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a b s t r a c t

The submodular knapsack set is the discrete lower level set of a submodular function.
The modular case reduces to the classical linear 0–1 knapsack set. One motivation for
studying the submodular knapsack polytope is to address 0–1 programming problems
with uncertain coefficients. Under various assumptions, a probabilistic constraint on 0–1
variables can be modeled as a submodular knapsack set.
In this paper we describe cover inequalities for the submodular knapsack set and

investigate their lifting problem. Each lifting problem is itself an optimization problemover
a submodular knapsack set. We give sequence-independent upper and lower bounds on
the valid lifting coefficients and show that whereas the upper bound can be computed
in polynomial time, the lower bound problem is N P -hard. Furthermore, we present
polynomial algorithmsbased onparametric linear programming and computational results
for the conic quadratic 0–1 knapsack case.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

We consider the polytope defined by the convex hull of the discrete lower level set of a submodular set function. Given
a finite ground set N , a set function f : 2N → R is submodular on N if

f (S)+ f (T ) ≥ f (S ∪ T )+ f (S ∩ T ) for all S, T ⊆ N.

Throughout, by abusing notation, we refer to a set function also as f (χS), where χS denotes the binary characteristic vector
of S ⊆ N . Given a submodular function f on N and b ∈ R, the submodular knapsack set is

X :=
{
x ∈ {0, 1}N : f (x) ≤ b

}
.

For modular f , X reduces to the classical linear 0–1 knapsack set.
For notational simplicity, we denote a singleton set {i} with its unique element i. For a vector v ∈ RN , we use v(S) to

denote
∑
i∈S vi for S ⊆ N . Given a set function f on N and i ∈ N , let the difference function be

ρi(S) := f (S ∪ i)− f (S) for S ⊆ N \ i.

It is easy to check that f is submodular if and only if ρi(S) ≥ ρi(T ) for all S ⊆ T ⊆ N \ i and i ∈ N; that is, the difference
function ρi is nonincreasing on N \ i (see e.g. [1]).
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Motivation. Our motivation for studying the submodular knapsack polytope is to address linear 0–1 knapsack problems
with uncertain coefficients. If the knapsack coefficients ãi, i ∈ N , are random variables, then for small ε > 0 a probabilistic
(chance) constraint [2]

Prob(ãx ≤ b) ≥ 1− ε (1)

on x ∈ {0, 1}N can be modeled as a conic quadratic 0–1 knapsack set

XCQ :=
{
x ∈ {0, 1}N : ax +Ω(ε)‖Dx‖ ≤ b

}
,

where ai is a nominal value and di is a deviation statistic for ãi, i ∈ N , D = diag(d1, d2, . . . , d|N|), Ω(ε) > 0, and ‖ · ‖
is the L2 norm. The term Ω(ε)‖Dx‖ is used to build sufficient slack into the constraint to accommodate the variability of
ã around the nominal value a. If ãi’s are normally distributed independent random variables, then letting ai and di be the
mean and standard deviation of ãi, i ∈ N , and Ω(ε) = −Φ−1(ε) with 0 < ε ≤ 0.5, where Φ is the standard normal
cumulative distribution function, the set of 0–1 solutions for the probabilistic knapsack constraint (1) is exactly XCQ (see
e.g [3]). On the other hand, if ãi’s are known only through their first two moments ai and d2i , then any point in XCQ with
Ω(ε) =

√
(1− ε)/ε satisfies the probabilistic constraint (1) [4,5]. Alternatively, if ãi’s are only known to be symmetric

with support [ai − di, ai + di], then points in XCQ withΩ(ε) =
√
ln(1/ε) satisfy constraint (1) [6,7]. Hence, under different

assumptions of uncertainty on ã, one arrives at different instances of the conic quadratic knapsack set XCQ .
Consider now a set function f : 2N → R defined as

f (S) = a(S)+ g(c(S)), (2)

where g is a concave function and a(S) and c(S) denote the sums of the components of a, c ∈ RN on S ⊆ N . It is easy to
check that if c ≥ 0, then f is submodular on N (see e.g. [8]). To see that XCQ is a special case of X , observe that the conic
quadratic constraint defining XCQ can be written as

ax+Ω
√

x′D2x ≤ b. (3)

Because x is a binary vector, letting ci = Ω2d2i for i ∈ N , we see that χS, S ⊆ N is feasible for (3) if and only if S satisfies
f (S) = a(S)+

√
c(S) ≤ b.

