IEOR SEMINAR SERIES
 Cryptanalysis: Fast Correlation Attacks on LFSR-based Stream Ciphers
 presented by

Goutam Sen

Research Scholar
IITB Monash Research Academy.

Agenda:

- Introduction to Stream Ciphers
- Linear Feedback Shift Register(LFSR)
- Cryptanalysis of LFSR-based Stream Ciphers.
- Statistical Model
- Exponential-Time Correlation Attack
- Polynomial-Time Correlation Attack
- Computational Complexity and Limits of Attack
- References

A Cryptosystem or Cipher

- 5-tuple Cryptosystem: ($\mathscr{P}, 飞, \mathcal{K}, \mathcal{E}, \mathscr{D})$
\mathscr{F} is a finite set of possible plaintexts;
τ is finite set of possible ciphertexts;
\mathcal{K} is the keyspace, finite set of possible keys;
For each $K \in \mathcal{K}$, there is an encryption rule $e_{K} \in \mathscr{E}$ and a corresponding decryption rule $d_{K} \epsilon \mathscr{D}$. Each $\mathrm{e}_{\mathrm{K}}: \mathscr{P} \rightarrow \mathrm{G}$ and $_{\mathrm{k}}$: $\tau \rightarrow \mathscr{P}$ are functions such that $d_{K}\left(e_{K}(x)\right)=x$ for every plaintext element $x \epsilon \mathscr{P}$.

Block Ciphers vs. Stream Ciphers

Block Ciphers:

$x=x_{I} x_{2} \ldots x_{n}$ for some integer $n \geq 1$ and $x_{i} \epsilon \mathscr{P}$
K : predetermined key(might be different for \mathfrak{E} and $\mathscr{D})$.
$y_{i}=e_{K}\left(x_{i}\right)$, where $e_{K}()$ is an injective function(one-to-one).
$y=y_{1} y_{2} \ldots y_{n}$
Encrypted with the same key $K \in \mathcal{K}$

Stream Ciphers:

Keystream $K=k_{1} k_{2} k_{3} \ldots$
Cipher $y=e_{k 1}\left(x_{1}\right) e_{k 2}\left(x_{2}\right) e_{k 3}\left(x_{3}\right) \ldots$

- $\mathscr{P}=\mathscr{G}=Z_{2}$
- $e_{k}(x)=(x+k) \% 2$
- $d_{k}(y)=(y+k) \% 2$
- Hardware implementation: XOR gate

Random Number Generators:

- True Random Number Generator (TRNG)
- Pseudo-Random Number Generator (PRNG)

Example: Linear Congruential Generator(LCG)

$$
\begin{aligned}
& s_{0}=\text { seed } ; \\
& s_{i+1}=a s_{i}+b \bmod m ; \text { for } i=0,1,2 \ldots
\end{aligned}
$$

$>$ chi-square test for statistical randomness
$>$ not truly random, having periodicity.

- Cryptographically Secure Pseudo-Random Number Generator (CSPRNG)
$>$ statistical properties of truly random sequence
$>$ Given n output bits $s_{i}, s_{i+l}, \ldots, s_{i+n-1}$ No polynomial time algorithm that can predict the next bit s_{n+1} with better than 50% chance of success.
$>$ Computationally infeasible to predict $s_{i+n}, s_{i+n+l}, \ldots$ and also s_{i-1}, s_{i-2}, \ldots

Linear Feedback Shift Register(LFSR)

$$
\text { feedback } \begin{gathered}
c_{\ell-1} \downarrow c_{\ell-2} \downarrow \\
-\oplus-\oplus \xrightarrow[c]{c_{1} \downarrow} c_{0} \downarrow \\
-\oplus+\oplus
\end{gathered}
$$

$$
k_{m+\ell}=\sum_{j=0}^{\ell-1} c_{j} k_{m+j} . \quad \text { linear feedback }
$$

