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Abstract. A conic integer program is an integer programming problem
with conic constraints. Conic integer programming has important ap-
plications in finance, engineering, statistical learning, and probabilistic
integer programming.

Here we study mixed-integer sets defined by second-order conic con-
straints. We describe general-purpose conic mixed-integer rounding cuts
based on polyhedral conic substructures of second-order conic sets. These
cuts can be readily incorporated in branch-and-bound algorithms that
solve continuous conic programming relaxations at the nodes of the
search tree. Our preliminary computational experiments with the new
cuts show that they are quite effective in reducing the integrality gap of
continuous relaxations of conic mixed-integer programs.
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1 Introduction

In the last two decades there have been major advances in our capability of
solving linear integer programming problems. Strong cutting planes obtained
through polyhedral analysis of problem structure contributed to this success
substantially by strengthening linear programming relaxations of integer pro-
gramming problems. Powerful cutting planes based on simpler substructures of
problems have become standard features of leading optimization software pack-
ages. The use of such structural cuts has improved the performance of the linear
integer programming solvers dramatically.

On another front, since late 1980’s we have experienced significant advances
in convex optimization, particularly in conic optimization. Starting with Nes-
terov and Nemirovski [22, 23, 24] polynomial interior point algorithms that have
earlier been developed for linear programming have been extended to conic opti-
mization problems such as convex quadratically constrained quadratic programs
(QCQP’s) and semidefinite programs (SDP’s).

Availability of efficient algorithms and publicly available software (CDSP[9],
DSDP[7], SDPA[33], SDPT3[32], SeDuMi[30]) for conic optimization spurred
many optimization and control applications in diverse areas ranging from med-
ical imaging to signal processing, from robust portfolio optimization to truss
design. Commercial software vendors (e.g. ILOG, MOSEK, XPRESS-MP) have
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responded to the demand for solving (continuous) conic optimization problems
by including stable solvers for second-order cone programming (SOCP) in their
recent versions.

Unfortunately, the phenomenal advances in continuous conic programming
and linear integer programming have so far not translated to improvements in
conic integer programming, i.e., integer programs with conic constraints. Solu-
tion methods for conic integer programming are limited to branch-and-bound
algorithms that solve continuous conic relaxations at the nodes of the search
tree. In terms of development, conic integer programming today is where linear
integer programming was before 1980’s when solvers relied on pure branch-and-
bound algorithms without the use of any cuts for improving the continuous
relaxations at the nodes of the search tree.

Hereweattempt to improve the solvability of conic integer programs.Wedevelop
general purpose cuts that can be incorporated into branch-and-bound solvers for
conic integer programs.Toward this end,wedescribe valid cuts for the second-order
conic mixed-integer constraints (defined in Section 2). The choice of second-order
conic mixed-integer constraint is based on (i) the existence of many important ap-
plications modeled with such constraints, (ii) the availability of efficient and stable
solvers for their continuous SOCP relaxations, and (iii) the fact that one can form
SOCP relaxations for the more general conic programs, which make the cuts pre-
sented here widely applicable to conic integer programming.

1.1 Outline

In Section 2 we introduce conic integer mixed-programming, briefly review the rel-
evant literature and explain our approach for generating valid cuts. In Section 3 we
describe conic mixed-integer rounding cuts for second-order conic mixed-integer
programming and in Section 4 we summarize our preliminary computational re-
sults with the cuts.

2 Conic Integer Programming

A conic integer program (CIP) is an integer program with conic constraints. We
limit the presentation here to second-order conic integer programming. However,
as one can relax more general conic programs to second-order conic programs
[14] our results are indeed applicable more generally.

A second-order conic mixed-integer program is an optimization problem of the
form

min cx + ry

(SOCMIP) s.t. ‖ Aix + Giy − bi ‖ ≤ dix + eiy − hi, i = 1, 2, . . . , k

x ∈ Z
n, y ∈ R

p .

Here ‖ · ‖ is the Euclidean norm, Ai, Gi, b are rational matrices with mi rows,
and c, r, di, ei are rational row vectors of appropriate dimension, and hi is a
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rational scalar. Each constraint of SOCMIP can be equivalently stated as (Aix+
Giy − bi, dix + eiy − h) ∈ Qmi+1, where

Qmi+1 := {(t, to) ∈ R
mi × R : ‖ t ‖ ≤ to} .

