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Abstract
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1 Introduction

Semidefinite programming has turned out to be very useful and valuable tool in polynomial optimization in recent years.
It generalizes linear programming and is concerned to find the minimum objective value of a linear function over certain
class of convex sets, which are called spectrahedra or, semidefinite representable sets. A large amount of problems from
various branches of mathematics such as combinatorial optimization, control theory can be approached using semidefinite
programming.

The importance of semidefinite programming comes from the fact that there are efficient algorithms to solve semidef-
inite programming problems [BTN01]. If a convex set is semidefinite representable, linear optimization over the convex
set can be done in polynomial time, provided that the semidefinite representation is of polynomial size.

Semidefinite programming can be regarded as an extension of linear programming where the componentwise in-
equalities between vectors are replaced by matrix inequalities, or, equivalently, the first non-negative orthant is replaced
by the cone of positive semidenite matrices.Therefore the theory of semidefinite programming closely parallels the the-
ory of linear programming. The feasible regions of semidefinite programming are known as spectrahedra, more generally
semidefinite representable sets.

The characterization of spectrahedra is contributed in [HV03], which states that spectrahedra are rigidly convex sets.
A set S is called semidefinite representable set (or, projection of spectrahedra) if it can be represented as

S = {x ∈ Rn : ∃u ∈ RN , (x, u) ∈ S̄}

where

S̄ = {(x, u) ∈ Rn+N : (A0 +

n∑
i=1

Aixi +

N∑
i=1

Biui) ≥ 0}.

Here,A0, Ai, Bi all are real symmetric matrices of same order and a matrixA ≥ 0 denotes thatA is positive semidefinite.
Semidefinite programming can also be performed on semidefinite representable set. So, semidefinite representable sets
are important to study. There are only two necessary conditions for a set to be semidefinite representable, being convex
and semi-algebraic [JBR98]. A collection of sets are given in [BTN01], [Hen08], [Hen09] as examples of semidefinite
representable sets.

It leads to a fundamental question: which sets are semidefinite representable? Helton and Nie [HN09b], [Nie12] give
several sufficient conditions for a convex, semi-algebraic set S which is defined by polynomials g1, . . . , gm such as

S = {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0},

to be semidefinite representable.
Other sufficient conditions on defining polynomials are also available in [HN09a]. The explicit construction is based

on Lasserre’s relaxation method [Las09] for semidefinite representation of a compact, convex, semi-algebraic sets with
concave defining polynomials. Several sufficient conditions are contributed in [HN09b], involving the geometry i.e., the
boundary of compact, convex, semi-algebraic sets. Even a new method is given in [Net09] to construct semidefinite rep-
resentation for a class of non-closed sets. Recently, it is proved that all convex, semi-algebraic sets in R2 are semidefinite
representable, [Sch12].

Motivation . As, semidefinite representable sets are generalization of polyhedral sets, our aim is to extend few results
of polyhedra, contributed in [Kle59], considering semidefinite representable sets. This paper continues the work of V.
Klee [Kle59]. The semidefinite representable set is convex and semi-algebraic but need not be closed or bounded. We
will characterize semidefinite representable sets as convex sets, certain of whose projections and sections are semidefinite
representable.

Organization . This paper deals with semidefinite representable sets of a finite-dimensional euclidean space E.
In connection with the characterization of semidefinite representable sets, we will give some new definitions such as
boundedly semidefinite representable set, a set which is semidefinite representable at a point. We will develop various
properties of boundedly semidefinite representable sets and a set which is semidefinite representable at a point in it. We
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will define the smallest cone which contains a semidefinite representable set. We will establish some connections between
a set which is semidefinite representable and a cone which contains a semidefinite representable set. As an indication of
contents we list the headings of the remaining subsections :

• Some new definitions

• Cones and semidefinite representable sets

• Projections of semidefinite representable sets

• Sections of semidefinite representable sets

There are numerous questions for further research.

Notation and terminology . The j-flat is a j-dimensional affine subspace of affine space E. The j-section of a set
S ⊂ E is the intersection of S with a j-flat. The j-projection of S is the image of S under an affine projection of E onto a
j-flat. Set-theoretic union, intersection will be denoted by ∪, ∩. The Minkowski-sum will be denoted by +. The closure
of set S is clS. An open ball will be denoted by B(u, r) where u is the center of ball and r > 0 is the radius of ball. For
a and b in E, we will denote [a, b] = {λa+ (1− λ)b : 0 ≤ λ ≤ 1} and ]a, b[= {λa+ (1− λ)b : 0 < λ < 1}. For a real
number x, we will denote xS = {xs : s ∈ S} and X + Y = {x+ y : x ∈ X, y ∈ Y }. The polar of a set K is denoted as
K0 and the inverse of a function f is f−1.