Properties of LFSR

- Periodicity: $2^{l}-1$ for maximum-length LFSR.
- Tap polynomial:

$$
t(x)=x^{\ell}+c_{\ell-1} x^{\ell-1}+c_{\ell-2} x^{\ell-2}+\cdots+c_{1} x+c_{0}
$$

- Primitive polynomial(maximum-length LFSR)
$>t(x)$ has no proper non-trivial factors
$>$ does not divide $x^{d}+1$ for $d<2^{l}-1$
- Linear complexity of a binary sequence $k=\left\{k_{j}\right\}$ is the length of the shortest LFSR that generates k.
- Berlekamp Massey Algorithm suggests that for a binary sequence $k=\left\{k_{j}\right\}$ having linear complexity L, there exists a unique LFSR of length L iff $L \leq n / 2$

Cryptology, Cryptography and Cryptanalysis

Cryptanalysis

- Mathematical analysis to defeat cryptographic methods.
- Kerckhoff's Principle:

To obtain security while assuming that Oscar knows the cryptosystem (i.e. encryption and decryption algorithms).

- Types of Attack:
$>$ Ciphertext only attack (knowledge of y)
$>$ Known plaintext attack (knowledge of x and y)
$>$ Chosen plaintext attack (temporary access to cryptosystem $x \rightarrow y$)
\rightarrow Chosen ciphertext attack (temporary access to decryption machinery $y \rightarrow x$)
- Objective: To determine the "key" so that 'target' ciphertext can be decrypted.

Cryptanalysis of LFSR-based stream ciphers

- $y_{i}=\left(x_{i}+k_{i}\right) \% 2$
- $\left(k_{1}, k_{2}, \ldots, k_{m}\right)$ initial tuple.
- Linear recurrence:

$$
z_{m+i}=\sum_{j=0}^{m-1} c_{j} z_{i+j} \bmod 2
$$

- Known-plaintext attack:

$$
\begin{aligned}
& x=x_{I} x_{2} \ldots x_{n} \\
& y=y_{I} y_{2} \ldots y_{n} \\
& k_{i}=\left(x_{i}+y_{i}\right) \% 2
\end{aligned}
$$

- To reproduce the entire keystream, we require $n \geq 2 m$, assuming m, the length of the LFSR, is known.
- What remains to compute is the tap sequence $c_{0}, c_{1}, c_{2}, \ldots, c_{m-1}$

Matrix Form

$$
\left(z_{m+1}, z_{m+2}, \ldots, z_{2 m}\right)=\left(c_{0}, c_{1}, \ldots, c_{m-1}\right)\left(\begin{array}{cccc}
z_{1} & z_{2} & \ldots & z_{m} \\
z_{2} & z_{3} & \ldots & z_{m+1} \\
\vdots & \vdots & & \vdots \\
z_{m} & z_{m+1} & \ldots & z_{2 m-1}
\end{array}\right)
$$

If the coefficient matrix has an inverse (modulo 2), we obtain the solution

$$
\left(c_{0}, c_{1}, \ldots, c_{m-1}\right)=\left(z_{m+1}, z_{m+2}, \ldots, z_{2 m}\right)\left(\begin{array}{cccc}
z_{1} & z_{2} & \ldots & z_{m} \\
z_{2} & z_{3} & \ldots & z_{m+1} \\
\vdots & \vdots & & \vdots \\
z_{m} & z_{m+1} & \ldots & z_{2 m-1}
\end{array}\right)^{-1}
$$

Nonlinear Combination Generator

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=1 \oplus x_{2} \oplus x_{3} \oplus x_{4} \cdot x_{5} \oplus x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{5} .
$$

- Siegenthaler shows that if the keystream is correlated to (at least) one of the LFSR sequences, the correlation attack against this individual LFSR significantly reduces a bruteforce attack.
- Divide and Conquer:

Attempt first to determine initial states of subset of LFSRs, in order to reduce complexity of search for right key.

