IEOR SEMINAR SERIES Cryptanalysis: Fast Correlation Attacks on LFSR-based Stream Ciphers

presented by

Goutam Sen

Research Scholar IITB Monash Research Academy.

Agenda:

- Introduction to Stream Ciphers
- Linear Feedback Shift Register(LFSR)
- Cryptanalysis of LFSR-based Stream Ciphers.
- Statistical Model
- Exponential-Time Correlation Attack
- Polynomial-Time Correlation Attack
- Computational Complexity and Limits of Attack
- References

A Cryptosystem or Cipher

• 5-tuple Cryptosystem: ($\mathcal{P}, \mathcal{T}, \mathcal{K}, \mathcal{E}, \mathcal{D}$)

 \mathcal{P} is a finite set of possible plaintexts;

T is finite set of possible ciphertexts;

 \mathcal{K} is the keyspace, finite set of possible keys;

For each $K \in \mathcal{K}$, there is an encryption rule $e_K \in \mathcal{E}$ and a corresponding decryption rule $d_K \in \mathcal{D}$. Each $e_K : \mathcal{P} \to \mathcal{T}$ and d_k : $\mathcal{T} \to \mathcal{P}$ are functions such that $d_K(e_K(x)) = x$ for every plaintext element $x \in \mathcal{P}$.

Block Ciphers vs. Stream Ciphers

Block Ciphers:

 $x = x_1 x_2 ... x_n$ for some integer $n \ge 1$ and $x_i \in \mathscr{P}$ *K*: predetermined key(might be different for \mathscr{E} and \mathscr{D}). $y_i = e_K(x_i)$, where $e_K()$ is an injective function(one-to-one). $y = y_1 y_2 ... y_n$ Encrypted with the same key $K \in \mathscr{K}$

Stream Ciphers:

Keystream $K = k_1 k_2 k_3 \dots$ Cipher $y = e_{k1}(x_1)e_{k2}(x_2)e_{k3}(x_3)\dots$ $\mathscr{P} = \mathcal{T} = \mathbb{Z}_2$

- $e_k(x) = (x+k)\%2$
- $d_k(y) = (y+k)\%2$
- Hardware implementation: XOR gate

Random Number Generators:

- True Random Number Generator (TRNG)
- Pseudo-Random Number Generator (PRNG) Example: Linear Congruential Generator(LCG)

 $s_0 = seed;$

$$s_{i+1} = as_i + b \mod m$$
; for $i = 0, 1, 2...$

- chi-square test for statistical randomness
- not truly random, having periodicity.
- Cryptographically Secure Pseudo-Random Number Generator (CSPRNG)
- statistical properties of truly random sequence
- Solution Given n output bits s_i , s_{i+1} , ..., s_{i+n-1} No polynomial time algorithm that can predict the next bit s_{n+1} with better than 50% chance of success.
- > Computationally infeasible to predict s_{i+n} , s_{i+n+1} , ... and also s_{i-1} , s_{i-2} , ...

Linear Feedback Shift Register(LFSR)

$$k_{m+\ell} = \sum_{j=0}^{\ell-1} c_j k_{m+j}.$$
 linear feedback

Properties of LFSR

- Periodicity: 2^{*l*}-1 for maximum-length LFSR.
- Tap polynomial:

$$t(x) = x^{\ell} + c_{\ell-1}x^{\ell-1} + c_{\ell-2}x^{\ell-2} + \dots + c_1x + c_0$$

- Primitive polynomial(maximum-length LFSR)
 - \succ t(x) has no proper non-trivial factors
 - $\blacktriangleright \quad \text{does not divide } x^d + 1 \text{ for } d < 2^l 1$
- Linear complexity of a binary sequence $k = \{k_j\}$ is the length of the shortest LFSR that generates *k*.
- Berlekamp Massey Algorithm suggests that for a binary sequence $k = \{k_j\}$ having linear complexity *L*, there exists a unique LFSR of length *L* iff $L \le n/2$

Cryptology, Cryptography and Cryptanalysis

Key length	Security estimation
	short term: a few hours or days
	long term: several decades in the absence of quantum computers
	long term: several decades, even with quantum computers that run the currently known quantum computing algorithms

Cryptanalysis

- Mathematical analysis to defeat cryptographic methods.
- Kerckhoff's Principle:

To obtain security while assuming that Oscar knows the cryptosystem (i.e. encryption and decryption algorithms).