2 Some characterizations of semidefinite representable sets

We already know, that semidefinite programming is the generalization of linear programming, as we are minimizing
a linear function, on the cone of positive semidefinite matrices, instead of the cone of non-negative orthant. It is also
stated before, that semidefinite representable sets (feasible regions of semidefinite programming) are the generalizations
of polyhedra (feasible regions of linear programming). These facts motivate us to extend the results of convex polyhedra,
[Kle59] considering a semidefinite representable set, K in En.

This work is an extension of the literature, ‘Some characterization of convex polyhedra’ by Victor Klee which contains
some very strong and useful results of convex polyhedra in finite-dimensional affine space E. Some important results are
:

Theorem 4.1., [Kle59]Suppose K is a convex subset of En, p ∈ K, and 2 ≤ j ≤ n. Then K is polyhedral at p iff
πK is polyhedral at p whenever π is an affine projection of K onto a j-flat through p.

This gives a corollary which is very interesting in characterization of polyhedra and its j-projections.
Corollary 4.5., [Kle59] With 2 ≤ j ≤ n, a bounded convex subset of En is polyhedral iff all its j-projections are

polyhedral.
This result gives a necessary and sufficient condition for a convex set of an affine space to be polyhedral. The

restriction of boundedness is essential for j = 2, but this restriction can be removed when j ≥ 3. Because there exists a
nonpolyhedral convex set in E3 all of whose 2-projections are polyhedral, Example 5.16., [Kle59].

Subsection 2.1 gives some new definitions which we will use in our work. We have defined new terms, boundedly
semidefinite representable set and set which is semidefinite representable at a point. We will modify Proposition 2.17 of
Klee literature [Kle59]. This is our Observation 3.

In Subsection 2.2, we will define a cone which contains a semidefinite representable set. This is the smallest cone
containg a set. We will present a collection of results about convex cone proposition 3.1. from [Kle59]. We modify
the part 3.1., (vii) of these results. This is our Observation 7. The generalized version of Observation 7 is Observation
8. Observation 9 is trivial, although we will need it to prove our main result. It states a trivial fact about semidefinite
representability under affine mapping. Our aim is to extend Theorem 4.1., [Kle59]. Although, we could not do it till now.
We extended some part of the main result. It is given in subsection 2.3 and in 2.4. We will extend the remaining parts in
our future research.
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2.1 Some new definitions

Section 2 of [Kle59] is concluded with two new definitions : boundedly polyhedral and a set which is polyhedral at a
point. These are :
A subset K of E is said to be boundedly polyhedral provided its intersection with each bounded polyhedron in E is
polyhedral,
A subset K of E is said to be polyhedral at a point p ∈ K provided some neighbourhood of p relative to K is polyhedral.
In connection with these definitions regarding polyhedrality, we will give two new definitions in case of semidefinite
representable sets in E. These new definitions are:

Definition 1. A subset K of E is said to be boundedly semidefinite representable provided its intersection with each
bounded semidefinite representable set in E is semidefinite representable.

This definition implies a subsetK ofE is boundedly semidefinite representable ifK∩B is semidefinite representable
for each bounded semidefinite representable set B in E.

Definition 2. A subsetK ofE is said to be semidefinite representable at a point p ∈ K provided some neighbourhood
of p relative to K is semidefinite representable.

Hence, a subset K of E is semidefinite representable at a point p ∈ K if T is a semidefinite representable neighbour-
hood of p such that T ⊂ K and B(p, r) ∩K ⊂ T for some r > 0.

Observation 3. A set is boundedly semidefinite representable iff it is closed,convex and semidefinite representable at
all its points.

