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A Cryptosystem or Cipher
• 5-tuple Cryptosystem: (P, C, K, E, D)

P  is a finite set of possible plaintexts;

C  is finite set of possible ciphertexts;

K is the keyspace, finite set of possible keys;

For each K ϵ K , there is an encryption rule eK ϵ E and a 

corresponding decryption rule dK ϵ D. Each eK : P → C and dk:

C → P are functions such that dK (eK (x)) = x for every 

plaintext element x ϵ P.
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Block Ciphers vs. Stream Ciphers

Block Ciphers:
x = x1x2…xn for some integer n≥1 and xiϵ P
K: predetermined key(might be different for E and D).

yi=eK(xi), where eK() is an injective function(one-to-one).

y=y1y2…yn

Encrypted with the same key K ϵ K

Stream Ciphers:
Keystream K= k1k2k3…

Cipher y = ek1(x1)ek2(x2)ek3(x3)…
• P = C = Z2

• ek(x) = (x+k)%2

• dk(y) = (y+k)%2

• Hardware implementation: XOR gate
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Random Number Generators: 

• True Random Number Generator (TRNG)

• Pseudo-Random Number Generator (PRNG)

Example: Linear Congruential Generator(LCG)

s0 = seed;

si+1 = asi + b mod m; for i = 0,1,2…
 chi-square test for statistical randomness

 not truly random, having periodicity.

• Cryptographically Secure Pseudo-Random Number Generator (CSPRNG)

 statistical properties of truly random sequence 

 Given n output bits si, si+1,…,si+n-1

No polynomial time algorithm that can predict the next bit sn+1 with better than 
50% chance of success. 

 Computationally infeasible to predict si+n, si+n+1,… and also si-1, si-2,…
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Linear Feedback Shift Register(LFSR)
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Properties of LFSR

• Periodicity: 2l-1 for maximum-length LFSR.

• Tap polynomial:

• Primitive polynomial(maximum-length LFSR)

 t(x) has no proper non-trivial factors

 does not divide xd+1 for d<2l-1

• Linear complexity of a binary sequence k = {kj} is the length of the shortest 

LFSR that generates k.

• Berlekamp Massey Algorithm suggests that for a binary sequence k = {kj} 

having linear complexity L, there exists a unique LFSR of length L iff

L≤n/2
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Cryptology, Cryptography and Cryptanalysis
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Cryptanalysis

• Mathematical analysis to defeat cryptographic methods.

• Kerckhoff‟s Principle:

To obtain security while assuming that Oscar knows the cryptosystem (i.e. 

encryption and decryption algorithms).

• Types of Attack:

 Ciphertext only attack (knowledge of y )

 Known plaintext attack (knowledge of x and y)

 Chosen plaintext attack (temporary access to cryptosystem x→y)

 Chosen ciphertext attack (temporary access to decryption machinery y→x)

• Objective: To determine the “key” so that „target‟ ciphertext can be 

decrypted. 
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Cryptanalysis of LFSR-based stream 
ciphers
• yi = (xi+ki)%2

• (k1,k2,…,km) initial tuple. 

• Linear recurrence: 

• Known-plaintext attack: 

x=x1x2…xn

y=y1y2…yn

ki=(xi + yi)%2

• To reproduce the entire keystream, we require n≥2m, assuming m, the 

length of the LFSR, is known. 

• What remains to compute is the tap sequence c0,c1,c2,…,cm-1
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Matrix Form
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• Siegenthaler shows that if the keystream is correlated to (at 
least) one of the LFSR sequences, the correlation attack 
against this individual LFSR significantly reduces a brute-
force attack.

• Divide and Conquer:

Attempt first to determine initial states of subset of LFSRs, in 
order to reduce complexity of search for right key.

12



Algebraic and Statistical Foundation 

• Assume that N digits of the output sequence z are given.

• Correlation probability p>0.5 to an LFSR sequence a. 

• The LFSR in question has few feedback tabs, say t. (This is desired for the ease 
of hardware). 

• Further assume that feedback connection is known(although not an essential 
restriction).

• LFSR sequence a is given by linear relation(for LFSR-length k)

• Feedback polynomial:
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Algebraic and Statistical foundations

• Every polynomial multiple of c(X) defines a linear relation for a.

• In particular,   c(X)j = c(Xj) for exponents j=2i

• All having same number t number of feedback taps.

• Suppose an is fixed.

• Linear relations obtained by shifting and iterated squaring:

where a=an and each bi, i=1,…,m is a sum of exactly t different terms of 

the LFSR sequence a.

• We substitute the digits of z at same index positions:
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Statistical Model
• Introducing a set of binary random variables A = {a, b11, b12,…, b1t, b21, b22, 

…, b2t,…, bm1, bm2,…, bmt}

• Similarly introducing a set of binary random variables Z = {z, y11, y12,…, 

y1t, y21, y22,…, y2t,…, ym1, ym2,…, ymt}

15



Statistical Model(contd.)