Although the polyhedral results in this paper are for the more general submodular knapsack polytope conv(X), we give
efficient algorithms for a set function of the form (2). Because XCQ reduces to the linear 0–1 knapsack set when D = 0,
optimization over X isN P -hard. Also as X ⊆ {0, 1}N , conv(X) is a polyhedral set.
Relevant literature. Most of the literature on the knapsack problem is for the linear case [9]. The polyhedral analysis of the
linear knapsack set was initiated by Balas [10], Hammer et al. [11], andWolsey [12]. See also [13–15]. For a recent review of
the polyhedral results on the linear knapsack set we refer the reader to [16]. The majority of the research on the nonlinear
knapsack problem is devoted to the case with separable nonlinear functions; see e.g. [17–19]. There are few studies on
the nonseparable knapsack problem, most notably on the knapsack problem with quadratic objective and linear constraint
[20,21]. Helmberg et al. [22] give SDP relaxations of knapsack problems with quadratic objective. Gallo and Simeone [23]
give a Lagrangian approach for maximizing a supermodular function over a linear knapsack constraint. Sviridenko [24]
gives an approximation algorithm for maximizing a submodular function over a linear knapsack constraint. Atamtürk and
Narayanan [25] give a cutting plane approach for minimizing a submodular function of the form (2) over a discrete set.
Ahmed and Atamtürk [8] consider maximizing the same function. We refer the reader to [26] for a survey of nonlinear
knapsack problems. General mixed-integer rounding and disjunctive approaches have been developed by Atamtürk and
Narayanan [27] Çezik and Iyengar [28] for conic quadratic mixed integer sets, but these approaches do not exploit any
special structure. It appears that the submodular knapsack set X has not been considered in the literature before.
Outline. In Section 2 we describe linear inequalities for X . In particular, we present cover inequalities for X and discuss
the lifting problem associated with them. The lifting problems of the cover inequalities for X are themselves optimization
problems over submodular knapsack sets. We give upper and lower bounds on valid lifting coefficients. In Section 3 we give
efficient algorithms for computing the bounds, approximations of the lifting coefficients and for separation for the cover
inequalities for the set function of the form (2). In Section 4 we present computational results on the conic quadratic case.

2. Polyhedral analysis

In this section we describe valid inequalities for X . In particular, we discuss cover inequalities for X and their lifting.
Throughout the section we make the following assumptions:

(A.1) f is nondecreasing,
(A.2) f (∅) = 0,
(A.3) 0 < ρi(∅) ≤ b for all i ∈ N .

Because f is submodular, assumption (A.1) is equivalent to ρi(N \ i) ≥ 0 for all i ∈ N , which can be checked easily.
Assumption (A.1)holds, for instance, for a function f of the form (2) if a ≥ 0. If f is nondecreasing, thenX is an independence
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system; that is, χT ∈ X implies χS ∈ X for all S ⊆ T ⊆ N . Assumption (A.2) can be made without loss of generality as f
can be translated otherwise. If (A.1) and (A.2) hold, assumption (A.3) can be made without loss of generality. Because f is
nondecreasing, we have ρi(∅) ≥ 0. However, submodularity and ρi(∅) = 0 implies that ρi(S) = 0 for all S ⊆ N \ i, in which
case xi can be removed from X . Finally, if ρi(∅) > b, then xi = 0 in every feasible solution.

2.1. Valid inequalities

It is easy to see from (A.2) and (A.3) that conv(X) is a full-dimensional polytope. The following results on independence
systems are standard and easy to verify (see e.g. [11]).

Proposition 1. Inequality xi ≥ 0, i ∈ N, is facet-defining for conv(X).

Proposition 2. Inequality xi ≤ 1, i ∈ N, is facet-defining for conv(X) if and only if f ({i, j}) ≤ b for all j ∈ N \ i.

Proposition 3. If αx ≤ β defines a facet of conv(X) not including 0, then α ≥ 0 and β > 0.

Definition 1. A subset S of N is said to be a cover for X if λ := f (S)− b > 0. A cover S isminimal if f (S \ i) ≤ b for all i ∈ S.

For a cover S ⊆ N for X let the cover inequality be

x(S) ≤ |S| − 1. (4)

The cover inequality simply states that not all elements in a cover can be picked simultaneously to satisfy the knapsack
constraint f (x) ≤ b. Let

X(S) := {x ∈ X : xi = 0 for i ∈ N \ S} .

Proposition 4. If S ⊆ N is a cover for X, then cover inequality (4) is valid for X. Moreover, (4) defines a facet of conv(X(S)) if
and only if S is a minimal cover.

The cover inequalities, typically, do not define facets of conv(X); however, they can be strengthened by extending them
with non-cover elements. Unlike the linear case, for the submodular knapsack set, even the simple extensions are sequence-
dependent. Proposition 5 describes such an extension of the cover inequalities (4).

Definition 2. Letπ = (π1, . . . , π|N\S|) be a permutation of the elements ofN\S and Si = S∪{π1, . . . πi} for i = 1, . . . , |N\S|
with S0 = S. The extension of S ⊆ N with respect to π is defined as Eπ (S) := S ∪ Uπ (S), where

Uπ (S) :=
{
πj ∈ N \ S : ρπj(Sj−1) ≥ ρi(∅) for all i ∈ S

}
.

Proposition 5. If S ⊆ N is a cover for X, the extended cover inequality

x(Eπ (S)) ≤ |S| − 1 (5)

is valid for X. Moreover, inequality (5) defines a facet of conv(X(Eπ (S))) if S is a minimal cover and for each i ∈ Uπ (S) there
exist distinct ji, ki ∈ S such that f (S ∪ {i} \ {ji, ki}) ≤ b.

Proof. Let T be a subset of Eπ (S) of cardinality at least |S|. It is sufficient to show that f (T ) > b. Let K = S \ T and
L = Uπ (S) ∩ T =:

{
`1, . . . , `|L|

}
indexed consistently with permutation π . Because T = S ∪ L \ K and |T | ≥ |S|, we have

|K | ≤ |L|. Now using submodularity of f ,

f (T ) = f (S \ K)+
∑
`i∈L

ρ`i(S ∪ {`1, . . . , `i−1} \ K)

≥ f (S \ K)+
∑
πj∈L

ρπj(Sj−1)

≥ f (S \ K)+
∑
i∈K

ρi(∅)

≥ f (S \ K)+
∑
i∈K

ρi(S \ K) ≥ f (S) > b.