Proof. Let, a closed, convex set K of E is boundedly semidefinite representable.
So, for each bounded semidefinite representable set B in E, K ∩B is semidefinite representable, and hence, cl(K ∩B)

i.e., K ∩ clB is semidefinite representable. By compactness of K ∩ clB,

K ∩ clB = conv

(
∪li=1 (Ni ∩K ∩ clB)

)
(1)

where Ni = clB(xi, ri) is a closed ball with centre xi ∈ K ∩ clB and radius ri > 0, a very small quantity. It is well
known that Ni is semidefinite representable. Now, we have

K ∩ clB ⊂ K and (Ni ∩ clB) ∩K ⊂ K ∩ clB

and K ∩ clB is semidefinite representable. Hence, K ∩ clB is semidefinite representable neighbourhood of xi relative to
K. So, K is semidefinite representable at xi. As, xi is an arbitrary point in K ∩ clB and B is any bounded semidefinite
representable set in E, it is always possible to find out a semidefinite representable neighbourhood of any point in K.

Conversely, suppose K is closed, convex and semidefinite rpresentable at all its points.
Consider a bounded semidefinite representable set B. Each point x ∈ K admits a bounded semidefinite representable
neighbourhood Nx relative to K, and by compactness of clB ∩ K there must be a finite set X ⊂ K with clB ∩ K ⊂
∪x∈XNx. Let, Z = conv(∪x∈XNx). Then, Z is semidefinite representable, whence so is clB ∩ Z, and we have

clB ∩K ⊂ Z ⊂ K

=⇒ clB ∩K ⊂ clB ∩ Z ⊂ clB ∩K

=⇒ clB ∩K = clB ∩ Z

Hence, clB ∩K is semidefinite representable. Hence, K must be boundedly semidefinite representable.

Observation 4. Let, K is a subset in E and K is boundedly semidefinite representable. If K is bounded, then K is
semidefinite representable.

Proof. K is a compact set and hence, we will get a finite number of balls to cover K. Then,

K = conv

(
∪li=1 (Ni ∩K)

)
, (2)
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where Ni is a closed ball centred at xi ∈ K and with radius ri > 0, a very small quantity. Ni ∩ K is a semidefinite

representable neighbourhood of xi relative to K. Thus, conv

(
∪li=1 (Ni ∩K)

)
is semidefinite representable and so is

K.

Remark 5. Suppose, K is a semidefinite representable set in E. It is trivial, that K is boundedly semidefinite
representable, as the intersection ofK with any bounded semidefinite representable set inE is semidefinite representable.
By Observation 3, as K is boundedly semidefinite representable, then K is closed, convex and semidefinite representable
at all its points.

2.2 Cones and semidefinite representable sets

Suppose, K is a subset in E and p is any point in E. The cone(p,K) is the smallest cone which contains K and has
vertex p. It is denoted as :

cone(p,K) = p+]0,∞[(K − p).

It is very trivial to state, that the point p belongs to cone(p,K) iff p belongs to K. It is clear from the definition of
cone(p,K), that if X is semidefinite representable, then cone(p,K) is also semidefinite representable. But the converse
may not be true as the example shows in the following:

Example 6. Let, K is the convex hull of the integer points in the set {(x, y) : y ≥ x2} where cone(p,K) =

{(x, y) : y ≥ x2} is semidefinite representable. K is the convex hull of infinite number of discrete points, which is not
semi-algebraic, and hence, is not semidefinite representable.

The present subsection consists of developing several connections between a semidefinite representable set K and
the cone containing K which is cone(p,K). We need these tools in our proofs of main results. First we will start stating
some elementary and very useful results about convex cones which are contributed in Section 3, [Kle59].

The Proposition 3.1. states
Proposition 3.1., [Kle59] Suppose C is a convex cone in E with vertex φ, and let L denote the lineality space of
clC(L = clC ∩ −clC). Then C is linear iff C ⊂ L. Suppose now that C is not linear, so C 6⊂ L. Then there is a linear
functional f on E such that f = 0 on L and f > 0 on clC ∼ L. With t > 0, let H0 = f−10 and Ht = f−1t. Then the
following statements are true:

(i) C = (H0 ∩ C)∪]0,∞[(Ht ∩ C);

(ii) Ht ∩ C ⊃ (H0 ∩ C) + (Ht ∩ C) and C ⊃ (H0 ∩ C)+]0,∞[(Ht ∩ C), with equality when φ ∈ C(and also under
certain conditions);

(iii) if p ∈ Ht ∩C, then cone(p,Ht ∩C) = πC + p, where π is the projection of E onto H0 which is the identity on H0

and maps p onto φ.