- Types of Attack:
 - Ciphertext only attack (knowledge of y)
 - Known plaintext attack (knowledge of x and y)
 - → Chosen plaintext attack (temporary access to cryptosystem $x \rightarrow y$)
 - → Chosen ciphertext attack (temporary access to decryption machinery $y \rightarrow x$)
- Objective: To determine the "key" so that 'target' ciphertext can be decrypted.

Cryptanalysis of LFSR-based stream ciphers

- $y_i = (x_i + k_i)\%2$
- (k_1, k_2, \dots, k_m) initial tuple.
- Linear recurrence:

$$z_{m+i} = \sum_{j=0}^{m-1} c_j z_{i+j} \mod 2$$

• Known-plaintext attack:

 $x = x_1 x_2 \dots x_n$

 $y = y_1 y_2 \dots y_n$

 $k_i = (x_i + y_i)\%2$

- To reproduce the entire keystream, we require *n*≥2*m*, assuming *m*, the length of the LFSR, is known.
- What remains to compute is the tap sequence $c_0, c_1, c_2, ..., c_{m-1}$

Matrix Form

$$(z_{m+1}, z_{m+2}, \dots, z_{2m}) = (c_0, c_1, \dots, c_{m-1}) \begin{pmatrix} z_1 & z_2 & \dots & z_m \\ z_2 & z_3 & \dots & z_{m+1} \\ \vdots & \vdots & & \vdots \\ z_m & z_{m+1} & \dots & z_{2m-1} \end{pmatrix}$$

If the coefficient matrix has an inverse (modulo 2), we obtain the solution

$$(c_0, c_1, \dots, c_{m-1}) = (z_{m+1}, z_{m+2}, \dots, z_{2m}) \begin{pmatrix} z_1 & z_2 & \dots & z_m \\ z_2 & z_3 & \dots & z_{m+1} \\ \vdots & \vdots & & \vdots \\ z_m & z_{m+1} & \dots & z_{2m-1} \end{pmatrix}^{-1}$$

Nonlinear Combination Generator

 $f(x_1, x_2, x_3, x_4, x_5) = 1 \oplus x_2 \oplus x_3 \oplus x_4 \cdot x_5 \oplus x_1 \cdot x_2 \cdot x_3 \cdot x_5.$

- Siegenthaler shows that if the keystream is correlated to (at least) one of the LFSR sequences, the correlation attack against this individual LFSR significantly reduces a brute-force attack.
- Divide and Conquer:

Attempt first to determine initial states of subset of LFSRs, in order to reduce complexity of search for right key.

Algebraic and Statistical Foundation

- Assume that N digits of the output sequence z are given.
- Correlation probability p > 0.5 to an LFSR sequence **a**.

 $p = \operatorname{Prob}(z_n = a_n) > 0.5.$

- The LFSR in question has few feedback tabs, say *t*. (This is desired for the ease of hardware).
- Further assume that feedback connection is known(although not an essential restriction).
- LFSR sequence **a** is given by linear relation(for LFSR-length *k*)

$$a_{n} = c_{1}a_{n-1} + c_{2}a_{n-2} + \dots + c_{k}a_{n-k}.$$

$$\sum_{\{i:0 \le i \le k, c_{i} \ne 0\}} a_{n-i} = 0.$$

• Feedback polynomial: $c(X) = c_0 + c_1 X + c_2 X^2 + \dots + c_k X^k$ (with $c_0 = 1$)

Algebraic and Statistical foundations

- Every polynomial multiple of c(X) defines a linear relation for **a**.
- In particular, $c(X)^{j} = c(X^{j})$ for exponents $j=2^{i}$
- All having same number *t* number of feedback taps.
- Suppose a_n is fixed.
- Linear relations obtained by shifting and iterated squaring:

$$L_1 = a + b_1 = 0,$$

$$L_2 = a + b_2 = 0,$$

$$\vdots$$

$$L_m = a + b_m = 0,$$

where $a=a_n$ and each b_i , i=1,...,m is a sum of exactly *t* different terms of the LFSR sequence **a**.