The second inequality follows from the definition of Uπ (S), |K | ≤ |L|, and assumption (A.1).
For the second part of the proposition, it is easy to see that the points χS\i for all i ∈ S and χS∪i\{ji,ki} for all i ∈ Uπ (S) and

ji, ki ∈ S are affinely independent and are on the face defined by (5). �

Example 1. Consider the conic quadratic knapsack set

X̂CQ =
{
x ∈ {0, 1}5 : 2x1 + 2x2 + 2x3 + x4 + x5 +

√
x4 + x5 ≤ 5.5

}
.
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For S = {1, 2, 3}we have λ = f (S)− 5.5 = 0.5 > 0 and the corresponding minimal cover inequality

x1 + x2 + x3 ≤ 2.

For permutation (4, 5), S1 = {1, 2, 3, 4} and S2 = {1, 2, 3, 4, 5}. As ρ4(S0) = 1+
√
1 = 2 and ρ5(S1) = 1+

√
2−
√
1 =

1.41, the corresponding extension E(4,5)(S) = {1, 2, 3, 4} gives the extended cover inequality

x1 + x2 + x3 + x4 ≤ 2.

Similarly, for permutation (5, 4), we have extension E(5,4)(S) = {1, 2, 3, 5} giving the extended cover inequality

x1 + x2 + x3 + x5 ≤ 2.

It is easily checked that both inequalities indeed define facets of conv(̂XCQ ).

2.2. Lifting cover inequalities for submodular knapsacks

In this section we study the lifting problem of the cover inequalities in order to strengthen them. The lifting procedure
has been very effective in strengthening inequalities for the linear 0–1 knapsack set (see [10,29,30,14,11,12] among others).
The lifting problem for cover inequalities for X is itself an optimization problem over the submodular knapsack set.
Precisely, we lift the cover inequality (4) to a valid inequality of the form

x(S)+
∑
i∈N\S

αixi ≤ |S| − 1. (6)

The lifting coefficients αi, i ∈ N \ S can be computed iteratively in some sequence: Suppose the cover inequality (4) is lifted
with variables xi, i ∈ J ⊆ N \ S to obtain the intermediate valid inequality

x(S)+
∑
i∈J

αixi ≤ |S| − 1 (7)

in some sequence of J . Then xk, k ∈ N \ I , where I = S ∪ J can be introduced to (7) by computing

αk = |S| − 1− ϕ(I, k), (8)

where

ϕ(I, k) := max
T⊆I

{
|S ∩ T | +

∑
i∈J∩T

αi : f (T ∪ k) ≤ b

}
· (9)

The lifting coefficients are typically a function of the sequence used for lifting. The extension given in Proposition 5 may
be seen as a simple approximation of the lifted inequalities (7).

Proposition 6. If S is aminimal cover for X, for any lifting sequence inequality (6)with coefficients satisfying (8) is facet-defining
for conv(X).

For a deeper understanding of the structure of the lifted inequalities, it is of interest to identify bounds on the lifting
coefficients that are independent of a chosen lifting sequence. We start with a simple lemma.

Lemma 1. Let S ⊆ N be a minimal cover and for h = 0, . . . , |S| let

µh := max {f (T ) : |T | = h, T ⊆ S} , (10)
νh := min {f (T ) : |T | = h, T ⊆ S} . (11)

Then, for all h = 0, . . . , |S| − 1 the following inequalities hold:

(i) µh ≤ µh+1 − λ, and (ii) νh ≤ νh+1 − λ.

Proof. Because S is a minimal cover, we have ρi(S \ i) ≥ λ for all i ∈ S.
(i) Let T ∗h be an optimal solution for (10) and k ∈ S \ T

∗

h . It follows from submodularity of f and minimality of cover S that

µh = f (T ∗h ) ≤ f (T
∗

h ∪ k)− λ ≤ µh+1 − λ.

(ii) For this part, let νh+1 be given by T ∗h+1 and k ∈ T
∗

h+1. Then by submodularity of f and minimality of cover S we have

νh+1 − λ = f (T ∗h+1)− λ ≥ f (T
∗

h+1 \ k) ≥ νh. �
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Table 1
Bounds for ρ5(∅) and ρ5(N \ 5).

h µh νh b− ν3−h

1 2.21 1.50 3.59
2 4.21 2.91 5.00
3 5.72 4.58 6.50
4 6.58 6.58 –

Proposition 7. Let S ⊆ N be a cover with λ := f (S)− b > 0 and µh and νh, h = 0, . . . , |S| be defined as in Lemma 1. Suppose
that the lifted cover inequality

x(S)+
∑
i∈N\S

αixi ≤ |S| − 1 (12)

defines a facet of conv(X). For any i ∈ N \ S, the following statements hold:
1. If ρi(N \ i) ≥ µh, then αi ≥ h;
2. If ρi(∅) ≤ b− ν|S|−1−h, then αi ≤ h.
Proof. 1. The lifting coefficient of xi, i ∈ N \ S, is smallest if xi the last variable introduced to (12) in a lifting sequence. So,
let αi = |S| − 1 − ϕ(N \ i, i). Also, because the intermediate lifting inequality before introducing xi is valid for X , we have
|S| − 1 ≥ ϕN\i(0, 0). Therefore, it is sufficient to show that ϕ(N \ i,∅)− ϕ(N \ i, i) ≥ h.
We claim that in any feasible solution to the lifting problem for xi (when it is lifted last), nomore than |S|−1−h variables

in S are positive. For contradiction, suppose at least |S|−h variables in S are positive. Let S ′ denote the set of positive variables.
Then, |S \S ′| ≤ h; and by submodularity and our assumption, we have that f (S ′) ≥ f (S)− f (S \S ′) > b−µh ≥ b−ρi(N \ i).
Hence, we see that

f (S ′ ∪ i) = f (S ′)+ ρi(S ′ \ i) ≥ f (S ′)+ ρi(N \ i) > b.