For n = 0, SOCMIP reduces to SOCP, which is a generalization of linear pro-
gramming as well as convex quadratically constrained quadratic programming.
If Gi = 0 for all i, then SOCP reduces to linear programming. If ei = 0 for all
i, then it reduces to QCQP after squaring the constraints. In addition, convex
optimization problems with more general norms, fractional quadratic functions,
hyperbolic functions and others can be formulated as an SOCP. We refer the
reader to [2, 6, 10, 18, 25] for a detailed exposure to conic optimization and
many applications of SOCP.

2.1 Relevant Literature

There has been significant work on deriving conic (in particular SDP) relax-
ations for (linear) combinatorial optimization problems [1, 13, 19] for obtaining
stronger bounds for such problems than the ones given by their natural linear
programming relaxations. We refer the reader to Goemans [12] for a survey on
this topic. However, our interest here is not to find conic relaxations for linear
integer problems, but for conic integer problems.

Clearly any method for general nonlinear integer programming applies to conic
integer programming as well. Reformulation-Linearization Technique (RLT) of
Sherali and Adams [27] initially developed for linear 0-1 programming has been
extended to nonconvex optimization problems [28]. Stubbs and Mehrotra [29]
generalize the lift-and-project method [5] of Balas et. al for 0-1 mixed convex
programming. See also Balas [4] and Sherali and Shetti [26] on disjunctive pro-
gramming methods. Kojima and Tunçel [15] give successive semidefinite relax-
ations converging to the convex hull of a nonconvex set defined by quadratic
functions. Lasserre [16] describes a hierarchy of semidefinite relaxations nonlin-
ear 0-1 programs. Common to all of these general approaches is a hierarchy of
convex relaxations in higher dimensional spaces whose size grows exponentially
with the size of the original formulation. Therefore using such convex relaxations
in higher dimensions is impractical except for very small instances. On the other
hand, projecting these formulations to the original space of variables is also very
difficult except for certain special cases.

Another stream of more practically applicable research is the development
of branch-and-bound algorithms for nonlinear integer programming based on
linear outer approximations [8, 17, 31]. The advantage of linear approximations
is that they can be solved fast; however, the bounds from linear approximations
may not be strong. However, in the case of conic programming, and in particular
second-order cone programming, existence of efficient algorithms permits the use
of continuous conic relaxations at the nodes of the branch-and-bound tree.
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The only study that we are aware of on developing valid inequalities for conic
integer sets directly is due to Çezik and Iyengar [11]. For a pointed, closed,
convex cone K ⊆ R

m with nonempty interior, given S = {x ∈ Z
n : b − Ax ∈ K},

their approach is to write a linear aggregation

λ′Ax ≤ λ′b for some fixed λ ∈ K∗, (1)

where K∗ is the dual cone of K and then apply the Chvátal-Gomory (CG) integer
rounding cuts [20] to this linear inequality. Hence, the resulting cuts are linear
in x as well. For the mixed-integer case as the convex hull feasible points is
not polyhedral and has curved boundary (see Figure 2 in Section 3). Therefore,
nonlinear inequalities may be more effective for describing or approximating the
convex hull of solutions.

2.2 A New Approach

Our approach for deriving valid inequalities for SOCMIP is to decompose the
second-order conic constraint into simpler polyhedral sets and analyze each of
these sets. Specifically, given a second-order conic constraint

‖ Ax + Gy − b ‖≤ dx + ey − h (2)

and the corresponding second-order conic mixed-integer set

C :=
{
x ∈ Z

n
+, y ∈ R

p
+ : (x, y) satisfies (2)

}
,

by introducing auxiliary variables (t, to) ∈ R
m+1, we reformulate (2) as

to ≤ dx + ey − h (3)
ti ≥ |aix + giy − bi| , i = 1, . . . , m (4)
to ≥ ‖ t ‖, (5)

where ai and gi denote the ith rows of matrices A and G, respectively. Observe
that each constraint (4) is indeed a second-order conic constraint as (aix+giy −
bi, ti) ∈ Q1+1, yet polyhedral. Consequently, we refer to a constraint of the form
(4) as a polyhedral second-order conic constraint.

Breaking (2) into polyhedral conic constraints allows us to exploit the implicit
polyhedral set for each term in a second-order cone constraint. Cuts obtained for
C in this way are linear in (x, y, t); however, they are nonlinear in the original
space of (x, y).