Algebraic and Statistical Foundation

- Assume that N digits of the output sequence z are given.
- Correlation probability $p>0.5$ to an LFSR sequence a.

$$
p=\operatorname{Prob}\left(z_{n}=a_{n}\right)>0.5 .
$$

- The LFSR in question has few feedback tabs, say t. (This is desired for the ease of hardware).
- Further assume that feedback connection is known(although not an essential restriction).
- LFSR sequence \mathbf{a} is given by linear relation(for LFSR-length k)

$$
\begin{gathered}
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k} \\
\quad \sum_{\left\{i, 0 \leq i \leq k, c_{i} \neq 0\right\}} a_{n-i}=0 .
\end{gathered}
$$

- Feedback polynomial:

$$
\left.c(X)=c_{0}+c_{1} X+c_{2} X^{2}+\cdots+c_{k} X^{k} \text { (with } c_{0}=1\right)
$$

Algebraic and Statistical foundations

- Every polynomial multiple of $c(X)$ defines a linear relation for a.
- In particular, $\boldsymbol{c}(\boldsymbol{X})^{j}=\boldsymbol{c}\left(\boldsymbol{X}^{j}\right)$ for exponents $j=2^{i}$
- All having same number t number of feedback taps.
- Suppose a_{n} is fixed.
- Linear relations obtained by shifting and iterated squaring:

$$
\begin{gathered}
L_{1}=a+b_{1}=0 \\
L_{2}=a+b_{2}=0 \\
\vdots \\
L_{m}=a+b_{m}=0
\end{gathered}
$$

where $a=a_{n}$ and each $b_{i}, i=1, \ldots, m$ is a sum of exactly t different terms of the LFSR sequence \mathbf{a}.

- We substitute the digits of z at same index positions:

$$
L_{i}=z+y_{i}, \quad i=1, \ldots, m
$$

Statistical Model

- Introducing a set of binary random variables $A=\left\{a, b_{11}, b_{12}, \ldots, b_{1 p}, b_{21}, b_{22}\right.$,
$\left.\ldots, b_{2 p}, \ldots, b_{m 1}, b_{m 2}, \ldots, b_{m t}\right\}$

$$
\begin{aligned}
& a+b_{11}+b_{12}+\cdots+b_{1 t}=0, \\
& a+b_{21}+b_{22}+\cdots+b_{2 t}=0,
\end{aligned}
$$

$$
a+b_{m 1}+b_{m 2}+\cdots+b_{m t}=0 .
$$

- Similarly introducing a set of binary random variables $Z=\left\{z, y_{11}, y_{12}, \ldots\right.$,

$$
\begin{array}{ll}
\left.y_{1 p} y_{21}, y_{22}, \ldots, y_{2 p}, \ldots, y_{m l}, y_{m 2}, \ldots, y_{m t}\right\} \\
\operatorname{Prob}(z=a)=p \text { and } \operatorname{Prob}\left(y_{i j}=b_{i j}\right)=p . \\
b_{i}=b_{i 1}+b_{i 2}+\cdots+b_{i t} & s=\operatorname{Prob}\left(y_{i}=b_{i}\right), \\
y_{i}=y_{i 1}+y_{i 2}+\cdots+y_{i t} & s(p, t)=p s(p, t-1)+(1-p)(1-s(p, t-1)), \\
& s(p, 1)=p .
\end{array}
$$

$$
L_{i}=z+y_{i} .
$$

Statistical Model(contd.)

- Consider random variables $L_{1}, L_{2}, \ldots, L_{m}$.
- The probability that the outcome of these random variable vanishes for a given set of exactly h indices is given by

$$
p s^{h}(1-s)^{m-h}+(1-p)(1-s)^{h} s^{m-h} .
$$

- For simplicity, assume that $L_{1}=0, L_{2}=0, \ldots, L_{h}=0$ and $L_{h+1}=1, L_{h+2}=1, \ldots$, $L_{m}=1$.