Thus χS′ is infeasible for L(N \ i, i).
Now let S∗ be an optimal solution set to this lifting problem. Let Ŝ ⊆ S be such that |̂S| = h, and Ŝ ∩ S∗ = ∅. By the

argument in the preceding paragraph such Ŝ exists. Then, we claim that S∗∪ Ŝ is a feasible solution to L(N \ i,∅). To see this,
observe that

f (S∗ ∪ Ŝ) ≤ f (S∗)+ f (̂S) ≤ f (S∗)+ µh ≤ f (S∗)+ ρi(N \ i) ≤ f (S∗ ∪ i) ≤ b.

Hence, we see that ϕ(N \ i,∅)− ϕ(N \ i, i) ≥ |̂S| = h.
2. For this part, it is sufficient to show that if the cover inequality (4) is lifted first with xi, then αi ≤ h. So let us consider the
lifting problem L(S, i). Let S ′ ⊆ S,

∣∣S ′∣∣ = |S| − 1− h be such that f (S ′) = ν|S|−1−h. Then, we have
f (S ′ ∪ i) = f (S ′)+ ρi(S ′ \ i) ≤ ν|S|−1−h + ρi(∅) ≤ b.

Hence, the optimal solution has at least |S| − 1− h variables positive, which shows that αi ≤ h. �

Remark 1. Proposition 7 is a generalization of Theorem 2 of [10] given for the linear 0–1 knapsack set. Observe that for the
linear case we have ρi(N \ i) = ρi(∅) = ai for all i ∈ N and b − ν|S|−h−1 = µh+1 − λ. Thus, for a linear knapsack set, the
statements of Proposition 7 reduce to: 1. if ai ≥ µh, then αi ≥ h; and 2. if ai ≤ µh+1 − λ, then αi ≤ h.

Example 2. Consider the conic quadratic 0–1 knapsack set XCQ given by

2x1 + 1x2 + 1.5x3 + 0.5x4 + a5x5 +
√
1x2 + 0.5x3 + 1x4 + c5x5 ≤ 6.5.

The set S = {1, 2, 3, 4} is a minimal cover with λ = f ({1, 2, 3, 4})− 6.5 = 0.08. Therefore, x1 + x2 + x3 + x4 ≤ 3 is valid
for X . In this example we illustrate the bounds given in Proposition 7 on the lifting coefficient α5 as a function of a5 and c5.
Table 1 shows µh, νh, and b− ν|S|−1−h for different values of h.
Given µh, one can solve the equation

ρ5(N \ 5) = a5 +
√
2.5+ c5 −

√
2.5 = µh,

to find the values for (a5, c5) for which the α5 ≥ h in all lifting sequences. In Fig. 1 we plot a5 +
√
c5 = µh for h = 1, 2, 3

with solid lines. Similarly, solving

ρ5(∅) = a5 +
√
c5 = b− ν|S|−1−h,

one finds the values for (a5, c5) for which the α5 ≤ h in all lifting sequences.We plot the solution h = 0, 1, 2, 3 in Fig. 1 with
dashed lines. In the same figure we show the possible values of valid lifting coefficients in different regions. Note that lifting
is sequence-independent in areas where there is a single value; that is, the lifting coefficient for the variable is the same for
any lifting order. The figure also illustrates that in a large domain of (a5, c5) the bounds from Proposition 7 can be used to
approximate the lifting coefficient.
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Fig. 1. Possible values for α5 as a function of (a5, c5).

3. Algorithms

In this section we describe algorithms for computing the bounds in Proposition 7 on the lifting coefficients as well as for
sequential lifting of the cover inequalities. We also discuss the separation problem associated with the cover inequalities.
Throughout the section, we consider a submodular function of the form

f (S) = a(S)+ g(c(S)), (13)

where g : R → R is an increasing concave function and a, c ≥ 0. Observe that f includes the conic quadratic function of
XCQ as a special case when g(x) =

√
x. In Section 4 we present computational results for the conic quadratic case.

3.1. Computing the bounds on the lifting coefficients

Problem (10) is the maximization of a submodular function subject to a cardinality constraint, which is N P -hard for a
general submodular function as submodular maximization includes the N P -hard max-cut problem [31] as a special case.
For a general submodular function, problem (11) is N P -hard as it includes as a special case the min-cut problem with
cardinality constraint, which is also N P -hard [32]. For a submodular function of the form (13), we show that while the
minimization problem can be solved in polynomial time, the maximization problem remainsN P -hard.
Consider, first, the cardinality-constrained minimization problem

νh = min
T⊆S
{a(T )+ g(c(T )) : |T | = h} . (14)

Parametric linear programming is an efficient approach for minimizing a concave function over matroid constraints [33,34].
We show below that solving (14) for all h = 1, . . . , |S| can be accomplished in the same complexity as solving it for a single
value of h.
Let Th be the collection of subsets of S of cardinality h and

Yh = conv{(a(T ), c(T )) : T ∈ Th}.