• We substitute the digits of *z* at same index positions:

$$L_i = z + y_i, \qquad i = 1, \dots, m,$$

Statistical Model

- Introducing a set of binary random variables $A = \{a, b_{11}, b_{12}, ..., b_{1t}, b_{21}, b_{22}, ..., b_{2t}, ..., b_{m1}, b_{m2}, ..., b_{mt}\}$ $a + b_{11} + b_{12} + \cdots + b_{1t} = 0,$ $a + b_{21} + b_{22} + \cdots + b_{2t} = 0,$ \vdots $a + b_{m1} + b_{m2} + \cdots + b_{mt} = 0.$
- Similarly introducing a set of binary random variables $Z = \{z, y_{11}, y_{12}, ..., y_{1t}, y_{21}, y_{22}, ..., y_{2t}, ..., y_{m1}, y_{m2}, ..., y_{mt}\}$

 $Prob(z = a) = p \text{ and } Prob(y_{ij} = b_{ij}) = p.$ $b_i = b_{i1} + b_{i2} + \dots + b_{it}$ $y_i = y_{i1} + y_{i2} + \dots + y_{it}$ $L_i = z + y_i.$ $s = Prob(y_i = b_i),$ s(p, t) = ps(p, t - 1) + (1 - p)(1 - s(p, t - 1)),s(p, 1) = p.

Statistical Model(contd.)

- Consider random variables $L_1, L_2, ..., L_m$.
- The probability that the outcome of these random variable vanishes for a given set of exactly *h* indices is given by

$$ps^{h}(1-s)^{m-h} + (1-p)(1-s)^{h}s^{m-h}$$

• For simplicity, assume that $L_1 = 0, L_2 = 0, ..., L_h = 0$ and $L_{h+1} = 1, L_{h+2} = 1, ..., L_m = 1$.

$$P(z=a|L_1=\cdots=L_h=0, L_{h+1}=\cdots=L_m=1) = \frac{ps^h(1-s)^{m-h}}{ps^h(1-s)^{m-h}+(1-p)(1-s)^hs^{m-h}},$$

$$P(z \neq a | L_1 = \dots = L_h = 0, L_{h+1} = \dots = L_m = 1) = \frac{(1-p)(1-s)^h s^{m-h}}{p s^h (1-s)^{m-h} + (1-p)(1-s)^h s^{m-h}}$$

• *z* corresponds to the fixed digit z_n , and *a* to the fixed digit a_n we wish to determine.

p* as a function of h

p* as function of number h of relations satisfied (p=0.75)

h	p*
0	0.00011
1	0.00030
2	0.00085
3	0.00235
4	0.00649
5	0.01782
6	0.04797
7	0.12278
8	0.27995
9 10	0.51923 0.75000
11	0.89286
12	0.95859
13	0.98469
14	0.99443
15	0.99799
16	0.99927
17	0.99974
18	0.99991
19	0.99997
20	0.99999

1

$$m = m(N, k, t) \approx \log\left(\frac{N}{2k}\right)(t+1).$$

An Efficient Exponential-Time Attack

- To select k digits of z with the highest probability p^*
- LFSR sequence **a** can be constructed out of its any *k* digits solving linear equations for the initial state.
- The probability Q(p,m,h) that a fixed digit *z* satisfies at least *h* of *m* relations:

$$Q(p, m, h) = \sum_{i=h}^{m} {m \choose i} (ps^{i}(1-s)^{m-i} + (1-p)(1-s)^{i}s^{m-i})$$

• The probability R(p,m,h) that z=a and at least h of m relations hold:

$$R(p, m, h) = \sum_{i=h}^{m} \binom{m}{i} ps^{i}(1-s)^{m-i}.$$

- So, the prob. for z=a, given that at least h of m relations hold is the quotient: T(p, m, h) = R(p, m, h)/Q(p, m, h).
- *Q*(*p*,*m*,*h*).*N* are expected to satisfy at least *h* relations and these digits have probability *T*(*p*,*m*,*h*) of being correct.
- T(p,m,h) increases with h. So maximize h with $Q(p.m.h) \ge k$

Algorithm A

- *Step1*. Determine *m*.
- *Step2*. Find the maximum value of *h* such that $Q(p.m.h) \ge k$.
- *Step3*. Search for digits of z satisfying at least h relations and use these digits as a reference guess I_0 of \mathbf{a} at the corresponding index positions.
- *Step4*. Find the correct guess by testing modifications of I_0 with Hamming distance 0, 1, 2, ... by correlation of the corresponding LFSR sequence with the sequence z.
- Observation: digits in the middle part of z satisfy more relations that the digits near the boundaries. This leads to slight modification of step3 as *Step3*': Compute new probability p* for the given digits of z and choose k digits having highest probability p*.
- Average number of erroneous digits is computed as (*1*-*T*(*p*,*m*,*h*)).*k*. Under favorable conditions(e.g., <<1), step4 is not necessary.