$$
\begin{aligned}
& P\left(z=a \mid L_{1}=\cdots=L_{h}=0, L_{h+1}=\cdots=L_{m}=1\right)=\frac{p s^{h}(1-s)^{m-h}}{p s^{h}(1-s)^{m-h}+(1-p)(1-s)^{h} s^{m-h}} \\
& P\left(z \neq a \mid L_{1}=\cdots=L_{h}=0, L_{h+1}=\cdots=L_{m}=1\right)=\frac{(1-p)(1-s)^{h} s^{m-h}}{p s^{h}(1-s)^{m-h}+(1-p)(1-s)^{h} s^{m-h}}
\end{aligned}
$$

- z corresponds to the fixed digit z_{n}, and a to the fixed digit a_{n} we wish to determine.

p^{*} as a function of h

```
p* as function of number h
of relations satisfied ( }\textrm{p}=0.75\mathrm{ )
\begin{tabular}{cc}
\(h\) & \(p^{*}\) \\
0 & 0.00011 \\
1 & 0.00030 \\
2 & 0.00085 \\
3 & 0.00235 \\
4 & 0.00649 \\
5 & 0.01782 \\
6 & 0.04797 \\
7 & 0.12278 \\
8 & 0.27995 \\
9 & 0.51923 \\
10 & 0.75000 \\
11 & 0.89286 \\
12 & 0.95859 \\
13 & 0.98469 \\
14 & 0.99443 \\
15 & 0.99799 \\
16 & 0.99927 \\
17 & 0.99974 \\
18 & 0.99991 \\
19 & 0.99997 \\
20 & 0.99999
\end{tabular}
\[
m=m(N, k, t) \approx \log \left(\frac{N}{2 k}\right)(t+1) .
\]
```


An Efficient Exponential-Time Attack

- To select k digits of z with the highest probability p^{*}
- LFSR sequence a can be constructed out of its any k digits solving linear equations for the initial state.
- The probability $\boldsymbol{Q}(\boldsymbol{p}, \boldsymbol{m}, \boldsymbol{h})$ that a fixed digit z satisfies at least h of m relations:

$$
Q(p, m, h)=\sum_{i=n}^{m}\binom{m}{i}\left(p s^{i}(1-s)^{m-i}+(1-p)(1-s)^{i} s^{m-i}\right)
$$

- The probability $\boldsymbol{R}(\boldsymbol{p}, \boldsymbol{m}, \boldsymbol{h})$ that $z=a$ and at least h of m relations hold:

$$
R(p, m, h)=\sum_{i=h}^{m}\binom{m}{i} p s^{s}(1-s)^{m-t} .
$$

- So, the prob. for $z=a$, given that at least h of m relations hold is the quotient:

$$
T(p, m, h)=R(p, m, h) / Q(p, m, h) .
$$

- $\boldsymbol{Q}(\boldsymbol{p}, \boldsymbol{m}, \boldsymbol{h}) . \boldsymbol{N}$ are expected to satisfy at least h relations and these digits have probability $\boldsymbol{T}(\boldsymbol{p}, \boldsymbol{m}, \boldsymbol{h})$ of being correct.
- $\boldsymbol{T}(\boldsymbol{p}, \boldsymbol{m}, \boldsymbol{h})$ increases with h. So maximize h with $\boldsymbol{Q}(\boldsymbol{p} . \boldsymbol{m} . \boldsymbol{h}) \geq \boldsymbol{k}$

Algorithm A

- Step1. Determine m.
- Step2. Find the maximum value of h such that $Q(p . m . h) \geq k$.
- Step3. Search for digits of z satisfying at least h relations and use these digits as a reference guess I_{0} of \mathbf{a} at the corresponding index positions.
- Step4. Find the correct guess by testing modifications of I_{0} with Hamming distance $0,1,2, \ldots$ by correlation of the corresponding LFSR sequence with the sequence z.
- Observation: digits in the middle part of z satisfy more relations that the digits near the boundaries. This leads to slight modification of step3 as Step3': Compute new probability p^{*} for the given digits of z and choose k digits having highest probability p^{*}.
- Average number of erroneous digits is computed as (1-T(p,m,h)).k. Under favorable conditions(e.g., <<1), step4 is not necessary.