Note that polytope Yh ⊆ R2
+
. Consider now the problem

minα + g(γ ) : (α, γ ) ∈ Yh. (15)

Because the objective of (15) is concave, it has an optimal solution that is an extremepoint of Yh, and thus (15) is equivalent to
(14). The set of candidate extreme points of Yh can be enumerated efficiently by solving the parametric linear programming
problem over Yh

minα + λγ : (α, γ ) ∈ Yh for λ ≥ 0 (16)

and the single optimization problem

min γ : (α, γ ) ∈ Yh. (17)

Observe that because f is nondecreasing in on S, it is sufficient to consider extremepoints that are optimal for all nonnegative
objectives considered in (16) and (17). For fixed λ optimal solutions for (17) are given by the h smallest ci, i ∈ S. Optimal
solutions for (16) are given by the h smallest ai+ λci, i ∈ S. Because the order of (ai+ λci), i ∈ S, may change at most

(
|S|
2

)
Please cite this article in press as: A. Atamtürk, V. Narayanan, The submodular knapsack polytope, Discrete Optimization (2009),
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Fig. 2. Computing νh , h = 1, . . . , 3.

times as λ ranges over [0,+∞), there are at most
(
|S|
2

)
extreme points to consider, which can be enumerated by solving

(16) for each λ = λij, where λij is the solution for

ai + λci = aj + λcj, for i, j ∈ N : i 6= j. (18)

As a median can be found in linear time [35], while this suggests a complexity of O(|S|3) for each νh, 1 ≤ h ≤ |S|, a more
careful analysis shows that indeed all νh, h = 1, . . . , |S|, can be computed in the same complexity. Because the cardinality
of the solutions is restricted to h, only the order changes affecting the hth smallest and (h+1)th smallest items are relevant
for (16).
The key observation is that exchange of every pair {i, j} is of interest for at most one value of h. Suppose, first, that there

is a distinct critical value λij for each pair. Let κij = ai + λijci and T (λij) =
{
k ∈ S : ak + λijck < κij

}
. Then, λij corresponds

to the two alternative optimal solutions T (λij)∪ i and T (λij)∪ j for (16) for h = |T (λij)| + 1. Suppose, now, that p > 2 lines
intersect at λ′, i.e., λ′ is solution for

( p
2

)
pairs. Then, λ′ corresponds to two alternative optimal solutions (an edge) for (16)

for h = |T (λ′)| + 1, . . . , |T (λ′)| + p− 1. Example 3 illustrates this observation.

Proposition 8. There is an O(|S|3) algorithm for computing all νh for h = 1, 2, . . . , |S|.

Proof. There are at most |S| subsets to consider as solutions for (17) for all h. On the other hand for (16), because for every
pair {i, j} ⊆ N there are at most two alternative solutions (i.e., an edge of Yh) for a particular h, the cumulative number
of extreme points (hence subsets of S) evaluated is

(
|S|
2

)
for all h = 1, 2, . . . , |S| − 1. As the original objective function

a(T )+ g(c(T )) can be computed in linear time for each candidate set T , the result holds. �

Example 3. Consider again the conic quadratic 0–1 knapsack set XCQ in Example 2 described by the constraint

2x1 + 1x2 + 1.5x3 + 0.5x4 + a5x5 +
√
1x2 + 0.5x3 + 1x4 + c5x5 ≤ 6.5.

Recall that S = {1, 2, 3, 4} is a minimal cover. We apply the algorithm described above for computing νh, h = 1, 2, 3. In
Fig. 2 we plot ai + γ ci, i ∈ S, as a function of γ . As |S| = 4 there are at most

(
4
2

)
= 6 intersections. In this example, lines 2

and 4 do not intersect.
At γ = 2 lines 3 and 4 intersect: Let ε be a small positive number. For γ = 2 − ε, {1, 3} and for γ = 2 + ε, {1, 4} are

optimal for (16) with h = 2. At γ = 1.5 lines 1 and 4 intersect: For γ = 1.5 − ε, {4} and for γ = 1.5 + ε, {1} are optimal
when h = 1. Finally, at γ = 1 lines 1, 2, and 3 intersect: For γ = 1 − ε, {4, 2} and for γ = 1 + ε, {4, 1} are optimal when
h = 2. For γ = 1− ε, {4, 2, 3} and for γ = 1+ ε, {4, 1, 3} are optimal when h = 3. Considering problem (17), we augment
the list of candidate sets by {1, 3, 2} for h = 3. These candidate sets and the corresponding values νh are listed in Table 2.
The optimal set for each h is underlined in the table.

Consider now the maximization problem

µh = max
T⊆S
{a(T )+ g(c(T )) : |T | = h} . (19)

Note that because the objective function is non-decreasing on S, without the cardinality constraint the problemwould have
the trivial solution S.We showbelow that, unlike in theminimization problem,with the addition of the cardinality constraint
the maximization problem becomes much more difficult.