Computational Complexity of Algorithm A

- Computation time for Step 1-3 is negligible.
- Only estimate average number of trials in step4.
- Suppose exactly *r* among the digits found in step3 are incorrect.
- Max number of trials in step4 is

$$A(k,r) = \sum_{i=0}^{r} \binom{k}{i}.$$

• A well-known estimate using binary entropy function

$$H(0) = H(1) = 0,$$

$$H(x) = -x \log x - (1 - x) \log(1 - x) \qquad (0 < x < 1).$$

• Then

$$A(k, r) = \sum_{i=0}^{r} \binom{k}{i} \le 2^{H(\theta)k}$$

with $\theta = r/k$.

• Algorithm A has computational complexity $O(2^{ck})$, where c=H(r/k), $0 \le c \le 1$

A Polynomial-Time Attack

- We do not search for correct digits here. Instead, we assign new probability p^* to each digit of *z* iteratively and under some favorable conditions, complement all digits to get maximum correction effect.
- The probability U(p,m,h) that at most h of m relations are satisfied:

$$U(p, m, h) = \sum_{i=0}^{h} \binom{m}{i} (ps^{i}(1-s)^{m-i} + (1-p)(1-s)^{i}s^{m-i}).$$

- The probability V(p,m,h) that z=a and at most h of m relations are satisfied: $V(p,m,h) = \sum_{i=0}^{h} {m \choose i} ps^{i}(1-s)^{m-i}$
- The probability W(p,m,h) that $z \neq a$ and at most h of m relations are satisfied: $W(p,m,h) = \sum_{i=0}^{h} {m \choose i} (1-p)(1-s)^{i} s^{m-i}.$
- *U*(*p*,*m*,*h*).*N* is the expected number of digits of *z* which satisfy at most *h* relations.
- Relative increase in correct digits after complementation:

I(p, m, h) = W(p, m, h) - V(p, m, h).

• For given *p* and *m*, choose $h=h_{max}$ so as to maximize I(p,m,h).

• Taking p^* into account, we replace h_{max} by a corresponding probability threshold on p^*

 $p_{\text{thr}} = \frac{1}{2}(p^*(p, m, h_{\text{max}}) + p^*(p, m, h_{\text{max}} + 1))$

• Expected number of digits with p^* below p_{thr} is:

$$N_{\text{thr}} = U(p, m, h_{\text{max}}) \cdot N.$$

• Generalized formula to compute *s*(*p*,*t*):

$$s(p_1, \dots, p_t, t) = p_t s(p_1, \dots, p_{t-1}, t-1) + (1 - p_t)(1 - s(p_1, \dots, p_{t-1}, t-1)),$$

$$s(p_1, 1) = p_1.$$

Algorithm B

- *Step1*: Determine *m*.
- *Step2*: Find the value of $h=h_{max}$ such that I(p,m,h) is maximized. Compute p_{thr} and N_{thr} .
- *Step3*. Initialize the iteration counter i=0.
- *Step4*. For every digit of *z* compute the new probability p^* with respect to the individual number of relations satisfied. Determine the number N_w of digits with $p^* < p_{thr}$.
- *Step5.* if $N_w < N_{thr}$ or $i < \alpha$ increment *i* and go to *step4*.
- *Step6*. Complement those digits of *z* with $p^* < p_{thr}$ and reset the probability of each digit to the original value of *p*.
- *Step7*. If there are digits not satisfying linear recurrence, go to *step3*.
- *Step8*. Terminate with **a**=*z*.

Computational Complexity and Limits of Attack:

- m=m(t,d), d=N/k.
- $h_{max} = h_{max}(p,m)$
- $I_{max} = I_{max}(p,t,d)$
- The expected number of digits corrected in one iteration $N_c = I_{max}(p,t,d).N$
- $N_c = F(p,t,d).k$ where $F(p,t,d)=I_{max}(p,t,d).d$
- If $F(p,t,d) \leq 0$, no correction effect. Attack will fail.
- For $F(p,t,d) \ge 0.5$, successful attack.

	t								
d	2	4	6	8	10	12	14	16	18
10	0.761	0.880	0.980	0.980	0.980	0.980	0.980	0.980	0.980
10 ²	0.595	0.754	0.824	0.863	0.889	0.905	0.917	0.926	0.934
10 ³	0.553	0.708	0.787	0.832	0.861	0.882	0.897	0.908	0.918
104	0.533	0.679	0.763	0.812	0.844	0.867	0.883	0.896	0.906
105	0.525	0.663	0.748	0.800	0.833	0.857	0.875	0.889	0.900
106	0.519	0.650	0.737	0.789	0.825	0.849	0.868	0.883	0.894
107	0.515	0.641	0.727	0.781	0.817	0.843	0.862	0.877	0.890
108	0.514	0.634	0.720	0.774	0.812	0.838	0.858	0.874	0.886
109	0.512	0.628	0.714	0.770	0.807	0.833	0.854	0.870	0.882
1010	0.510	0.621	0.709	0.764	0.802	0.830	0.850	0.866	0.879

