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A Cryptosystem or Cipher
« 5-tuple Cryptosystem: (7 G, X £, D)

P is a finite set of possible plaintexts;

G Is finite set of possible ciphertexts;
K. is the keyspace, finite set of possible keys;

For each K ¢ £ , there is an encryption rule e, ¢ Zand a
corresponding decryption rule d, € .Z. Each e, : ’— Gand dy;
G— & are functions such that d, (e (x)) = x for every
plaintext element x ¢ 7
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Block Ciphers vs. Stream Ciphers

Block Ciphers:

X = X;X,...X, for some integer n>/ and x,c 7

K: predetermined key(might be different for Zand D).
yi=ex(Xx;), where e,() is an injective function(one-to-one).

Y=Y1i¥Yo---Yn
Encrypted with the same key K € £

Stream Ciphers:

r_.f"'h.__—-
K_eystream K= k.kKs... .(L 1 oeni E " $ ;
Ciphery = e,;(X;)e(X;)eys(X3) ... P

T=C=2,
¢ e(x) = (x+k)%2
o dyy) = (y+k)%2
« Hardware implementation: XOR gate



Random Number Generators:

True Random Number Generator (TRNG)
Pseudo-Random Number Generator (PRNG)
Example: Linear Congruential Generator(LCG)
S, = Seed;
S, =as;+bmodm; fori=0,12..

» chi-square test for statistical randomness
> not truly random, having periodicity.

Cryptographically Secure Pseudo-Random Number Generator (CSPRNG)
statistical properties of truly random sequence
Given n output bitS S;, Si,q, ..., 8401

No polynomial time algorithm that can predict the next bit s, with better than
50% chance of success.

Computationally infeasible to predict s, ., Sizns1, --- and also s; 4, Sio, ...



Linear Feedback Shift Register(LFSR)
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Properties of LFSR

Periodicity: 2!-1 for maximum-length LFSR.

Tap polynomial:

£—2

t(x) = 2t Lo 12t Lo on + -4+ ezt g

Primitive polynomial(maximum-length LFSR)
> 1(x) has no proper non-trivial factors
» does not divide x9+1 for d<2!-1

Linear complexity of a binary sequence k = {k;} Is the length of the shortest
LFSR that generates k.

Berlekamp Massey Algorithm suggests that for a binary sequence k = {k;}
having linear complexity L, there exists a unigue LFSR of length L iff
L<nl2



Cryptology, Cryptography and Cryptanalysis
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5664 bits  [short term: a few hours or days
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Cryptanalysis

« Mathematical analysis to defeat cryptographic methods.

» Kerckhoff’s Principle:

To obtain security while assuming that Oscar knows the cryptosystem (i.e.
encryption and decryption algorithms).

» Types of Attack:
> Ciphertext only attack (knowledge of y )
» Known plaintext attack (knowledge of x and y)
» Chosen plaintext attack (temporary access to cryptosystem x—y)
» Chosen ciphertext attack (temporary access to decryption machinery y—x)

* Objective: To determine the “key” so that ‘target’ ciphertext can be
decrypted.



Cryptanalysis of LFSR-based stream
ciphers

yi = (Xi+k;)%2
(ki,Ks, ..., k) Initial tuple.
Linear recurrence:

m—1

Em4i = Z CiZidj mod 2
j=0

Known-plaintext attack:

X=X Xy... X,

Y=Y1Y¥2---Yn

Ki=(X; + y;)%2

To reproduce the entire keystream, we require n>2m, assuming m, the
length of the LFSR, is known.

What remains to compute is the tap sequence c,,C;,C, ...,Cr.1
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Matrix Form

(zm+1azm+2, - '-aZZm) = (Co,Cl,---,Cm—l)
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If the coefficient matrix has an inverse (modulo 2), we obtain the solution
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Nonlinear Combination Generator

LESR-1].
T
LFSR-2] —

[LFS&JE/T

f

— [ keys f-rcam]

N

flepmp oy rgws) = LBy oy B oy o @y - oy 1y 25,

« Siegenthaler shows that if the keystream is correlated to (at
least) one of the LFSR sequences, the correlation attack
against this individual LFSR significantly reduces a brute-
force attack.