Please cite this article in press as: A. Atamtürk, V. Narayanan, The submodular knapsack polytope, Discrete Optimization (2009),
doi:10.1016/j.disopt.2009.03.002
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Table 2
Computing νh over Yh .

h Extreme sets νh

1 {4} , {1} 1.50
2 {4, 2}, {1, 3} , {1, 4} 2.91
3 {4, 2, 3}, {4, 1, 3} , {1, 3, 2} 4.58

Proposition 9. Problem (19) isN P -hard.

Proof. Ahmed and Atamtürk [8] have shown that

max
T⊆S
−c(T )+ g(c(T )) (20)

with c ≥ 0 isN P -hard (their proof can be extended to the special case where g(x) =
√
x as well). We show here that (20)

reduces to the cardinality restricted problemwith non-decreasing objective (19): Given an instance of (20), let c̄ = maxi∈N ci
and rewrite the problem as

max
T⊆S
−|T |c̄ +

∑
i∈T

(c̄ − c)+ g(c(T )).

For all sets T because the first component of the objective is an integer multiple of−c̄ , problem (20) reduces to solving

−c̄h+max
T⊆S

{∑
i∈T

(c̄ − ci)+ g(c(T )) : |T | = h

}
for all h = 0, 1, . . . , |S| and taking the solution with the largest objective. �

Nemhauser et al. [36] give approximation algorithms formaximizing a submodular functionwith a cardinality constraint,
whichmay be used to compute a lower bound onµh. However, in this case, we require an algorithm for computing an upper
bound µ̄h so that we may employ Proposition 7; that is, if ρi(N \ i) ≥ µ̄h for µ̄h ≥ µh, then αi ≥ h.
The algorithm we propose is similar to the one for computing νh. Consider the two-dimensional optimization problem

µ̄h := maxα + g(γ ) : (α, γ ) ∈ Yh. (21)

Because Yh is a relaxation of its extreme points, µ̄h ≥ µh holds. Note that as the objective of (19) is non-decreasing, it has an
optimal solution that is a boundary point of the polytope Yh, but not necessarily an extreme point. The objective values for
the extreme points of Yh for all h = 1, . . . , |S| can be evaluated in O(|S|3) as in the minimization case using the parametric
linear programming approach.
For computing the objective for non-extreme candidate solutions of Yh, it suffices to maximize α + g(γ ) over each edge

of Yh. This problem is just a convex optimization of a univariate function: The line that goes through two adjacent extreme
points (a1, c1) and (a2, c2) of Yh is described by

L =
{
(a, c) : a− a1 = (c − c1)

a2 − a1
c2 − c1

}
.

Substituting out a, the function

f̄ (c) = a1 + (c − c1)
a2 − a1
c2 − c1

+ g(c),

is maximized at c̄ such that g ′(c̄) = a1−a2
c2−c1

. Comparing c̄ with its bounds c1 and c2, we find the optimal solution over the edge.
Clearly, this is accomplished in O(1) for each edge of Yh. Because the total number of adjacent extreme points considered
for all h by the parametric linear programming approach is at most

(
|S|
2

)
+ |S|, we have the following result.

Proposition 10. There is an O(|S|3) algorithm for computing all µ̄h for h = 1, 2, . . . , |S|.

3.2. Computing the lifting coefficients

We consider now computing valid lifting coefficients for (12). Suppose the intermediate lifted inequality contains
variables xi, i ∈ I . Computing ϕ(I, k), k ∈ N \ I , requires solving an optimization problem over the conic quadratic 0–1
knapsack set. As this may be computationally prohibitive, we solve the continuous relaxation of the lifting problem

ϕ̂(I, k) = max

{∑
i∈I

αixi : ak +
∑
i∈I

aixi + g

(
ck +

∑
i∈I

cixi

)
≤ b, 0 ≤ x ≤ 1

}
, (22)

where αi = 1 for i ∈ S ⊆ I , to obtain the lower bound

α̂k = |S| − 1− bϕ̂(I, k)c ≤ αk.
Please cite this article in press as: A. Atamtürk, V. Narayanan, The submodular knapsack polytope, Discrete Optimization (2009),
doi:10.1016/j.disopt.2009.03.002
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As αk is integer valued, α̂k is a valid lifting coefficient. In order to utilize an algorithm similar to the ones in the previous
section, we restate problem (22) by exchanging the roles of the objective and constraint and let

γI,k(z) = min

{
ak +

∑
i∈I

aixi + g

(
ck +

∑
i∈I

cixi

)
:

∑
i∈I

αixi ≥ z, 0 ≤ x ≤ 1

}
(23)

so that bϕ̂(I, k)c = max
{
z ∈ {0, . . . , |S| − 1} : γI,k(z) ≤ b

}
. Because the objective of (23) is concave, it has an optimal

solution that is an extreme point of the polytope

R(I, z) =

{
x ∈ RI :

∑
i∈I

αixi ≥ z, 0 ≤ x ≤ 1

}
.

Let
{
xi : i ∈ Kz

}
be the set of extreme points of R(I, z) and

Zz = conv
{
(a(xi), c(xi)) : i ∈ Kz

}
.