(iv) if S is a subspace supplimentary to L in H0 and St is a translate of S to Ht then St ∩ C is bounded;

(v) if L ⊂ C, then Ht ∩ C = L+ (St ∩ C) and C = L+ [0,∞[(St ∩ C);

(vi) C is closed iff Ht ∩ C is closed and L ⊂ C;

(vii) C is polyhedral iff Ht ∩ C is boundedly polyhedral and L ⊂ C.

The above stated results (i), (ii), (iii), (iv), (v), (vi) are essentially true for positive semidefinite cone, as positive
semidefinite cone is a convex cone. It is very interesting to verify the result 3.1, (vii) taking a convex cone C which is
semidefinite representable. This interesting fact gives our next Observation.

Observation 7. Suppose C is a convex cone in E with vertex φ, and let L denote the lineality space of clC. Then C
is linear iff C ⊂ L. Suppose now that C is not linear, so C 6⊂ L. Then there is a linear functional f on E such that f = 0

on L and f > 0 on clC ∼ L. With t > 0, let H0 = f−10 and Ht = f−1t. Then the following is true :
C is closed and semidefinite representable iff Ht ∩ C is boundedly semidefinite representable and L ⊂ C.
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Proof. Suppose, C is closed and semidefinite representable convex cone. By, 3.1., (vi), [Kle59] Ht ∩ C is closed and
L ⊂ C. We know, S is the subspace supplementary to L and so, S is semidefinite representable. St is the translate of S
to Ht and hence, St is semidefinite representable. The intersection of St and C is semidefinite representable. As, L ⊂ C,
by 3.1.(v), [Kle59] Ht ∩ C = L + (St ∩ C). L and St ∩ C are both semidefinite representable. Thus, the sum of L
and St ∩ C is semidefinite representable. Hence, Ht ∩ C is semidefinite representable. So, the intersection of Ht ∩ C
with a bounded semidefinite representable set is semidefinite representable. Thus, Ht ∩ C is boundedly semidefinite
representable.

Conversely, Ht ∩ C is boundedly semidefinite representable and L ⊂ C. We know, St is translate of S to Ht. So,
St ⊂ Ht. So, (St ∩C) ⊂ (Ht ∩C). Obviously, (St ∩C) ⊂ St. We know, by 3.1.(iv), [Kle59],(St ∩C) is bounded. So,
there exists a bounded set B in St such that (St ∩ C) ⊂ B ⊂ St. Let us consider the set (Ht ∩ C) ∩B. Then,

(Ht ∩ C) ∩B (3)

= (L+ (St ∩ C)) ∩B, as L ⊂ C (4)

= (St ∩ C) ∩B (5)

= St ∩ C, as St ∩ C ⊂ B (6)

The equivalence between the sets (3) and (4) is an application of Proposition 3.1., (v), [Kle59]. We will give the equiva-
lence of the two sets (4) and (5) in the following :

First, we will show (St ∩ C) ∩B ⊂ (L+ (St ∩ C)) ∩B.

We know, St ∩ C ⊂ Ht ∩ C

=⇒ (St ∩ C) ∩B ⊂ (Ht ∩ C) ∩B

=⇒ (St ∩ C) ∩B ⊂ (L+ (St ∩ C)) ∩B, by 3.1., (v)

So, our first part is completed. Now, we will prove,(L+ (St ∩C)) ∩B ⊂ (St ∩C) ∩B. This is our second part. It is in
the following :

Let, a point x ∈ (L+ (St ∩ C)) ∩B

=⇒ x ∈ (L+ (St ∩ C)) and x ∈ B

=⇒ x = u+ v such that u ∈ L and v ∈ (St ∩ C), x ∈ B

So, u ∈ C, as L ⊂ C; v ∈ St and v ∈ C;x ∈ B, thus x ∈ St

Thus, we are getting u, v ∈ C and x ∈ B, x ∈ St

As C is closed cone , u+ v ∈ C and x ∈ St ∩B

Hence, x ∈ C and x ∈ St ∩B

=⇒ x ∈ (St ∩ C) ∩B

Hence, we can say (L + (St ∩ C)) ∩ B ⊂ (St ∩ C) ∩ B. Combining the first part and the second part, we can say
(L+ (St ∩ C)) ∩B = (St ∩ C) ∩B. This proves the equivalence of the sets in (4) and (5).