* Divide and Conquer:

Attempt first to determine initial states of subset of LFSRs, in
order to reduce complexity of search for right key.



Algebraic and Statistical Foundation

Assume that N digits of the output sequence z are given.
Correlation probability p>0.5 to an LFSR sequence a.

p = Probiz, = a,) > 0.3.

The LFSR in question has few feedback tabs, say t. (This is desired for the ease
of hardware).

Further assume that feedback connection is known(although not an essential
restriction).

LFSR sequence a is given by linear relation(for LFSR-length k)
y = Cyly.y + Cally_az + " + Cpd,—y.

a,., = 0.
(B0 gigke; #0)

Feedback polynomial: e(X)=co+c, X+, X2+ + . X* (with ¢ = 1)
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Algebraic and Statistical foundations

Every polynomial multiple of ¢c(X) defines a linear relation for a.
In particular, c(X)! = c¢(X)) for exponents j=2!
All having same number t number of feedback taps.
Suppose a, is fixed.
Linear relations obtained by shifting and iterated squaring:
Li=a+b; =0,
Ly=a+b,=0,

w=a+ b,=10,

where a=a, and each b;, i=1,...,m is a sum of exactly t different terms of
the LFSR sequence a.

We substitute the digits of z at same index positions:

Li=3+}’i- i=1,”.,m,
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Statistical Model

 Introducing a set of binary random variables A = {a, by;, by, ..., b1y, Doy, Dy,
cers Doy ity D1y Doy e, Dt}

ﬂ+b1l+b12+”'+b“=ﬂ,
a+by +byy++ by =0,

a+bm1+bm3+"'+bm=ﬂ-

« Similarly introducing a set of binary random variables Z = {z, y;1, Y15, ...,
Y1v Yo11 Yoo, -+s Vo -+ Yntr Ymzs - Ymtd

Prob(z=a)=p and Prob(y;=b,)=p

blzb”_ "f‘bu'i‘“"l‘bﬂ 5=Prnb{Fi=bE]:
Vi=VYa+ Vet + Y s(p, 1) = ps(p, £ = 1) + (1= p)(L - s(p, 1 = 1)),
s(p, 1) =p.

LI:= = +}?|‘-
15



Statistical Model(contd.)

Consider random variables L,, L, ..., L.

The probability that the outcome of these random variable vanishes for a
given set of exactly h indices is given by

ps*(l — ™" + (1 — p)il — s5)"s™ ",
For simplicity, assume that L,=0, L,=0,..., L,=0and L,,,=1, L, ,,=1,...,
L.=1.
_ ps(1 —sy
" psh(l = 8" (L= p)(1 =55 H

(1—p)(1—s's™*
psh(1 =5 "4 (1= p)(1 = 5)fs™

Plz=a|lLy = =L=0,Lyy="=L,=1)

Plr#ally="=Ly=0, Ly ==Ly =1)=

Z corresponds to the fixed digit z,,, and a to the fixed digit a, we wish to
determine.

16



p* as a function of h

p* as function of number h
of relations satisfied {(p=0.75)

WO oo o holn b b e O =

p*

0.00011
0.000Q30
0.000835
0.00235
0.00549
0.01782
004757
0.12278
02755
0.51923
0.75000
0.89286
0.95859
0.98459
0.59443
0.99799
D.59a27T
0.99974
0.999% ]
0.99957
0.99999

m=miN,k, ) = lug(ﬁ)[r + 1),

2k
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An Efficient Exponential-Time Attack

To select k digits of z with the highest probability p*

LFSR sequence a can be constructed out of its any k digits solving linear
equations for the initial state.