Our approach extends the successful polyhedral method for linear integer
programming where one studies the facial structure of simpler building blocks
to second-order conic integer programming. To the best of our knowledge such
an analysis for second-order conic mixed-integer sets has not been done before.
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3 Conic Mixed-Integer Rounding

For a mixed integer set X ⊆ Z
n × R

p, we use relax(X) to denote its continu-
ous relaxation in R

n × R
p obtained by dropping the integrality restrictions and

conv(X) to denote the convex hull of X . In this section we will describe the cuts
for conic mixed-integer programming, first on a simple case with a single integer
variable. Subsequently we will present the general inequalities.

3.1 The Simple Case

Let us first consider the mixed-integer set

S0 := {(x, y, w, t) ∈ Z × R
3
+ : | x + y − w − b | ≤ t} (6)

defined by a simple, yet non-trivial polyhedral second-order conic constraint
with one integer variable. The continuous relaxation relax(S0) has four extreme
rays: (1, 0, 0, 1), (−1, 0, 0, 1), (1, 0, 1, 0), and (−1, 1, 0, 0), and one extreme point:
(b, 0, 0, 0), which is infeasible for S0 if f := b−�b� > 0. It is easy to see that if f >
0, conv(S0) has four extreme points: (�b�, f, 0, 0), (�b�, 0, 0, f), (	b
, 0, 1 − f, 0)
and (	b
, 0, 0, 1 − f). Figure 1 illustrates S0 for the restriction y = w = 0.

Proposition 1. The simple conic mixed-integer rounding inequality

(1 − 2f)(x − �b�) + f ≤ t + y + w (7)

cuts off all points in relax(S0) \ conv(S0).

Observe that inequality (7) is satisfied at equality at all extreme points of
conv(S0). Proposition 1 can be proved by simply checking that every intersec-
tion of the hyperplanes defining S0 and (7) is one of the four extreme points of
conv(S0) listed above.

x	b
�b� b �b� − f
1−2f

t ≥
| x

− b |

t ≥| (1
− 2f

)(x
− �b�)

+
f |

t

1 − f

f

Fig. 1. Simple conic mixed-integer rounding cut
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The simple conic mixed-integer rounding inequality (7) can be used to derive
nonlinear conic mixed-integer inequalities for nonlinear conic mixed-integer sets.
The first observation useful in this direction is that the piecewise-linear conic
inequality

|(1 − 2f)(x − �b�) + f | ≤ t + y + w (8)

is valid for S0. See Figure 1 for the restriction y = w = 0.
In order to illustrate the nonlinear conic cuts, based on cuts for the polyhedral

second-order conic constraints (4), let us now consider the simplest nonlinear
second-order conic mixed-integer set

T0 :=
{
(x, y, t) ∈ Z × R × R :

√
(x − b)2 + y2 ≤ t

}
. (9)

The continuous relaxation relax(T0) has exactly one extreme point (x, y, t) =
(b, 0, 0), which is infeasible for T0 if b �∈ Z. Formulating T0 as

t1 ≥ |x − b| (10)

t ≥
√

t21 + y2, (11)

we write the piecewise-linear conic inequality (8) for (10). Substituting out the
auxiliary variable t1, we obtain the simple nonlinear conic mixed-integer round-
ing inequality √

((1 − 2f)(x − �b�) + f)2 + y2 ≤ t, (12)

which is valid for T0.

Proposition 2. The simple nonlinear conic mixed-integer rounding inequality
(12) cuts off all points in relax(T0) \ conv(T0).

Proof. First, observe that for x = �b� − δ, the constraint in (9) becomes t ≥√
(δ + f)2 + y2, and (12) becomes t ≥

√
(f − (1 − 2f)δ)2 + y2. Since (δ + f)2 −

(f − (1 − 2f)δ)2 = 4fδ(1 + δ)(1 − f) ≥ 0 for δ ≥ 0 and for δ ≤ −1, we see
that (12) is dominated by relax(T0) unless �b� < x < 	b
. When −1 < δ < 0
(i.e., x ∈ (�b�, 	b
)), 4fδ(1 + δ)(1 − f) < 0, implying that (12) dominates the
constraint in (9).

