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a b s t r a c t

We study discrete optimization problems with a submodular mean-risk minimization objective. For 0–1
problems a linear characterization of the convex lower envelope is given. For mixed 0–1 problems we
derive an exponential class of conic quadratic valid inequalities. We report computational experiments
on risk-averse capital budgeting problems with uncertain returns.
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1. Introduction

In financial markets, high levels of risk are associated with big
returns as well as big losses; on the other hand, with lower levels
of risk, the potential for return or loss is small. Risk management
is fundamentally concerned with finding an optimal trade-off
between risk and return matching an investor’s risk tolerance.
Although studied mostly in a financial context, managing risk is
relevant in any area with a significant source of uncertainty.

The mean-risk optimization is well-studied for problems with
a convex feasible set [18,22]. However, this is not the case in
the discrete setting, even though, portfolios are often restricted
to discrete choices in practice. In this paper, we study mean-risk
minimization for problems with discrete decision variables. In
particular, we consider

min

{
f (x) =

∑
i

µixi + Ω

√∑
i

σ 2
i x

2
i : x ∈ F

}
, (1)

where F ⊆ {0, 1}n × [0, 1]m. Problem (1) often arises
when minimizing a stochastic objective over a discrete feasible
set. For example, if µi and σ 2

i are the mean and variance
of independent normally distributed random variables `i (loss
or negative return on investment i), for 0 < ε < 0.5,
by setting Ω = −Φ−1(ε), where Φ is the c.d.f. of the standard
normal distribution, (1) is equivalent to the value-at-risk (VaR)
minimization problem (e.g. Birge and Louveaux [14]):
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ζ (ε) := min

{
z : Prob

(∑
i

`ixi > z

)
≤ ε, x ∈ F

}
. (2)

Here F denotes a constrained set of possible investments,
which may include discrete choices. So, the mean-risk objective of
(1) models the trade-off between long-run average and short-run
risk with the parameter Ω measuring the investor’s risk tolerance.
We refer the reader to Ahmed [1] and references therein for
stochastic optimization with more general mean-risk objectives.

If `i has an unknown distribution with partial information,
then a robust version (a la Ben-Tal and Nemirovski [5,8], El Ghaoui
et al. [17]) of VaR minimization (2) can be written as problem
(1) by appropriately choosing Ω . For example, if only the first
two moments µi, σ 2

i of `i are known, then a robust version based
on extremal probability distributions with such moments can be
written as (1) by letting Ω =

√
(1 − ε)/ε (Bertsimas and Popescu

[10], El Ghaoui et al. [16]).
We mention a few earlier uses of the model (1) in a

discrete setting. Ishii et al. [20] consider a stochastic spanning
tree problem, where edge lengths are i.i.d. Normal(µi, σ

2
i ) and

formulate it as (1) with F denoting the set of spanning trees
of a graph. Ozsen et al. [25] and Shen et al. [27] define risk
pooling models of the form (1) for integrated warehouse location
and inventory. In these models the objective captures fixed and
transportation costs as well as the cost of maintaining safety stock
for uncertain retailer demand during the delivery lead time, andF
denotes the set of feasible warehouse locations and corresponding
retailer assignments. Vielma et al. [28] solve discrete portfolio
optimization problems with a risk constraint with a general
branch-and-bound algorithm based on the linear approximation
of the conic quadratic cone due to Ben-Tal and Nemirovski [7].

Problem (1) is also referred to as robust discrete optimization. For
the 0–1 case, i.e., whenm = 0, Bertsimas and Sim [13] describe an
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algorithm converging to a locally optimal solution. Bertsimas and
Sim [11,12] give a linear approximation for themean-risk objective
of problem (1). Atamtürk [2] gives several strong alternative
formulations for this linear model.

When restricted to only binary variables, the objective of
function f of (1) is submodular. In Section 2 we show a connection
between the convex lower envelope of submodular f and extended
polymatroids. Then, in Section 3 we give a complete linear
description of the convex lower envelope of themean risk function
of (1). In Section 4 we consider the generalization to mixed 0–1
problems and derive valid conic quadratic constraints for the
corresponding convex lower envelope. In Section 5 we discuss
computational experiments on using these results to solve amean-
risk capital budgeting problem with discrete choices. Finally, we
finish with a few closing remarks in Section 6 indicating that our
results indeed hold for a generalization of (1).