The probability Q(p,m,h) that a fixed digit z satisfies at least h of m
relations:

Q‘_p, I, Fl:| = Z (T){ps'[i —_— S}H—I + [:I ass p}[I _ S}ESM-E}

i=k

The probability R(p,m,h) that z=a and at least h of m relations hold:
R{p, m, h) = eg.u (T) psi(l — sy™ "

So, the prob. for z=a, given that at least h of m relations hold is the

quotient: : -
T{P! m, h] = R(p, m, h:'."'g{P! m, h:]

Q(p.m,h).N are expected to satisfy at least h relations and these digits have
probability T(p,m,h) of being correct.

T(p,m,h) increases with h. So maximize h with Q(p.m.h)>k

18



Algorithm A

« Stepl. Determine m.
» Step2. Find the maximum value of h such that Q(p.m.h)>k.

» Step3. Search for digits of z satisfying at least h relations and use these
digits as a reference guess |, of a at the corresponding index positions.

 Step4. Find the correct guess by testing modifications of I, with Hamming
distance 0,1,2,... by correlation of the corresponding LFSR sequence with
the sequence z.

« Observation: digits in the middle part of z satisfy more relations that the
digits near the boundaries. This leads to slight modification of step3 as

Step3’: Compute new probability p* for the given digits of z and choose k
digits having highest probability p*.

» Average number of erroneous digits is computed as (1-T(p,m,h)).k. Under
favorable conditions(e.g., <<1), step4 is not necessary.



Computational Complexity of
Algorithm A

Computation time for Step 1-3 is negligible.

Only estimate average number of trials in step4.

Suppose exactly r among the digits found in step3 are incorrect.
Max number of trials in step4 is

r [k
Alle, r) = Eﬂ(;)

A well-known estimate using binary entropy function

H({D)y = H{l)=0,
Hix)= —xlogx—(l —x)logll =x) ({0<x<1)
Then .k
Alk, r) = ; (:) < 2HEOK
with 9=r/k.

Algorithm A has computational complexity O(2%), where c=H(r/k), 0<c<I
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A Polynomial-Time Attack

We do not search for correct digits here. Instead, we assign new probability
p* to each digit of z iteratively and under some favorable conditions,
complement all digits to get maximum correction effect.

The probability U(p,m,h) that at most h of m relations are satisfied:
Ulp, m, h) = ei':: (T){ps’u — )"+ (1 — p)(1 = s)s™).

The probability V(p,m,h) that z=a and at most h of m relations are satisfied:
V(p, m, h) = _Zﬁ tf’:’) psi(l — sy

The probability W(p,m,h) that z£a and at most h of m relations are satisfied:
W(p, m, k) = iﬂ (T){I — p(1 — s)s™.

U(p,m,h).N is the expected number of digits of z which satisfy at most h
relations.

Relative increase in correct digits after complementation:

I{p,m, k) = W(p,m, h) = ¥(p,m, h).
For given p and m, choose h=h__, so as to maximize I(p,m,h).
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Taking p* into account, we replace h., by a corresponding probability
threshold on p*

P = (PP M, ha) + P*(pym B + 1))
Expected number of digits with p* below py,, is:
Ny, = Ulp,m, hya,)- N.

Generalized formula to compute s(p,t):

S{Pu---:Fr: I:I = F;5(P|:-~-5F;-1J = 1}+{1 - Pr](l _S{P]l"'JF!-l'l [ - ”}!
s(py 1) = py.
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Algorithm B

Stepl: Determine m.

Step2: Find the value of h=h
pthr and Nthr'

Step3. Initialize the iteration counter i1=0.

Step4. For every digit of z compute the new probability p* with respect to
the individual number of relations satisfied. Determine the number N, of
digits with p*<py,,.

StepS. if N, <Ny, or i<a increment i and go to step4.

Step6. Complement those digits of z with p*<p,,. and reset the probability
of each digit to the original value of p.

