and the assured

service level. A similar analysis can be attempted with a non-linear demand function,

e.g., log-linear Cobb-Douglas demand function (So and Song 1998). A subsequent study

can also incorporate more than two classes of customers.

We assume certain values for the demand function coefficients and do not address the

issues of estimating those coefficients. The optimal policies do depend on the demand

function coefficients and therefore the accuracies of those values will be crucial. It will

be interesting to develop a procedure to estimate the demand function coefficients, as

the secondary class customers are firms which are new to the business or are currently

using an alternate means for similar service. Also, it may be that the nature of the

demand function, i.e, linear or non-linear, as well as the parameters defining those demand

functions are known privately to the customers and remain unknown to the resource owner.

Under such circumstances, the pricing scheme should also be incentive compatible, i.e.,

make customers reveal those private values to the resource owner, perhaps by suitable

incentive payments (Mas-Colell et al. 1995). We note that such incentive compatible

pricing schemes also have to satisfy the service level constraints.

Appendix

Proof of Claim 1. First, we observe that if a
c

> λp(2µ−λp)

µ(µ−λp)2
ψ then the cubic G(λs) has at

least one positive root λs ∈ (0, µ− λp) as

G(0) = −aµφ2
0 + cψλp(µ + φ0) < 0

G(µ− λp) = cψµ2 > 0.

The first inequality follows from the assumption a
c

> λp(2µ−λp)

µ(µ−λp)2
ψ.

Next, we show that G(λs) has only one root in the interval (0, µ− λp). The first

derivative of the cubic is G′(λs) = 2(µ − λp − λs)(aµ + cψ + µ2 − µ(λp + 3λs)). So, the

stationary points of the cubic G(λs) are x1 = µ − λp and x2 = 1
3µ

[aµ + cψ + µ(µ− λp)].

We note that x2 T µ − λp as aµ + cψ T 2µ(µ − λp). Let us first assume that aµ +

cψ ≥ 2µ(µ − λp). Then, G(λs) is an increasing function in the interval [0, µ − λp] as

G′(λs) ≥ 6µ (µ− λp − λs)
2 > 0. This scenario is illustrated by Figure 10(a). Therefore,

the cubic G(λs) has only one root in the interval (0, µ− λp) as it intersects the line λs = 0
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only once in the interval (0, µ− λp).

s

G
(

s
)

x1= p

0

s
*

(a) Case 1: aµ + cψ ≥ 2µ(µ− λp)

s

G
(

s
)

x1= p

0

s
* x2

(b) Case 2: aµ + cψ < 2µ(µ− λp)

Figure 10: Illustrative nature of cubic G(λs) over the interval [0, µ− λp]

Next, let us assume that aµ+cψ < 2µ(µ−λp). The second derivative G′′(λs) evaluated

at x1 and x2 results in −2 [aµ + cψ − 2µ(µ− λp)] > 0 and 2 [aµ + cψ − 2µ(µ− λp)] < 0

respectively. This implies that x1 and x2 are points of relative minimum and maximum

respectively. We also note that G(λs) is an increasing function in the interval [0, x2] and a

decreasing function in the interval [x2, x1] and G(x2) > 0. This scenario is illustrated by

Figure 10(b). Again, the curve G(λs) intersects the line λs = 0 only once in the interval

(0, µ− λp), specifically in the interval (0, x2]. Therefore, the cubic G(λs) has only one

root in the interval (0, µ− λp).

Proof of Claim 2. Using equation (13), the equality Wp(λs, β) = Sp results in either

β =
[µ− λ][µSp[µ− λp]− ψλ]

ψλ2 − µSpλp[µ− λ]
(46)

or,

β =
Spλs[µ− λ]

ψλ− Sp[µ− λs][µ− λ]
. (47)

We observe that the obtained finite values of β (say β̄) from equations (46) and (47) are

feasible iff they satisfy 0 ≤ β̄ ≤ 1 and β̄ > 1 respectively.

First we will analyze β̄ obtained from equation (46). This value of β̄ will be a posi-

tive number iff both numerator and denominator takes either positive or negative values
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simultaneously, i.e., either

µSp[µ− λp]− ψλ ≥ 0 and ψλ2 − µSpλp[µ− λ] > 0

or

µSp[µ− λp]− ψλ ≤ 0 and ψλ2 − µSpλp[µ− λ] < 0.

On simplification, we get, either

Sp ≥ ψλ

µ[µ− λp]
and Sp <

ψλ2

µλp[µ− λ]
(48)

or

Sp ≤ ψλ

µ[µ− λp]
and Sp >

ψλ2

µλp[µ− λ]
. (49)

We note that,

ψλ2

µλp[µ− λ]
− ψλ

µ[µ− λp]
=

ψλλs

λp[µ− λ][µ− λp]
> 0

⇒ ψλ2

µλp[µ− λ]
>

ψλ

µ[µ− λp]
.