2. Preliminaries

In this section we consider the minimization of a set function
and give a simple result on its convex lower envelope, which we
use for the mean-risk minimization objective of (1). Let N :=

{1, . . . , n} be a finite set and f : 2N
→ R be a set function on

N . We are interested in minimizing f , i.e.,

min
S⊆N

f (S). (3)

Without loss of generality, we may assume that f (∅) = 0, since
otherwise we can solve the equivalent minimization problem for
f ′

:= f − f (∅), i.e., the shifted function f ′ with f ′(S) = f (S) − f (∅)
for all S ⊆ N .

Throughout the paper, by abusing notation, we will refer to a
set function also as f (x), where x ∈ {0, 1}n is the indicator vector
for subsets of N . Let χS denote the indicator vector of a set S and Sx
denote the support set of a vector x. Now using this notation, let us
we rewrite the minimization problem (3) as min

{
z : (x, z) ∈ Qf

}
,

where

Qf := conv{(x, z) ∈ {0, 1}n × R : f (x) ≤ z}.

It is clear thatQf is the convex lower envelope of f . Because it is
the convex hull of disjunction of 2n polyhedra (for each assignment
of x),Qf is a polyhedron as well. For a set function f on N satisfying
f (∅) = 0, let

EPf := {π ∈ RN
: π(S) ≤ f (S) for all S ⊆ N},

where π(S) denotes
∑

i∈S πi, S ⊆ N . The next simple proposition
shows a polarity relationship between EPf and a subset of the valid
inequalities for Qf .

Proposition 1. Inequality πx ≤ z is valid for Qf if and only if
π ∈ EPf .

Proof. For π ∈ EPf , we have πx = π(Sx) ≤ f (Sx) ≤ z. Conversely,
ifπ 6∈ EPf , thenπ(S) > f (S) for some S ⊆ N; but then for z = f (S),
π(S) = πχS > z, contradicting the validity of πx ≤ z. �

If the function f is submodular, then inequalities of Proposi-
tion 1 have a nice characterization as shown by Edmonds [15].

Definition 1. A set function f : 2N
→ R is submodular if

f (S) + f (T ) ≥ f (S ∪ T ) + f (S ∩ T ) for all S, T ⊆ N.

For a survey on submodular function minimization we refer
the reader to [19,21]. If f is a submodular function, EPf is called
the extended polymatroid associated with f [26]. For an extended
polymatroid, we call inequalities πx ≤ z with π ∈ EPf as the
extended polymatroid inequalities of Qf . Edmonds [15] showed that
π is an extreme point of extended polymatroid EPf if and only if
πi = f (S(i)) − f (S(i−1)), where S(i) = {(1), (2), . . . , (i)}, 1 ≤ i ≤ n
for some permutation ((1), (2), . . . , (n)) of N . We will refer to
inequalities πx ≤ z defined by the extreme points of the extended
polymatroid EPf as the extremal extended polymatroid inequalities.

The separation problem for extended polymatroid inequalities
is optimization of a linear objective over EPf , which can be solved
by the greedy algorithm [15]: Given x̄ ∈ Rn

+
and z̄ ∈ R, checking

whether (x̄, z̄) violates an extended polymatroid inequality is
equivalent to solving the problem ζ := max

{
π x̄ : π ∈ EPf

}
. For

a nonincreasing order x̄(1) ≥ x̄(2) ≥ · · · ≥ x̄(n), let S(i) =

{(1), (2), . . . , (i)} and π̄(i) = f (S(i))− f (S(i−1)) for 1 ≤ i ≤ n. Then,
the point (x̄, z̄) is violated by an extended polymatroid inequality
if and only if ζ = π̄ x̄ > z̄.

Remark 1. Note that if f (∅) 6= 0, the extended polymatroid
inequalities for Qf take the form

πx ≤ z − f (∅), π ∈ EPf ′ ,

where f ′
:= f − f (∅).

3. 0–1 optimization

In this section we consider minimizing the mean-risk objective
of (1) with only binary variables:

min
{
g(x) := ax + Ω

√
cx + σ 2 : x ∈ {0, 1}n

}
, (4)

where Ω, σ , c ≥ 0. Notice that we replaced x2i in (1) with xi in (4)
as they are equivalent for xi ∈ {0, 1}. Note, however, whereas the
objective of (1) is a convex function, the objective of (4) is concave
over Rn

+
.