Computational Complexity of Algorithm A

- Computation time for Step 1-3 is negligible.
- Only estimate average number of trials in step4.
- Suppose exactly r among the digits found in step3 are incorrect.
- Max number of trials in step4 is

$$
A(k, r)=\sum_{i=0}^{x}\binom{k}{i} .
$$

- A well-known estimate using binary entropy function

$$
\begin{aligned}
& H(0)=H(1)=0, \\
& H(x)=-x \log x-(1-x) \log (1-x) \quad(0<x<1) .
\end{aligned}
$$

- Then

$$
A(k, r)=\sum_{i=0}^{r}\binom{k}{i} \leq 2^{H(\theta) k}
$$

with $\theta=r / k$.

- Algorithm A has computational complexity $O\left(2^{c k}\right)$, where $c=H(r / k), 0 \leq c \leq 1$

A Polynomial-Time Attack

- We do not search for correct digits here. Instead, we assign new probability p^{*} to each digit of z iteratively and under some favorable conditions, complement all digits to get maximum correction effect.
- The probability $U(p, m, h)$ that at most h of m relations are satisfied:

$$
U(p, m, h)=\sum_{=0}^{n}\binom{m}{i}\left(p s^{\prime}(1-s)^{m-1}+(1-p)(1-s)^{\prime} s^{m-1}\right) .
$$

- The probability $V(p, m, h)$ that $z=a$ and at most h of m relations are satisfied:

$$
V(p, m, h)=\sum_{i=0}^{n}\binom{m}{i} p s^{\prime}(1-s)^{\prime)^{--}}
$$

- The probability $W(p, m, h)$ that $z \neq a$ and at most h of m relations are satisfied:

$$
W(p, m, h)=\sum_{i=0}^{n}\binom{m}{i}(1-p)(1-s)^{\prime} s^{m-i},
$$

- $U(p, m, h) \cdot N$ is the expected number of digits of z which satisfy at most h relations.
- Relative increase in correct digits after complementation:

$$
I(p, m, h)=W(p, m, h)-V(p, m, h) .
$$

- For given p and m, choose $h=h_{\max }$ so as to maximize $I(p, m, h)$.
- Taking p^{*} into account, we replace $h_{\max }$ by a corresponding probability threshold on p^{*}

$$
p_{\mathrm{lar}}=\frac{1}{2}\left(p^{*}\left(p, m, h_{\max }\right)+p^{*}\left(p, m, h_{\max }+1\right)\right)
$$

- Expected number of digits with p^{*} below $p_{t h r}$ is:

$$
N_{\mathrm{thr}}=U\left(p, m, h_{\max }\right) \cdot N .
$$

- Generalized formula to compute $s(p, t)$:

$$
\begin{aligned}
s\left(p_{1}, \ldots, p_{t}, t\right) & =p_{1}\left(p_{1}, \ldots, p_{t-1}, t-1\right)+\left(1-p_{t}\right)\left(1-s\left(p_{1}, \ldots, p_{t-1}, t-1\right)\right), \\
s\left(p_{1}, l\right) & =p_{1} .
\end{aligned}
$$

Algorithm B

- Step 1: Determine m.
- Step2: Find the value of $h=h_{\text {max }}$ such that $I(p, m, h)$ is maximized. Compute $p_{t h r}$ and $N_{t h r}$.
- Step3. Initialize the iteration counter $i=0$.
- Step4. For every digit of z compute the new probability p^{*} with respect to the individual number of relations satisfied. Determine the number N_{w} of digits with $p^{*}<p_{t h r}$.
- Step5. if $N_{w}<N_{t h r}$ or $i<\alpha$ increment i and go to step 4 .
- Step6. Complement those digits of z with $p^{*}<p_{t h r}$ and reset the probability of each digit to the original value of p.
- Step7. If there are digits not satisfying linear recurrence, go to step3.
- Step8. Terminate with $\mathbf{a}=\boldsymbol{z}$.