We now show that if (x1, y1, t1) ∈ relax(T0) and satisfies (12), then
(x1, y1, t1) ∈ conv(T0). If x1 �∈ (�b�, 	b
), it is sufficient to consider (x1, y1, t1) ∈
relax(T0) as (12) is dominated by relax(T0) in this case. Now, the ray R1 :=
{(b, 0, 0) + α(x1 − b, y1, t1) : α ∈ R+} ⊆ relax(T0). Let the intersections of
R1 with the hyperplanes x = �x1� and x = 	x1
 be (�x1�, ȳ1, t̄1), (	x1
, ŷ1, t̂1),
which belong to T0. Then (x1, y1, t1) can be written as a convex combination of
points (�x1�, ȳ1, t̄1), (	x1
, ŷ1, t̂1); hence (x1, y1, t1) ∈ conv(T0).

On the other hand, if x1 ∈ (�b�, 	b
), it is sufficient to consider (x1, y1, t1)
that satisfies (12), since (12) dominates the constraint in (9) for x ∈ [�b�, 	b
].
If f = 1/2, (x1, y1, t1) is a convex combination of (�b�, y1, t1) and (	b
, y1, t1).
Otherwise, all points on the ray R2 := {(x0, 0, 0)+α(x1 −x0, y1, t1) : α ∈ R+},
where x0 = �b� − f

1−2f , satisfy (12). Let the intersections of R2 with the



22 A. Atamtürk and V. Narayanan

hyperplanes x = �b� and x = 	b
 be (�b�, ȳ1, t̄1), (	b
, ŷ1, t̂1), which belong to
T0. Note that the intersections are nonempty because x0 �∈ [�b�, 	b
]. Then we
see that (x1, y1, t1) can be written as a convex combination of (�b�, ȳ, t̄) and
(	b
, ŷ, t̂). Hence, (x1, y1, t1) ∈ conv(T0) in this case as well. �

Proposition 2 shows that the curved convex hull of T0 can be described us-
ing only two second-order conic constraints. The following example illustrates
Proposition 2.

Example 1. Consider the second-order conic set given as

T0 =

⎧
⎨

⎩
(x, y, t) ∈ Z × R × R :

√(
x − 4

3

)2

+ (y − 1)2 ≤ t

⎫
⎬

⎭
.

The unique extreme point of relax(T0) (4
3 , 1, 0) is fractional. Here �b� = 1 and

f = 1
3 ; therefore,

conv(T0) =

⎧
⎨

⎩
(x, y, t) ∈ R

3 :

√(
x − 4

3

)2

+ (y − 1)2 ≤ t,

√
1
9
x2 + (y − 1)2 ≤ t

⎫
⎬

⎭
.

We show the inequality
√

1
9x2 + (y − 1)2 ≤ t and the region it cuts off in

Figure 2. Observe that the function values are equal at x = 1 and x = 2 and the
cut eliminates the points between them.

Fig. 2. Nonlinear conic integer rounding cut
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3.2 The General Case

In this section we present valid inequalities for the mixed-integer sets defined by
general polyhedral second-order conic constraints (4). Toward this end, let

S := {x ∈ Z
n
+, y ∈ R

p
+, t ∈ R : t ≥ |ax + gy − b|} .

We refer to the inequalities used in describing S as the trivial inequalities. The
following result simplifies the presentation.

Proposition 3. Any non-trivial facet-defining inequality for conv(S) is of the
form γx + πy ≤ π0 + t. Moreover, the following statements hold:

1. πi < 0 for all i = 1, . . . , p;
2. πi

πj
=

∣
∣∣ gi

gj

∣
∣∣ for all i, j = 1, . . . , p.

Hence it is sufficient to consider the polyhedral second-order conic constraint
∣
∣ax + y+ − y− − b

∣
∣ ≤ t, (13)

where all continuous variables with positive coefficients are aggregated into y+ ∈
R+ and those with negative coefficients are aggregated into y− ∈ R+ to represent
a general polyhedral conic constraint of the form (4).

Definition 1. For 0 ≤ f < 1 let the conic mixed-integer rounding function
ϕf : R → R be

ϕf (v) =
{

(1 − 2f)n − (v − n), if n ≤ v < n + f,
(1 − 2f)n + (v − n) − 2f, if n + f ≤ v < n + 1 .

n ∈ Z (14)

The conic mixed-integer rounding function ϕf is piecewise linear and continuous.
Figure 3 illustrates ϕf .