• Consider random variables L1, L2,…, Lm.

• The probability that the outcome of these random variable vanishes for a 

given set of exactly h indices is given by

• For simplicity, assume that L1=0, L2=0,…, Lh=0 and Lh+1=1, Lh+2=1,…, 

Lm=1.

• z corresponds to the fixed digit zn, and a to the fixed digit an we wish to 

determine.
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p* as a function of h
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An Efficient Exponential-Time Attack
• To select k digits of z with the highest probability p*

• LFSR sequence a can be constructed out of its any k digits solving linear 

equations for the initial state.

• The probability Q(p,m,h) that a fixed digit z satisfies at least h of m

relations:

• The probability R(p,m,h) that z=a and at least h of m relations hold:

• So, the prob. for z=a, given that at least h of m relations hold is the 

quotient:

• Q(p,m,h).N are expected to satisfy at least h relations and these digits have 

probability T(p,m,h) of being correct.

• T(p,m,h) increases with h. So maximize h with Q(p.m.h)≥k
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Algorithm A

• Step1. Determine m.

• Step2. Find the maximum value of h such that Q(p.m.h)≥k.

• Step3. Search for digits of z satisfying at least h relations and use these 

digits as a reference guess I0 of a at the corresponding index positions.

• Step4. Find the correct guess by testing modifications of I0 with Hamming 

distance 0,1,2,… by correlation of the corresponding LFSR sequence with 

the sequence z.

• Observation: digits in the middle part of z satisfy more relations that the 

digits near the boundaries. This leads to slight modification of step3 as

Step3’: Compute new probability p* for the given digits of z and choose k

digits having highest probability p*.

• Average number of erroneous digits is computed as (1-T(p,m,h)).k. Under 

favorable conditions(e.g., <<1), step4 is not necessary.
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Computational Complexity of 
Algorithm A
• Computation time for Step 1-3 is negligible.

• Only estimate average number of trials in step4.

• Suppose exactly r among the digits found in step3 are incorrect. 

• Max number of trials in step4 is 

• A well-known estimate using binary entropy function

• Then 

with θ=r/k.

• Algorithm A has computational complexity O(2ck), where c=H(r/k), 0≤c≤1
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A Polynomial-Time Attack
• We do not search for correct digits here. Instead, we assign new probability 

p* to each digit of z iteratively and under some favorable conditions, 

complement all digits to get maximum correction effect. 

• The probability U(p,m,h) that at most h of m relations are satisfied:

• The probability V(p,m,h) that z=a and at most h of m relations are satisfied:

• The probability W(p,m,h) that z≠a and at most h of m relations are satisfied:

• U(p,m,h).N is the expected number of digits of z which satisfy at most h

relations.

• Relative increase in correct digits after complementation:

• For given p and m, choose h=hmax so as to maximize I(p,m,h).
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• Taking  p* into account, we replace hmax by a corresponding probability 

threshold on p*

• Expected number of digits with p* below pthr is:

• Generalized formula to compute s(p,t):
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Algorithm B

• Step1: Determine m.

• Step2: Find the value of h=hmax such that I(p,m,h) is maximized. Compute 

pthr and Nthr.

• Step3. Initialize the iteration counter i=0.

• Step4. For every digit of z compute the new probability p* with respect to 

the individual number of relations satisfied. Determine the number Nw of 

digits with p*<pthr.

• Step5. if Nw<Nthr or i<α increment i and go to step4.

• Step6. Complement those digits of z with p*<pthr and reset the probability 

of each digit to the original value of p.

• Step7. If there are digits not satisfying linear recurrence, go to step3.

• Step8. Terminate with a=z. 
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Computational Complexity and Limits of 
Attack:
• m=m(t,d), d=N/k.

• hmax=hmax(p,m)

• Imax=Imax(p,t,d)

• The expected number of digits corrected in one iteration Nc=Imax(p,t,d).N

• Nc = F(p,t,d).k where

F(p,t,d)=Imax(p,t,d).d

• If F(p,t,d)≤0, no correction effect. Attack will fail.

• For F(p,t,d)≥0.5, successful attack.

p with F(p,t,d)=0.5
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An Example

• Consider the following situation 

p=0.75

t=4

d=100

N=10,000

k=100

• F(p,t,d)=0.392 

• Parameters of Algorithm B:

pthr=0.524

Nthr=448
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Complexity and Limits of Attack:

• Algorithm B grows linearly with LFSR length k i.e., is of order O(k).

• F(p,t,d)<0.5 has led to successful attack. Same is reported even for 

F(p,t,d)=0.1

• Definite barrier with F(p,t,d)≤0

p with F(p,t,d)=0
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Suggestion:

• Any correlation to an LFSR with less than 10 

taps should be avoided.
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