Hence, (Ht∩C)∩B is the set St∩C. Suppose,B is semidefinite representable. As, (Ht∩C) is boundedly semidefinite
representable, then (Ht ∩C) ∩B is semidefinite representable. Hence, St ∩C is semidefinite representable. As L ⊂ C,
then by 3.1., (v), [Kle59] C = L+ [0,∞[(St ∩ C). Now, L is lineality space of clC, so it is semidefinite representable.
Hence, the sum of L and [0,∞[(St ∩ C) is semidefinite representable. Thus, C is semidefinite representable.

A slight modification of Observation 7 gives the next Observation.
Observation 8. Suppose C is a convex cone in E with vertex φ, and let L denote the lineality space of clC. Then C

is linear iff C ⊂ L. Suppose now that C is not linear, so C 6⊂ L. Then there is a linear functional f on E such that f = 0

on L and f > 0 on clC ∼ L. With t > 0, let H0 = f−10 and Ht = f−1t. Then the following is true :
C is closed and semidefinite representable iff Ht ∩ C is closed and semidefinite representable and L ⊂ C.
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Proof. Suppose, C is closed and semidefinite representable convex cone. By, 3.1., (vi), [Kle59], Ht ∩ C is closed and
L ⊂ C. We know, S is the subspace supplementary to L and so, S is semidefinite representable. St is the translate of S
to Ht and hence, St is semidefinite representable. The intersection of St and C is semidefinite representable. As, L ⊂ C,
by 3.1.(v), Ht ∩ C = L+ (St ∩ C). L and St ∩ C are both semidefinite representable. Thus, the sum of L and St ∩ C
is semidefinite representable. Hence, Ht ∩ C is semidefinite representable.

Conversely, Suppose,Ht∩C is closed and semidefinite representable and L ⊂ C. As,Ht∩C is closed and L ⊂ C, by
3.1., (vi), [Kle59] we can say C is closed. Now, we know St∩C is bounded. So, we can get a semidefinite representable
set B in St, such that St ∩ C ⊂ B ⊂ St. We have proved in Observation 7, that (Ht ∩ C) ∩ B is the set St ∩ C. Now,
Ht ∩ C and B both are semidefinite representable. So, (Ht ∩ C) ∩ B is semidefinite representable. Hence, St ∩ C is
semidefinite representable. As, L ⊂ C, by 3.1., (v), [Kle59] we know, C = L+ [0,∞[(St ∩ C). L is lineality space of
clC. So, L is trivially semidefinite representable. Hence, the sum of L and [0,∞[(St ∩ C) is semidefinite representable.
Thus, C is semidefinite representable.

Suppose, K is a convex subset of En, p ∈ K and 2 ≤ j ≤ n. π is an affine projection of K onto a j-flat through p.
Let us consider cone(p,K). We will derive one result connecting the semidefinite representation of cone(p,K) and its
projections i.e., πcone(p,K). The result is proved in the following :

Observation 9. Suppose, K is a convex subset of En, p ∈ K and 2 ≤ j ≤ n. π is an affine projection of K onto a
j-flat through p. If cone(p,K) is semidefinite representable, then πcone(p,K) is semidefinite representable.

Proof. Semidefinite representation is closed under linear mapping. Affine projection π is obtained as a composition of a
translation with a linear projection. Hence, πcone(p,K) is semidefinite representable.

A very important result is proposition 3.2, proved by Klee, [Kle59]. This result states that : Suppose X and Y are
convex subsets of E, p ∈ X ∩ Y , and Y ⊂ cone(p,X). Then if Y is polyhedral, the set X ∩ Y is a neighbourhood of p
relative to Y .

We want to extend this proposition 3.2 considering a semidefinite representable set, Y . But, we will give some
important and elementary facts about semidefinite representable set and a positive semidefinite cone. These are :

• Suppose, K is a semidefinite representable set in E. Then, K is the intersection of a positive semidefinite cone and
an affine-linear subspace. Let, the positive semidefinite cone is S and the affine-linear subspace is La.

• A positive semidefinite cone S is the intersection of infinite number of closed halfspaces vectorized by matrix
variable.

• The positive semidefinite cone has vertex φ, the origin in E and it is a pointed, closed, convex cone.

• The vertex φ belongs to the relative boundary of all the closed halfspaces.

Let us take a finite number of halfspaces, say k from the set of all halfspaces of the positive semidefinite cone.
Consider, C = H1 ∩ . . . ∩Hk. Then the following statements are true :

• C is nonempty and it is a cone.
We know, φ ∈ rbdHi for all i = 1, . . . , k. Hence, φ ∈ C and C is nonempty. Let, x, y ∈ C. Then, λx + µy ∈ C
for all λ, µ ≥ 0. So, C is a cone.