p with F(p,t,d)=0.5

An Example

• Consider the following situation

	p=0.75 t=4		Number of digits with $p^* < p_{thr}$	Number of wrong digits with $p^* < p_{thr}$	Decrease of wrong digits	Number of wrong digits after correction
	d = 100	Round 1				
	u = 100	Iteration 1	430	246	62	2500
	N=10,000	Iteration 2	615	416	217	2500
	N = 10,000	Correction (615 > N_{thr})	0	0	0	2283
	1 100	Round 2				
	k=100	Iteration 1	70	44	18	2283
		Iteration 2	314	254	194	2283
•	F(p,t,d) = 0.392	Iteration 3	921	743	565	2283
		Correction	0	0	0	1718
٠	Parameters of Algorithm B:	Round 3				
	e	Iteration 1	49	48	47	1718
	$n_{\pm} = 0.524$	Iteration 2	654	643	623	1718
	P thr 0.021	Correction	0	0	0	1086
	$p_{thr} = 0.524$ $N_{thr} = 448$	Round 4				
	$r_{thr} - \tau \tau \sigma$	Iteration 1	110	110	110	1086
		Iteration 2	712	708	704	1086
		Correction	0	0	0	382
		Round 5				
		Iteration 1	86	86	86	382
		Iteration 2	342	342	342	382
		Iteration 3	382	382	382	382
		Correction	0	0	0	0

Complexity and Limits of Attack:

- Algorithm B grows linearly with LFSR length k i.e., is of order O(k).
- F(p,t,d) < 0.5 has led to successful attack. Same is reported even for F(p,t,d)=0.1
- Definite barrier with $F(p,t,d) \leq 0$

d	t								
	2	4	6	8	10	12	14	16	18
10	0.584	0.739	0.804	0.841	0.864	0.881	0.894	0.904	0.912
10 ²	0.533	0.673	0.750	0.796	0.827	0.849	0.865	0.878	0.890
10 ³	0.521	0.648	0.727	0.776	0.809	0.833	0.852	0.866	0.878
104	0.514	0.629	0.709	0.760	0.795	0.821	0.841	0.856	0.869
105	0.511	0.620	0.699	0.752	0.787	0.815	0.834	0.850	0.863
106	0.509	0.612	0.692	0.745	0.782	0.809	0.830	0.846	0.860
107	0.508	0.605	0.684	0.738	0.775	0.803	0.825	0.842	0.855
10 ⁸	0.507	0.601	0.680	0.733	0.771	0.800	0.821	0.838	0.852
109	0.506	0.597	0.676	0.729	0.768	0.797	0.818	0.836	0.850
1010	0.505	0.592	0.671	0.725	0.764	0.793	0.815	0.832	0.847

p with F(p,t,d)=0

Suggestion:

• Any correlation to an LFSR with less than 10 taps should be avoided.

References:

- Christof Paar and Jan Pelzl, Understanding Cryptography, Springer, 2010
- Douglas R. Stinson, *Cryptography Theory and Practice*, 3rd ed., Chapman and Hall/CRC, Taylor & Francis group, 2006
- Mark Stamp and Richard M. Low, *Applied Cryptanalysis: Breaking Ciphers in the Real World*, John Wiley and Sons, Inc., publication, Wiley-Interscience, 2007
- Nigel Smart, *Cryptography: An Introduction*, 3rd Ed., University of Bristol.
- Richard A. Mollin, *An Introduction to Cryptography*, 2nd ed., Chapman and Hall/CRC, Taylor & Francis group, 2007.
- Willi Meier and Othmar Staffelbach, Fast Correlation Attacks on Certain Stream Ciphers, *Journal of Cryptology*(1989) 1:159-176.
- T. Siegenthaler, Decrypting a class of stream ciphers using ciphertext only, *IEEE Trans. Comput.*, 34, 81-85, 1985.
- S. Palit, B. Roy and A. De, "A Fast Correlation Attack for LFSR-Based Stream Ciphers," *ACNS 2003, Lecture Notes in Computer Science*, vol. 2843, pp. 331-342, 2003

Acknowledgements:

 Dr. Sarbani Palit, Professor, Computer Vision and Pattern Recognition Unit, Indian Statistical Institute, Calcutta.