Then, the two-dimensional optimization problem

minα + g(γ ) : (α, γ ) ∈ Zz
is equivalent to problem (23). The set of all candidate extreme points of Zz can be enumerated by solving

min γ : (α, γ ) ∈ Zz, (24)

and the parametric linear programming problem

minα + λγ : (α, γ ) ∈ Zz for λ ≥ 0, (25)

whose optimal solution is given by a greedy algorithm that satisfies the continues knapsack constraint of R(I, z) in non-
decreasing order of ai

αi
+ λ

ci
αi
, i ∈ I . As the greedy order changes at most

(
|I|
2

)
times at λ = λij, where λij solves

ai
αi
+ λ

ci
αi
=
aj
αj
+ λ

cj
αj
, for i, j ∈ N : i 6= j,

there are at most
(
|I|
2

)
candidate extreme points, which are solutions to the (25) at the critical values λij. This gives an

O(|N|3 log |N|) algorithm for each z and a total of O(|S||N|3 log |N|) complexity for computing the lifting coefficient α̂k.
Indeed, computing all lifting coefficients α̂k, k ∈ N \ S, can be done in the same complexity. To see this, observe that each
time a newvariable is introduced to the lifting problem, atmost |N| new criticalλik values are introduced and the continuous
knapsack solutions for existing critical λij values can be updated in |S||N|2 log |N|. Hence, we have the following result.

Proposition 11. There is an O(|S||N|3 log |N|) algorithm for computing all α̂i for i ∈ N \ S.

Even though problem (22) can be solved in strongly polynomial time as shown above, we now describe a simpler LP-
based approach. Let fk(T ) := ak+ a(T )+ g(ck+ c(T )) for T ⊆ I . Using the results of Atamtürk and Narayanan [25], problem
(22) can be formulated as the following linear program

ϕ̂(I, k) = max

{∑
i∈I

αixi : πx ≤ b− fk(∅), π ∈ Π(k), 0 ≤ x ≤ 1

}
, (26)

whereΠ(k) is the set of extreme points of the extended polymatroid associated with submodular function fk − fk(∅). From
polynomial equivalence of optimization and separation for polyhedra [37], linear programming problem (26) can be solved
in polynomial time as the separation problem for πx ≤ b− fk(∅), π ∈ Π(k) is an optimization problem over the extended
polymatroid, which can be solved by the greedy algorithm [38].

3.3. Solving the separation problem

Given x ∈ RN s.t. 0 ≤ x ≤ 1, let x̄ = 1− x. As
∑
i∈C xi > |C | − 1 if and only if

∑
i∈C x̄i < 1, the separation problem with

respect to cover inequalities (4) can be formulated as

ζ = min
{
x̄z : az + g(cz) > b, z ∈ {0, 1}N

}
. (27)

The constraint az + g(cz) > b ensures that the solution is a cover. Thus, there is a violated cover inequality if and only if
ζ < 1.
In order to find violated cover inequalities quickly, we employ a heuristic that rounds fractional solutions of

min {x̄z : az + y ≥ b, cz ≥ h(y), 1 ≥ z ≥ 0, y ∈ R} , (28)

Please cite this article in press as: A. Atamtürk, V. Narayanan, The submodular knapsack polytope, Discrete Optimization (2009),
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where h is the inverse of g , to an integer solution (h exists as g is increasing). Because g is increasing concave, h is increasing
convex; hence (28) is a convex optimization problem. Note that for every extreme point (y, z) of (28) there are at most two
variables with 0 < zi < 1 and 0 < zj < 1. Let−λ,−µ,−α,−β be the dual variables associated with the constraints, in the
order listed above. Then, the first-order optimality conditions imply

−x̄i = −aiλ− ciµ+ αi − βi, i ∈ N,
0 = −λ+ µg ′(y).

From complementary slackness, we have

x̄i

{
≤ aiλ+ ciµ, for zi = 1,
= aiλ+ ciµ, for 0 < zi < 1,
≥ aiλ+ ciµ, for zi = 0,

for i ∈ N. (29)

Because there are at most two fractional zi in extreme solutions, we compute
(
|N|
2

)
candidate values for λ andµ, which are

solutions for

x̄i = aiλ+ ciµ; x̄j = ajλ+ cjµ for i, j ∈ N : i 6= j.

Assigning variables zi, i ∈ N to one in non-decreasing order of x̄i/(aiλ + ciµ) until z defines a cover for each candidate
(λ, µ) ≥ 0, we check for the violation of the corresponding cover.

4. Computations

In this section we present our computational experiments for testing the effectiveness the inequalities for solving 0–1
programming problems with conic quadratic knapsack constraints (3). For the computational experiments we use the MIP
solver of CPLEX1 Version 11.0 that solves conic quadratic relaxations at the nodes of the branch-and-bound tree. CPLEX
heuristics are turned off; all other options are kept at default values. All experiments are performed on a 3.31 GHz Pentium
Linux workstation with 1 GB main memory.
In Table 3 we report the results of the experiments for varying numbers of variables (n), constraints (m), and values for

Ω . For each combination, five random instances are generated with ai from integer uniform [0, 100] and di from integer
uniform [0, ai]. The knapsack budget b is set to 0.5× f (N) So that constraints are not completely dense, we set the density
of the constraints as 100× 2/

√
n. The data files are available for download at http://ieor.berkeley.edu/~atamturk/data.