From above inequality, we observe that it is impossible to have a positive Sp satisfying

condition (49). Thus, the value of β̄ obtained from equation (46) will be greater than or

equal to zero iff following holds true:

ψλ

µ[µ− λp]
≤ Sp <

ψλ2

µλp[µ− λ]
. (50)

We need β̄ ≤ 1 and hence from Equation (46) we have

[µ− λ][µSp[µ− λp]− ψλ]

ψλ2 − µSpλp[µ− λ]
≤ 1.

On simplification, we get

Sp ≤ ψλ

µ[µ− λ]
. (51)

We note that,

ψλ2

µλp[µ− λ]
− ψλ

µ[µ− λ]
=

ψλλs

µλp[µ− λ]
> 0

⇒ ψλ2

µλp[µ− λ]
>

ψλ

µ[µ− λ]
. (52)

From inequalities (50) and (52), we infer that the obtained value of β̄ from equation (46)
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will satisfy 0 ≤ β̄ ≤ 1 iff
ψλ

µ[µ− λp]
≤ Sp ≤ ψλ

µ[µ− λ]
. (53)

Next, we will analyze β̄ obtained from equation (47). The obtained value of β̄ will be

a finite positive number iff

ψλ− Sp[µ− λs][µ− λ] > 0,

i.e., Sp <
ψλ

[µ− λs][µ− λ]
. (54)

Also, we need β̄ > 1 and hence from Equation (47) we have

Spλs[µ− λ]

ψλ− Sp[µ− λs][µ− λ]
> 1.

On simplification, we get

Sp >
ψλ

µ[µ− λ]
(55)

From inequalities (54) and (55), we infer that the obtained value of β̄ from equation (47)

will satisfy β̄ > 1 iff
ψλ

µ[µ− λ]
< Sp <

ψλ

[µ− λs][µ− λ]
. (56)

Proof of the Claim 3. First, we observe that if a
c

> λp

µ2 ψ then the cubic G̃(λs) has at least

one positive root λs ∈ (0, µ) as

G̃(0) = −µ(aµ2 − cψλp) < 0

G̃(µ) = cψµ(µ + λp) > 0.

The first inequality follows from the assumption a
c

> λp

µ2 ψ.

Next, we show that G̃(λs) has only one root in the interval (0, µ). The first derivative

of the cubic is G̃′(λs) = 2(µ − λs)(aµ + cψ + µ2 − 3µλs) . So, the stationary points

of the cubic G̃(λs) are x̃1 = µ and x̃2 = 1
3µ

[aµ + cψ + µ2]. We note that x̃2 T µ as

aµ + cψ T 2µ2. Let us first assume that aµ + cψ ≥ 2µ2. Then, G̃(λs) is an increasing

function in the interval [0, µ] as G̃′(λs) ≥ 6µ (µ− λs)
2 > 0. Therefore, the cubic G̃(λs)

has only one root in the interval (0, µ) as it intersects the line λs = 0 only once in the

interval (0, µ).

Next, let us assume that aµ+ cψ < 2µ2. The second derivative G̃′′(λs) evaluated at x̃1

and x̃2 are −2 [aµ + cψ − 2µ2] > 0 and 2 [aµ + cψ − 2µ2] < 0 respectively. This implies

that x̃1 and x̃2 are points of relative minimum and maximum respectively. We also note
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that G̃(λs) is an increasing function in the interval [0, x̃2], a decreasing function in the

interval [x̃2, x̃1] and G̃(x̃2) > 0. Again, the curve G̃(λs) intersects the line λs = 0 only

once in the interval (0, µ), specifically in the interval (0, x̃2]. Therefore, the cubic G̃(λs)

has only one root in the interval (0, µ).

Proof of Claim 4. The equality W̃p(λs) = Sp can be rewritten as a quadratic equation of

λs.

Q(λs) ≡ Spλ
2
s − [Sp (2µ− λp) + ψ] λs + µSp (µ− λp)− ψλp = 0 (57)

We observe that the quadratic Q(λs) has at least one positive root λs ∈ (0, µ− λp) as

Q(0) = µSp(µ− λp)− ψλp > 0

Q(µ− λp) = −ψµ < 0.

The first inequality follows from the assumption that Sp > λpψ

µ[µ−λp]
. The roots, ω1 and ω2,

of the quadratic equation (57) are

ω1 =
1

2Sp

[
Sp [2µ− λp] + ψ −

√
[Spλp + ψ]2 + 4µψSp

]

ω2 =
1

2Sp

[
Sp [2µ− λp] + ψ +

√
[Spλp + ψ]2 + 4µψSp

]

We note that both roots are real numbers. Also, ω1 < µ − λp and ω2 > µ + ψ
Sp

as [Spλp + ψ]2 + 4µψSp > [Spλp + ψ]2. Thus, ω1 is the root of the quadratic equation

(57) lying in the interval (0, µ− λp).