Lemma 1. The conic mixed-integer rounding function ϕf is superadditive on R.

Theorem 1. For any α �= 0 the conic mixed-integer rounding inequality

n∑

j=1

ϕfα(aj/α)xj − ϕfα(b/α) ≤ (t + y+ + y−)/|α|, (15)

where fα = b/α − �b/α�, is valid for S. Moreover, if α = aj and b/aj > 0 for
some j ∈ {1, . . . , n}, then (15) is facet-defining for conv(S).

Proof. (Sketch) It can be shown that ϕfaj
is the lifting function of inequality

(1 − 2f)(x − �b�) + f ≤ (t + y+ + y−)/|aj | (16)

for the restriction ∣
∣ajxj + y+ − y− − b

∣
∣ ≤ t
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of (13) with xi = 0 for i �= j. Then the validity as well as the facet claim follows
from superadditive lifting [3] of (16) with xi for i �= j. For α �= 0 validity follows
by introducing an auxiliary integer variable xo with coefficient α and lifting
inequality ∣

∣αxo + y+ − y− − b
∣
∣ ≤ t

with all xi, i = 1, . . . , n and then setting xo = 0. �

Remark 1. The continuous relaxation relax(S) has at most n fractional extreme
points (xj , 0, 0, 0) of the form xj

j = b/aj > 0, and xj
i = 0 for all i �= j, which

are infeasible if b/aj �∈ Z. It is easy to check that conic mixed-integer rounding
inequalities with α = aj are sufficient to cut off all fractional extreme points
(xj , 0, 0, 0) of relax(S) as for xj

i = 0 inequality (15) reduces to (7).

v

ϕf(v)

1

1 − 2f

f

−f

Fig. 3. Conic mixed-integer rounding function.

Next we show that mixed-integer rounding (MIR) inequalities [21, 20] for
linear mixed-integer programming can be obtained as conic MIR inequalities.
Consider a linear mixed-integer set

ax − y ≤ b, x ≥ 0, y ≥ 0, x ∈ Z
n, y ∈ R (17)

and the corresponding valid MIR inequality

∑

j

(
�aj� +

(fj − f)+

1 − f

)
xj − 1

1 − f
y ≤ �b�, (18)

where fj := aj − �aj� for j = 1, . . . , n and f := b − �b�.
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Proposition 4. Every MIR inequality is a conic MIR inequality.

Proof. We first rewrite inequalities ax − y ≤ b and y ≥ 0, in the conic form

−ax + 2y + b ≥ |ax − b|

and then split the terms involving integer variables x on the right hand side into
their integral and fractional parts as

−ax+2y+b ≥

∣
∣
∣
∣∣
∣

⎛

⎝
∑

fj≤f

�aj�xj +
∑

fj>f

	aj
xj

⎞

⎠ +
∑

fj≤f

fjxj −
∑

fj>f

(1 − fj)xj − b

∣
∣
∣
∣∣
∣

.

Then, since z =
∑

fj≤f�aj�xj +
∑

fj>f	aj
xj is integer and y+ =
∑

fj≤f fjxj ∈
R+ and y− =

∑
fj>f (1 − fj)xj ∈ R+, we write the simple conic MIR inequal-

ity (8)

−ax + 2y + b +
∑

fj≤f

fjxj +
∑

fj>f

(1 − fj)xj

≥ (1 − 2f)

⎛

⎝
∑

fj≤f

�aj�xj +
∑

fj>f

	aj
xj − �b�

⎞

⎠ + f .

After rearranging this inequality as

2y+2(1−f)�b� ≥
∑

fj≤f

((1−2f)�aj�−fj+aj)xj+
∑

fj>f

((1−2f)	aj
−(1−fj)+aj)xj

and dividing it by 2(1 − f) we obtain the MIR inequality (18). �

Example 2. In this example we illustrate that conic mixed-integer rounding cuts
can be used to generate valid inequalities that are difficult to obtain by Chvátal-
Gomory (CG) integer rounding in the case of pure integer programming. It is
well-known that CG rank of the polytope given by inequalities

−kx1 + x2 ≤ 1, kx1 + x2 ≤ k + 1, x1 ≤ 1, x1, x2 ≥ 0

for a positive integer k equals exactly k [20]. Below we show that the non-trivial
facet x2 ≤ 1 of the convex hull of integer points can be obtained by a single
application of the conic MIR cut.