Even though we do not compute the bounds µh, νh on the lifting coefficients for all h because of the high computational
requirement of doing so, we nevertheless, employ the easily computable special casesµ1,µ|S|−1 and ν|S|−1 for preprocessing
before extending or lifting cover inequalities. Note that if ρi(N \ i) ≥ µ1, then xi is included in every extension. Similarly, if
ρi(∅) ≤ b− ν|S|−1, then xi has a zero coefficient in any lifting or extension inequality; thus it is dropped from consideration.
Also, if ρi(N \ i) ≥ µ|S|−1, then αi is fixed to |S| − 1 and xi dropped from the lifting problem.
In the tablewe compare the integrality gap (%) of the conic quadratic relaxation, the number of cuts generated (cuts), the

number of nodes explored (nodes), and the CPU time in seconds (time) with several cut generation options. The columns
under heading CPLEX show the performance of CPLEX with no user cuts added. The other columns show the performance
when cover cuts, extended cover cuts, and lifted cover cuts are added, respectively. The covers are generated only at the root
node of the branch-and-bound tree using the separation algorithm explained in Section 3.3 and then extended or lifted. We
employ the lifting strategy based on linear programming (26). Each row in the table is the average for five random instances.
The igap column shows the initial integrality gap of the conic quadratic relaxation. The rgap columns show the integrality
gap of the root relaxation after the cuts are added. CPLEX adds a small number of its own cuts, which explains the difference
between the rgap column for CPLEX and igap.
We observe that as Ω increases, so does the integrality gap of the initial conic quadratic formulation. An increase in Ω

weighs the nonlinear portion of the constraint more and typically leads to a higher number of fractional variables in the
continuous relaxation. Note that the integrality gap increases with the number of constraints (m) and decreases with the
number of variables (n); however, as expected, the number of branch-and-bound nodes and the CPU time increases with
the problem size.
None of the instances with 75 variables and 20 constraints could be solved to optimality within the time limit of one

hour without adding user cuts. For those instances the average remaining optimality gap at termination are 4.37%, 7.42%,
and 7.76%, respectively. The addition of the cuts reduces the root gap significantly and leads to an efficient solution of all
instances. As expected, extended cover cuts are more effective than just cover cuts and lifted cover cuts are more effective
than extended cover cuts.
With the lifted cover cuts almost half of the instances are solved at the root node without any need for branching. On

average the integrality gap is reduced from 13.9% to 0.8% for all instances. For problems that could also be solved by CPLEX
(all but instances with 75 variables and 20 constraints), the average solution time is reduced from 495 s to just 7 s.

1 CPLEX is a registered trademark of ILOG, Inc.
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Table 3
Effectiveness of the submodular cover, extended cover & lifted cover cuts.

n m Ω igap CPLEX CPLEX+ covers CPLEX+ ext. covers CPLEX+ lifted covers
rgap nodes time cuts rgap nodes time cuts rgap nodes time cuts rgap nodes time

25

1 14.9 10.7 209 0 16 0.1 1 0 10 0.0 0 0 15 0.0 0 0
10 3 15.3 14.6 75 0 15 0.0 0 0 9 0.0 0 0 16 0.0 0 0

5 16.4 16.1 98 0 16 0.0 0 0 10 0.0 0 0 17 0.0 0 0
1 22.6 19.8 267 1 27 0.5 3 0 19 0.0 0 0 27 0.0 0 0

20 3 25.5 24.5 260 1 27 0.9 2 0 17 0.0 0 0 25 0.0 0 0
5 27.5 26.9 273 1 28 0.3 1 0 17 0.0 1 0 25 0.0 0 0

50

1 7.0 6.2 1,609 16 61 0.2 41 1 29 0.0 4 0 57 0.0 0 0
10 3 9.7 9.5 2,801 21 64 0.8 94 2 35 0.1 7 1 59 0.0 0 0

5 10.7 10.7 3,239 24 68 0.8 51 1 34 0.0 2 1 76 0.0 1 1
1 12.5 11.1 47,316 860 111 1.9 476 18 49 1.3 393 16 179 1.4 133 8

20 3 17.6 17.5 41,290 623 128 1.7 244 11 67 0.4 23 2 191 0.2 20 4
5 21.8 21.8 45,009 606 139 1.0 45 4 62 0.5 19 2 180 0.6 39 5

75

1 4.1 4.1 85,153 1600 121 1.6 1,600 52 50 0.8 865 30 161 1.1 1127 40
10 3 6.0 6.0 91,619 1617 162 2.1 3,792 131 59 1.3 1,595 59 227 0.9 278 18

5 7.5 7.5 111,634 2064 185 2.5 4,240 152 67 1.7 1,280 52 253 1.3 586 33
1 7.2 7.1 77,164 3648a 144 3.8 25,229 2102 65 2.8 11,273 928 440 2.5 3664 523

20 3 11.0 11.0 86,691 3651a 228 6.3 28,524 2228 82 4.0 14,860 1252 478 3.1 3466 634
5 13.5 13.5 87,150 3650a 286 6.2 13,223 1223 104 3.5 4,747 480 486 2.8 2507 478

a Instances not solved to optimality within an hour time limit.

Over all instances, the average number of nodes is 4309, 1948, and 657 with cover cuts, extended covers cuts, and lifted
cuts, respectively. On the other hand, the average CPU time (in seconds) is 496, 157, and 97 with cover cuts, extended
covers cuts, and lifted cuts, respectively. As is typical in numerical studies with cuts, we see a decreasing marginal rate of
improvement with the biggest marginal impact achieved for the simpler cuts.
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