If Ω = 0, the problem is trivial; otherwise, by scaling the
objective, we assume that Ω = 1. Also, without loss of generality,
we assume that ci > 0 for all i, because if ci = 0, then xi can
be set to either 0 or 1, depending on the sign of ai. We index the
variables so that a1

c1
≤ · · · ≤

an
cn

(breaking the ties arbitrarily) and
let Si := {1, 2, . . . , i} for i = 1, 2, . . . , n.

Proposition 2. The set of all optimal solutions to (4) is some
collection S of nested sets Si1 ⊂ Si2 ⊂ · · · ⊂ Sik , 1 ≤ k ≤ n.

Proof. This proposition is a slight strengthening of Theorem 4.2
in [27] and concerns all optimal solutions to a given problem rather
than some. For completeness, we repeat the argument here, by also
observing the strict concavity of the square root function. For every
optimal solution S and i < j, j ∈ S implies i ∈ S. To see this, suppose
i 6∈ S and consider the objective values z∗, z ′, and z ′′ corresponding
to S, S ∪ i and S \ j, respectively. Then, for some δ ≥ 0

z ′
− z∗

ci
=

ai
ci

+

√
δ + ci + cj −

√
δ + cj

ci
<

aj
cj

+

√
δ + cj −

√
δ

cj
=

z∗
− z ′′

cj
≤ 0,

where the strict inequality holds by strict the concavity of the
square root function. Thus, z ′ < z∗, contradicting optimality
of S. �

Remark 2. Proposition 2 implies that for any choice of data there
is at most one optimal solution of a given cardinality. Hence, there
are at most n distinct optimal solutions, which are nested. This is
because while indexing variables, if ai

ci
=

aj
cj
, then for any optimal

solution S we must have either {i, j} ⊆ S or {i, j} ∩ S = ∅.
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Proposition 3. The mean-risk function g is submodular; and so is
g − σ .

Proof. From the concavity of the square root function and c ≥ 0,
we see that the difference function ρi(S) := g(S ∪ i) − g(S),
S ⊂ N and i ∈ N \ S, is nonincreasing, i.e., ρi(S) ≥ ρi(T ) for all
S ⊆ T ⊂ N and all i ∈ N \ T , which is equivalent to Definition 1 of
submodularity [23,24]. �

Theorem 1. Qg is described completely by extended polymatroid
inequalities

πx ≤ z − σ , π ∈ EPg−σ (5)

and bound inequalities 0 ≤ x ≤ 1.

Proof. Consider the set of optimal solutions for min{αx + βz :

(x, z) ∈ Qg} with (α, β) 6= (0, 0). We may assume that β ≥ 0,
since otherwise the problem is unbounded. If β = 0, then there
exists i ∈ N with αi 6= 0. If αi > 0, xi = 0 for all optimal
solutions. If αi < 0, xi = 1 for all optimal solutions. Then, we may
assume, if necessary by scaling, that β = 1. Now, observe that the
optimization problem min

{
αx + z : (x, z) ∈ Qg

}
is equivalent to

the minimization of the submodular function h(S) :=
∑

i∈S αi +

g(S), whose optimal solutions S are nested in a nondecreasing
order of (αi + ai)/ci by Proposition 2. Then, the extremal extended
polymatroid inequality πx ≤ z − σ , π ∈ EPh−σ with this order
satisfies π(S) = h(S) − σ for all S ∈ S. Now let π ′

= π − α.
Becauseπ ′(S) = π(S)−

∑
i∈S αi,π ′

∈ EPg−σ andπ ′(S) = g(S)−σ
for all S ∈ S. Hence each optimal solution (x, z) = (χS, g(S)) is on
the face of Qg defined by π ′x ≤ z − σ . �

4. Mixed 0–1 optimization

In this section we consider the mean-risk minimization
objective with binary as well as continuous variables

min

ax + by + Ω

(
cx +

m∑
i=1

diy2i

)1/2

: (x, y) ∈ F

 , (6)

where F = {0, 1}n ×[0, 1]m and Ω, c, d > 0. Indeed, if necessary,
by scaling the objective we assume that Ω = 1. Now let us state
problem (6) as min {z : (x, y, z) ∈ Rh}, where

Rh := conv{(x, y, z) ∈ {0, 1}n × [0, 1]m × R : h(x, y) ≤ z},

and

h(x, y) := ax + by +

(
cx +

m∑
i=1

diy2i

)1/2

.