Proof of Claim 5. To show the dependence of root of cubic G(λs) with respect to a, we

write the cubic as G(λs, a). For λs ∈ (0, µ− λp), we observe that ∂G(λs,a)
∂a

= −µ(µ− λp −
λs)

2 < 0, ∂2G(λs,a)
∂a2 = 0. Thus, G(λs, a) is a linearly decreasing function of a. Let a1 and

a2 be the two different values of a such that a1 < a2. We note that G(λs, a1) > G(λs, a2)

for λs ∈ (0, µ − λp). Further, assume that a1

c
> λp(2µ−λp)

µ(µ−λp)2
ψ. Under this assumption,

we note from Claim 1 that the cubic G(λs, a1) and G(λs, a2) will have unique roots in

the interval (0, µ − λp). Suppose λa1
s and λa2

s are the roots of the cubic G(λs, a1) and

G(λs, a2) respectively. We note that G(λa1
s , a1) = 0 as λa1

s is the root of cubic G(λs, a1)

and G(λa1
s , a2) < 0 as G(λs, a1) > G(λs, a2) for a given λs ∈ (0, µ − λp). From Claim 1,

we know that G(0, a2) < 0. Therefore, the root of the cubic G(λs, a2) will lie right to λa1
s ,

i.e., λa1
s < λa2

s . This implies that the root of the cubic G(λs), λ
(1)
s , is increasing function

of a.
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Some properties of Wp(λs, β) and Ws(λs, β)

We observe from equations (13) and (14) that Wp(λs, β) and Ws(λs, β) always take finite

positive values for λp ≥ 0, λs ≥ 0 and λp + λs < µ. Also, Wp(λs, β) and Ws(λs, β) are

continuous functions of β. Let us define

40 := µ− λ, 41 := µ− λp [1− β] , 42 := µ− λ [1− β] ,

43 := µ− λs [1− 1/β] , 44 := µ− λ [1− 1/β] , 45 := µ + λp [1− 1/β] ,

and β̃ = 1−1/β. Given λp ≥ 0, λs ≥ 0 and λp +λs < µ, we note that 40 > 0, 41,42 > 0

for β ≤ 1 and 43,44,45 > 0 for β ≥ 1.

Primary class customers’ expected waiting time in queue Wp(λs, β): The first

and second order partial derivatives of Wp(λs, β) with respect to λs are

∂Wp

∂λs

= ψ
[1− β]42

0 + βµ2

µ42
041

11{β≤1} + ψ
4045 + λ43

42
042

3

11{β>1}

∂2Wp

∂λ2
s

=
2βµψ

43
041

11{β≤1} + 2ψ

[
λβ̃2

4043
3

+
µβ̃

42
042

3

+
µ

43
043

]
11{β>1}.

We note that ∂Wp

∂λs
, ∂2Wp

∂λ2
s
≥ 0 as λp ≥ 0, λs ≥ 0 and λp + λs < µ. Therefore, Wp(λs, β) is

an increasing convex function of λs in the interval [0, µ− λp). The first and second order

partial derivatives of Wp(λs, β) with respect to β are

∂Wp

∂β
=

λsλψ

4042
1

11{β≤1} +
λsλψ

β24042
3

11{β>1}

∂2Wp

∂β2
= −2λpλsλψ

4043
1

11{β≤1} − 2 [µ− λs] λsλψ

β34043
3

11{β>1}.

We note that ∂Wp

∂β
≥ 0 and ∂2Wp

∂β2 ≤ 0 λp ≥ 0, λs ≥ 0 and λp +λs < µ. Therefore, Wp(λs, β)

is an increasing concave function of β ≥ 0.

The diagonal elements of Hessian matrix H [Wp(λs, β)], ∂2Wp

∂λ2
s

and ∂2Wp

∂β2 , have opposite

signs, i.e., the Hessian matrix is indefinite. This implies that Wp(λs, β) is neither a convex

nor a concave function of (λs, β) where λs ∈ [0, µ− λp) and β ≥ 0.

Secondary class customers’ expected waiting time in queue Ws(λs, β): The first

and second order partial derivatives of Ws(λs, β) with respect to λs are

∂Ws

∂λs

=
µψ

42
041

11{β≤1} + ψ

[
λ

β42
043

+
4445

µ4042
3

]
11{β>1}
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∂2Ws

∂λ2
s

=
2µψ

43
041

11{β≤1} + 2ψ

[
β̃4445

µ4043
3

+
45

β42
242

3

+
λ

β42
243

]
11{β>1}

We note that ∂Ws

∂λs
, ∂2Ws

∂λ2
s
≥ 0 as λp ≥ 0, λs ≥ 0 and λp + λs < µ . Therefore, Ws(λs, β) is

an increasing convex function of λs in the interval [0, µ− λp). The first and second order

partial derivatives of Ws(λs, β) with respect to β are

∂Ws

∂β
= − λpλψ

4042
1

11{β≤1} − λpλψ

β24042
3

∂2Ws

∂β2
=

2λ2
pλψ

4043
1

11{β≤1} +
2 [µ− λs] λpλψ

β34043
3

11{β>1}

We note that ∂Ws

∂β
≤ 0 and ∂2Ws

∂β2 ≥ 0 as λp ≥ 0, λs ≥ 0 and λp + λs < µ . Therefore,

Ws(λs, β) is a decreasing convex function of β ≥ 0.
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