Step7. If there are digits not satisfying linear recurrence, go to step3.
Step8. Terminate with a=z.

nax Such that I(p,m,h) is maximized. Compute



Computational Complexity and Limits of

Attack
m=m(t,d), d=N/k.

* hmax:hmax(p1m)

* Imalemax(p1tld)
» The expected number of digits corrected in one iteration N_=I .. (p,t,d).N

* N, = F(p,t,d).k where
F(p,t,d)=1 (.1, d
* If F(p,t,d)<0, no correction effect. Attack will fall.
* For F(p,t,d)>0.5, successful attack.
p with F(p,t,d)=0.5

I

d 2 4 6 8 10 12 14 16 18
10 0.761 0880 0980 0580 0980 0980 0980 0980 0980
102 0595 0754 0824 0863 0889 0905 0917 0926 0934
10° 0.553 0.708 0787 0832 0861 0.882  0.897 0908 0918
10* 0.533 0.679 0.763 0.812  0.844 0867  0.883 0.896  0.906
10° 0.525 0663 0748 0.800  0.833 0.857 0875  0.889  0.900
108 0519 0650 0737 0.789  0.825 0.849  0.868  0.883 0.594
107 0.515 0.641 0.727 0.781 0817  0.843 0862 0877  0.390
10 0514 0634 0720 0774 0812 0838 0858 0.874 0.886
10° 0512 0628 0714 0770 0807 0.833 0.854 0870  0.882

pre 0.510 L&621 0,709 0. 764 0802 0830 0.850 0.B66 0.879




Consider the following situation

p=0.75
t=4
d=100

N=10,000

k=100

F(p,t,d)=0.392

Parameters of Algorithm B:
pthr:O'524

N, =448

An Example

Number of digits Number of wrong

Mumber of wrong

with digits with Decrease of digits after
P* < P P* < P wrong digits correction

Round 1

Tteration | 430 246 62 2500

Iteration 2 613 416 217 2300

Correction (613 = N,,) 0 0 0 2283
Round 2

Tteration | 70 dd 18 1283

Iteration 2 3l4 254 154 2283

Iteration 3 921 743 565 2283

Correction ] 0 0 1718
Round 3

Tteration 1 49 48 47 1718

Tteration 2 654 643 623 1718

Correction ] 0 0 1086
Round 4

Iteration 1 311} 110 110 1086

lteration 2 712 08 04 1086

Correction ] 0 ] 382
Round 5

Tteration 1 6 b 86 382

Iteration 2 341 342 M2 382

lteration 3 382 382 382 382

Correction 1] 0 0 0

pAS)



Complexity and Limits of Attack:

« Algorithm B grows linearly with LFSR length k i.e., is of order O(K).

* F(p,t,d)<0.5 has led to successful attack. Same is reported even for
F(p,t,d)=0.1

» Definite barrier with F(p,t,d)<0
p with F(p,t,d)=0

3

d 2 4 & 8 10 12 14 16 18

10 0.584 0.739 0,804 0.841 0.864 0.881 0.894 05904 0.912
10* 0.533 0.673 0.750 0.796 0.827 0.849 0.863 0.878 0.8%0
10° 0.521 (0.648 0.727 0.776 0.809 0.833 0.852 (.866 0.878
({1 0.514 0.629 0.709 0.760 0.795 0321 0.341 0.856 0.869
10° 0.511 0.620 0.699 0732 0.787 0.815 0.334 0.830 0.863
10° 0.309 0.612 0.692 0.745 0.782 0.809 0.830 0.846 0.860
107 (1508 (L6035 0.684 0.738 0.773 0.803 0825 0.542 0.855
108 (.507 0,601 0.680 0.733 0.771 0.500 (L821 0.838 0.852
10° 0.506 0.597 0.676 0.729 0.768 0.797 0.818 0.836 0.850
104° 0.505 0.592 0.671 0.725 0.764 0.793 0.815 0.832 0.847




Suggestion:

* Any correlation to an LFSR with less than 10
taps should be avoided.
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