Unlike the 0–1 case in the previous section, Rh is not a
polyhedral set. The function h is convex in y and concave in x
over the domain. Note that for any fixed value of x, problem (6)
reduces to a conic quadratic optimization problem (Ben-Tal and
Nemirovski [6]) that can be solved easily. Also from Proposition 2,
we know that for any fixed value of y, the optimal binary solution
has a nested structure, which is independent of the value of y (the
ordering of the variables in Proposition 2 is not a function of σ 2).
Therefore, problem (6) can be solved in polynomial time, by fixing
binary variables in the nested order Si, i = 1, . . . , n one at a
time and then solving the remaining conic quadratic optimization
problem in polynomial time.

In the following, we derive conic quadratic valid inequalities of
the form

πx + by +

(∑
i∈T

diy2i

)1/2

≤ z, T ⊆ {1, 2, . . . ,m} (7)
for Rh by using the results from the 0–1 case. Toward this end, for
T ⊆ {1, 2, . . . ,m} let us derive a set function fT : 2N

→ R as
fT (x) := h(x, χT ). Clearly, fT is submodular on N . Let σT := fT (0) =

b(T ) + d(T )1/2.

Proposition 4. Inequality (7) is valid for Rh if and only if π ∈

EPfT−σT .

Proof. Suppose π ∈ EPfT−σT . For (x, y) ∈ {0, 1}n × [0, 1]m

πx + by +

(∑
i∈T

diy2i

)1/2

≤ fT (x) − σT + by +

(∑
i∈T

diy2i

)1/2

= ax + by + (cx + d(T ))1/2 − d(T )1/2 +

(∑
i∈T

diy2i

)1/2

≤ ax + by +

(
cx +

m∑
i=1

diy2i

)1/2

≤ z,

where the last line follows from

(δ + d(T ))1/2 − d(T )1/2

= min
0≤y≤1

(
δ +

∑
i∈T

diy2i

)1/2

−

(∑
i∈T

diy2i

)1/2

for any δ ≥ 0 by the concavity of the square root function and
d ≥ 0. Therefore, (x, y, z) ∈ Rh.

Conversely, if π 6∈ EPfT−σT , then for some x̄ ∈ {0, 1}n we have
π x̄ > fT (x̄)− σT . But, then for (x̄,

∑
i∈T ei, z̄) with z̄ = ax̄+ b(T )+

(cx̄ + d(T ))1/2, inequality (7) is violated. �

Note that inequalities (7) reduce to their linear counterparts
(5) when y = χT . Because these inequalities have the same
structure as (5), for fixed T the separation problem for them is also
a polymatroid optimization problem.

5. Computational experience

In this section we present our computational experiments on
using the inequalities developed for solving a risk-averse capital
budgeting problem

ζ = max

{
µx − Ω(ε)

√∑
i

σ 2
i x

2
i

:

∑
i

aixi ≤ b, x ∈ {0, 1}n × [0, 1]m
}

· (8)

As usual, µi and σ 2
i denote the mean and variance of uncertain

return ri on investment i. We assume that the returns are
independent. Then with Ω(ε) =

√
(1 − ε)/ε for small ε > 0, the

return of the portfolio is at least ζ with a probability greater than
1 − ε for an optimal solution to (8) [10,16].

For the computational experiments, we used the MIP solver of
CPLEX 11.0 that solves SOCP relaxations at the nodes of the branch-
and-bound tree, with CPLEX heuristics turned off. In Table 1 we
report on the experiments with pure 0–1 decisions for varying
problem sizes and probabilistic guarantees. For each combination,
five random instances are generated with µi and ai from uniform
[0, 100], and σi from uniform [0, µi]. The budget b is set to
0.5 ·

∑
i ai. In the table we compare the integrality gap of the

SOCP relaxation, number of nodes explored and the CPU time (in
seconds) with and without adding extended polymatroid cuts (5).
The cuts are generated only at the root node with the greedy
algorithm as explained in Section 2. We observe that, in general,
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Table 1
Pure 0–1 problems

n ε CPLEX CPLEX + cuts (5)
% gap Nodes Time Cuts % gap Nodes Time

.10 5.67 250 1 4 0.73 47 0

.05 12.43 585 2 4 1.06 115 1
25 .03 24.43 2345 6 7 2.67 125 1

.02 32.62 843 3 5 1.88 52 0

.01 43.21 315 1 5 0.65 17 0

.10 2.88 1129 34 3 0.30 193 3

.05 6.46 4228 33 4 0.33 199 2
50 .03 10.24 29957 214 5 0.31 134 2

.02 14.67 98530 646 7 0.66 911 18

.01 26.05 205290 1076 8 1.52 16439 79

.10 0.96 3025 30 3 0.10 308 7

.05 2.35 13375 145 4 0.09 192 3
100 .03 4.96 76809 911 5 0.14 475 25

.02 7.96 182603 1873a 5 0.13 978 181

.01 15.81 204104 1884a 10 0.26 2904 831
a Instances could not be solved in 30 mins.