• C is polyhedral cone with vertex φ.
C is generated by a finite number of halfspaces and the halfspaces are intersecting at point φ.

• C is closed, convex cone.

We know, positive semidefinite cone is an intersection of infinite number of halfspaces, we can not use any results related
to polyhedrality to extend proposition 3.2., [Kle59].

Now, Corollary 3.3, [Kle59] states :
A convex set K is polyhedral at a point p ∈ K iff cone(p,K) is polyhedral. The extended version is in the following :
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Observation 10. If a convex set K is semidefinite representable at a point p ∈ K, then cone(p,K) is semidefinite
representable.

Proof. Let, K is semidefinite representable at a point p ∈ K. Hence, there exists a bounded semidefinite representable
neighbourhood J of p relative to K. From convexity of K, we can say

cone(p,K) = cone(p, J)

= p+]0,∞[(J − p)

So, cone(p,K) is semidefinite representable.

We have proved only one part of the Corollary 3.3, [Kle59]. The other part gives us our future research scope.

2.3 Projections of semidefinite representable sets

The j-projection of a set X ⊂ E is the image of X under an affine projection of E onto a j-flat. In this subsection, we
will discuss about a semidefinite representable set and its j-projections. Suppose K is a convex subset of En and p ∈ K.
Then, cone(p, πK) = πcone(p,K) whenever π is an affine projection of K onto a j-flat through p. It is very trivial to
verify which is described in the following :

πcone(p,K) = π[p+ (0,∞)(K − p)] (7)

= πp+ (0,∞)(πK − πp)

= p+ (0,∞)(πK − p)

= cone(p, πK)

We will use this fact in our next Observation 11 which extends a fundamental result, Theorem 4.1 by Klee. The
statement of the Theorem 4.1 is : Suppose K is a convex subset of En, p ∈ K and 2 ≤ j ≤ n. Then K is polyhedral
at p iff πK is polyhedral at p whenever π is an affine projection of K onto a j-flat through p. Our modified result is as
follows :

Observation 11. Suppose K is a convex subset of En, p ∈ K and 2 ≤ j ≤ n. Then if K is semidefinite representable
at p, πK is semidefinite representable at p whenever π is an affine projection of K onto a j-flat through p.

Proof. Suppose, K is semidefinite representable at p. By Observation 10, cone(p,K) is semidefinite representable. By,
Observation 9, πcone(p,K) is semidefinite representable. So, cone(p, πK) is semidefinite representable. As, we could
not extend the corollary 3.3, [Kle59], so we can not say that πK is semidefinite representable at p or not.

This will be included in our future research problem.
This extends only some parts of the main result, Theorem 4.1., [Kle59].
The converse of the Observation is more interesting to verify. Let, πK is semidefinite representable at p. By using

Observation 10, we can say cone(p, πK) is semidefinite representable. This implies that πcone(p,K) is semidefinite
representable which provides that, all j-projections of cone(p,K) are semidefinite representable for 2 ≤ j ≤ n− 1.

Now, we already know from Observation 7 that, a convex cone is closed and semidefinite representable iff the (n−1)-
sections of the convex cone are closed and semidefinite representable and if L ⊂ C. If we can connect all j-projections of
cone(p,K) and (n− 1)-sections of cone(p,K), then we will be able to prove, cone(p,K) is semidefinite representable.
If we can prove the converse part of Observation 10,( which says that a convex set K is semidefinite representable at a
point p, if cone(p,K) is semidefinite representable), then we can say, K is semidefinite representable at p. This gives our
future research topic.

The Observation 11 provides a several useful corollaries which are as follows :
Observation 12. With 2 ≤ j ≤ n, if a convex subset of En is semidefinite representable at all its points, then all its

j-projections have this property.
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Proof. Let, a convex subset K of En is semidefinite representable at all its points. So, K is semidefinite representable
at p for p ∈ K. By the converse part of Observation 11( which is still remained to be proved), πK is semidefinite
representable at p for p ∈ πK.

Observation 13. With 2 ≤ j ≤ n, if a closed, convex subset of En is boundedly semidefinite representable, then all
its j-projections are semidefinite representable at each point.