Writing constraints −kx1 + x2 ≤ 1 and kx1 + x2 ≤ k + 1 in conic form, we
obtain ∣

∣
∣∣kx1 − k

2

∣
∣
∣∣ ≤ k

2
+ 1 − x2 . (19)

Dividing the conic constraint (19) by k and treating 1/2 + 1/k − x2/k as a
continuous variable, we obtain the conic MIR cut

1
2

≤ 1
2

+
1
k

− x2

k

which is equivalent to x2 ≤ 1.
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Conic Aggregation

We can generate other cuts for the second order conic mixed integer set C
by aggregating constraints (4) in conic form: for λ, μ ∈ R

m
+ , we have λ′t ≥

λ′(Ax + Gy − b), and μ′t ≥ μ′(−Ax − Gy + b). Writing these two inequalities in
conic form, we obtain

(
λ + μ

2

)′
t +

(
μ − λ

2

)′
(Ax + Gy) +

(
λ − μ

2

)′
b

≥
∣
∣
∣
∣∣

(
μ − λ

2

)′
t +

(
λ + μ

2

)′
(Ax + Gy) −

(
λ + μ

2

)′
b

∣
∣
∣
∣∣

.

(20)

Then we can write the corresponding conic MIR inequalities for (20) by treating
the left-hand-side of inequality (20) as a single continuous variable. Constraint
(20) allows us to utilize multiple polyhedral conic constraints (4) simultaneously.

4 Preliminary Computational Results

In this section we report our preliminary computational results with the conic
mixed-integer rounding inequalities. We tested the effectiveness of the cuts on
SOCMIP instances with cones Q2, Q25, and Q50. The coefficients of A, G, and
b were uniformly generated from the interval [0,3]. All experiments were per-
formed on a 3.2 GHz Pentium 4 Linux workstation with 1GB main memory using
CPLEX1 (Version 10.1) second-order conic MIP solver. CPLEX uses a barrier
algorithm to solve SOCPs at the nodes of a branch-and-bound algorithm.

Conic MIR cuts (15) were added only at the root node using a simple sep-
aration heuristic. We performed a simple version of conic aggregation (20) on
pairs of constraints using only 0 − 1 valued multipliers λ and μ, and checked for
violation of conic MIR cut (15) for each integer variable xj with fractional value
for the continuous relaxation.

In Table 1 we report the size of the cone (m), number (n) of integer vari-
ables in the formulation, the number of cuts, the integrality gap (the percentage
gap between the optimal solution and the continuous relaxation), the number
of nodes explored in the search tree, and CPU time (in seconds) with and with-
out adding the conic mixed-integer rounding cuts (15). Each row of the table
represents the averages for five instances. We have used the default settings of
CPLEX except that the primal heuristics were turned off. CPLEX added a small
number of MIR cuts (18) to the formulations in a few instances.

We see in Table 1 the conic MIR cuts have been very effective in closing the inte-
grality gap. Most of the instances had 0% gap at the root node after adding the cuts
and were solved without branching. The remaining ones were solved within only a
few nodes. These preliminary computational results are quite encouraging on the
positive impact of conic MIR cuts on solving conic mixed-integer programs.

1 CPLEX is a registered trademark of ILOG, Inc.
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Table 1. Effectiveness of conic MIR cuts (15)

without cuts with cuts
m n % gap nodes time cuts % gap nodes time

100 95.8 19 0 87 0.4 1 0
200 90.8 29 0 192 0.6 1 0

2 300 90.3 38 0 248 0.6 1 0
400 85.2 62 0 322 0.0 0 0
500 86.4 71 0 349 0.7 1 0
100 8.6 10 0 35 2.6 2 0
200 41.2 80 2 101 4.5 12 1

25 300 46.1 112 4 20 0.0 0 2
400 68.3 5951 295 99 17.8 63 12
500 74.6 505 24 116 3.4 6 3
100 24.5 7 1 42 0.0 0 1
200 51.3 67 6 44 0.0 0 1

50 300 52.6 105 13 51 3.2 3 2
400 55.6 158 20 49 5.4 7 5
500 66.9 233 43 62 1.3 2 3
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