Table 2
Mixed 0–1 problems (n = 100)

m ε CPLEX CPLEX + cuts (7)
% gap Nodes Time Cuts % gap Nodes Time

.10 0.81 556 7 2 0.23 92 1

.05 2.09 10792 139 3 0.54 567 8
5 .03 4.40 55452 788 4 0.62 9124 156

.02 6.97 149853 1859 5 0.90 66819 1158

.01 13.68 167627 1871a 7 2.12 107531 1849a

.10 0.74 569 8 2 0.19 124 2

.05 1.91 9116 138 3 0.29 985 16
10 .03 4.04 42451 709 4 0.67 12950 206

.02 6.38 99521 1511 5 1.13 64403 1296

.01 12.15 139219 1857a 6 2.86 80997 1838a

.10 0.63 571 10 3 0.09 109 2

.05 1.63 8974 153 3 0.26 895 22
20 .03 3.41 33259 665 4 0.66 7478 278

.02 5.29 72535 1386 6 1.27 24248 1110

.01 9.97 114365 1852a 8 3.52 40816 1830a

a Instances could not be solved in 30 mins.

as the probabilistic guarantee increases, so does the integrality
gap of the original SOCP formulation. This can be explained by the
increasing weight of the risk term in the objective, which typically
leads to a high number of fractional variables in the continuous
relaxation. Note that the number of branch-and-bound nodes and
the CPU time increases with the problem size.

We note that for n = 100 without cuts, none of the five
instances for ε = 0.02, 0.01 could be solved to optimality within
the time limit of 30 mins. The average optimality gap at
termination for these unsolved instances are 3.30% and 10.79%,
respectively. On the other hand, when cuts are added, the
integrality gap at the root node of the tree reduces to less than one
percent for almost all instances, which translates to a significant
reduction in the number of nodes as well in the CPU time. Recall
that by Theorem 1 the remaining small gap at the root node and
branching are due to the budget constraint.

In Table 2 we report the results for mixed 0–1 problems
with 100 binary variables and varying number (m) of continuous
variables. In these experiments, we have used the nonlinear
cuts (7). As before, the cuts were generated only at the root node.
We used a simple heuristic that picks T ⊆ {1, . . . ,m} for the
nonlinear cut (7) to add. For a given (x̄, ȳ), an index i is included
T with probability 0 if ȳi ≤ 0.33, with probability 0.5 if 0.33 <
ȳi < 0.66, and with probability 1 if ȳi ≥ 0.66. Once T is fixed,
the coefficients π for the binary variables are computed using the
separation algorithm in Section 2. In the table we see a significant
reduction in the integrality gap, the number of nodes explored as
well as the total CPU time with the addition of the cuts. None of
the instances with ε = 0.01 could be solved to optimality for
m = 5, 10, 15 within the time limit of 30 minutes. The average
optimality gap left at termination for these unsolved instances are
8.76, 7.39, 5.84%, respectively, when no cuts are added compared
with 1.59, 3.60, 2.71%, respectively, when the cuts are added.
Hence, for these instances, although an optimal solution is not
found either, the optimality gap is reduced significantly when the
cuts are used.

6. Final remarks

We have shown that the convex lower envelope of the mean-
risk function of (1) can be described with simple bounds and ex-
tended polymatroid inequalities. Our results in Section 3 extend to

g(x) = ax + h(co + cx)

for strictly concave h and co ≥ 0, c > 0. Therefore, the results in
Section 4 for the mixed 0–1 case hold, for instance, for the robust
convex objective defined with the Lp norm (Bertsimas et al. [9])

h(x) = µx + Ω

(∑
i

(σixi)p
)1/p

with Ω > 0, σ > 0 and p > 1. To which other functions the
results in the paper extend is an interesting question.

The inequalities may be useful computationally, even in cases
where they give a partial characterization. Our computational
study for testing the impact of the inequalities as cuts for
minimizing value at risk in capital budgeting problems shows
promise. For the mixed 0–1 case additional research, perhaps,
based on the application of general techniques for conic mixed-
integer programming, such as conic mixed-integer rounding [3]
and conic lifting [4], is warranted.
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