Proof. Let, K is a closed, convex subset of En which is boundedly semidefinite representable. So, by Remark 5, K is
semidefinite representable at p for any point p in K. By the converse part of Observation 11( which is still remained to
be proved), πK is semidefinite representable at p for any point p in πK.

As we could not extend corollary 3.3., [Kle59], we are not able to prove Theorem 4.1., [Kle59]. Hence, we are able
to derive only some parts of the important corollaries 4.2., 4.3. of [Kle59], which are given in Observation 12, 13. If we
can prove, that if cone(p,K) is semidefinite representable, then the convex set K is semidefinite representable at a point
p in K. Then, we can complete all our Observations 11, 12, 13.

2.4 Sections of semidefinite representable sets

We know that j-section of a set K ⊂ E is the intersection of K with a j-flat. A j-flat is a j-dimensional affine subspace
of E and so, it is semidefinite representable. Hence, if a set K in E is semidefinite representable, then all its j-sections
i.e., the intersection of K with j-flats are semidefinite representable. It is obvious.

The main interesting part is to show : if all the j-sections of a convex set K in n-dimensional affine space are
semidefinite representable, then K is semidefinite representable or not, for 2 ≤ j ≤ n − 1. We can introduce a very
useful remark, 4.6. of Klee in this case. This is given in the following :
Let, K is a closed convex set in E with φ ∈ E, L is a subspace of E, and π is a linear projection of E

′
whose kernel

is L0. L0 is a subspace of E
′

and πK0 lies in the supplementary subspace πE
′
. One important connection between the

section of a set K and the projection of K0 is :

(L ∩K)0 = L0 + clπK0 = π−1(clπK0). (8)

Now, we will discuss the importance of the above connection between the section ofK and the projection ofK. Suppose,
any j-section of K is semidefinite representable. Let, L ∩ K is semidefinite representable. Then, the polar of L ∩ K,
i.e., (L ∩ K)0 is obviously semidefinite representable. So, the equation (8) implies that π−1(clπK0) is semidefinite
representable. Now, we know semidefinite representability is preserved under linear mapping. Hence, if π−1(clπK0)

is semidefinite representable, then clπK0 is semidefinite representable. Now, let us assume that φ is in K. Then, K0

is bounded. K0 is closed and hence, K0 is a compact set. So, the linear projection of K0 is obviously closed. Hence,
clπK0 = πK0. Thus, we can say πK0 is semidefinite representable.

Hence, if we can prove that a convex set in n-dimensional affine space is semidefinite representable iff all its j-
projections are semidefinite representable, for all 2 ≤ j ≤ n−1. Then, we can say, K0 is semidefinite representable and,
the polar of K0 is K. Hence, K is semidefinite representable. This gives us future research scope.

3 Conclusion and future research scope

This paper deals with the characterizations of semidefinite representable sets, as convex sets certain of whose projections
and sections are semidefinite representable. This is an extension of the paper [Kle59], where some sufficient and necessary
conditions have been derived for convex polyhedra. We tried to extend some of the results from [Kle59], in Section
2. Although, we could not extend all of the results about convex polyhedra [Kle59]. We defined two new terms in
semidefinite programming : boundedly semidefinite representable set and, a set, which is semidefinite representable at
a point. We generalized proposition 2.17., [Kle59]. This is our Observation 3. We defined the smallest cone containg a
semidefinite representable set. An important result is given in [Kle59], proposition 3.1.. We generalized 3.1., (vii). This
is our Observation 7.
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The main results of Klee’s paper [Kle59] give an interesting characterization of convex polyhedra in affine space.
The results state that, a convex set in n -dimensional affine space is polyhedral iff all its j-sections are polyhedral, where
2 ≤ j ≤ n − 1. Another important characterization says that, a convex set in n -dimensional affine space is polyhedral
iff all its j-projections are polyhedral, where 2 ≤ j ≤ n − 1. As, semidefinite representable sets generalize polyhedra,
we are trying to extend the results from [Kle59] considering a semidefinite representable set. Till now, we were able to
extend only some of the results(some propositions, some corollaries) from [Kle59], which work as basic tools in proving
the main results. We extended proposition 2.17., Proposition 3.1., (vii), some parts of Corollary3.3. from [Kle59]. Our
aim is to derive the results 3.6, 3.7., and mainly 4.1. from [Kle59] in case of a semidefinite representable sets. These give
us our future research topic which are discussed in Subsection 2.3 and Subsection 2.4
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