Computational Complexity and Limits of Attack:

- $\quad m=m(t, d), d=N / k$.
- $h_{\max }=h_{\max }(p, m)$
- $I_{\max }=I_{\max }(p, t, d)$
- The expected number of digits corrected in one iteration $N_{c}=I_{\max }(p, t, d) . N$
- $N_{c}=F(p, t, d) . k$ where
$F(p, t, d)=I_{\max }(p, t, d) \cdot d$
- If $F(p, t, d) \leq 0$, no correction effect. Attack will fail.
- For $F(p, t, d) \geq 0.5$, successful attack.
p with $F(p, t, d)=0.5$

	t									
\boldsymbol{d}	2	4	6	8	10	12	14	16	18	
10	0.761	0.880	0.980	0.980	0.980	0.980	0.980	0.980	0.980	
10^{2}	0.595	0.754	0.824	0.863	0.889	0.905	0.917	0.926	0.934	
10^{3}	0.553	0.708	0.787	0.832	0.861	0.882	0.897	0.908	0.918	
10^{4}	0.533	0.679	0.763	0.812	0.844	0.867	0.883	0.896	0.906	
10^{5}	0.525	0.663	0.748	0.800	0.833	0.857	0.875	0.889	0.900	
10^{6}	0.519	0.650	0.737	0.789	0.825	0.849	0.868	0.883	0.894	
10^{7}	0.515	0.641	0.727	0.781	0.817	0.843	0.862	0.877	0.890	
10^{8}	0.514	0.634	0.720	0.774	0.812	0.838	0.858	0.874	0.886	
10^{9}	0.512	0.628	0.714	0.770	0.807	0.833	0.854	0.870	0.882	
10^{10}	0.510	0.621	0.709	0.764	0.802	0.830	0.850	0.866	0.879	

An Example

- Consider the following situation

$$
\begin{aligned}
& p=0.75 \\
& t=4 \\
& d=100 \\
& N=10,000 \\
& k=100
\end{aligned}
$$

- $\quad F(p, t, d)=0.392$
- Parameters of Algorithm B:

$$
\begin{aligned}
& p_{t h r}=0.524 \\
& N_{t h r}=448
\end{aligned}
$$

	Number of digits with $p^{*}<p_{\text {bar }}$	Number of wrong digits with $p^{*}<p_{\text {lat }}$	Decrease of wrong digits	Number of wrong digits after correction
Round 1				
Iteration 1	430	246	62	2500
Iteration 2	615	416	217	2500
Correction ($615>N_{\text {thr }}$)	0	0	0	2283
Round 2				
Iteration I	70	44	18	2283
Iteration 2	314	254	194	2283
Iteration 3	921	743	565	2283
Correction	0	0	0	1718
Round 3				
Iteration 1	49	48	47	1718
Iteration 2	654	643	623	1718
Correction	0	0	0	1086
Round 4				
Iteration 1	110	110	110	1086
Iteration 2	712	708	704	1086
Correction	0	0	0	382
Round 5				
Iteration 1	86	86	86	382
Iteration 2	342	342	342	382
Iteration 3	382	382	382	382
Correction	0	0	0	0

Complexity and Limits of Attack:

- Algorithm B grows linearly with LFSR length k i.e., is of order $O(k)$.
- $F(p, t, d)<0.5$ has led to successful attack. Same is reported even for $F(p, t, d)=0.1$
- Definite barrier with $F(p, t, d) \leq 0$

$$
p \text { with } F(p, t, d)=0
$$

	t								
d	2	4	6	8	10	12	14	16	18
10	0.584	0.739	0.804	0.841	0.864	0.881	0.894	0.904	0.912
10^{2}	0.533	0.673	0.750	0.796	0.827	0.849	0.865	0.878	0.890
10^{3}	0.521	0.648	0.727	0.776	0.809	0.833	0.852	0.866	0.878
10^{4}	0.514	0.629	0.709	0.760	0.795	0.821	0.841	0.856	0.869
10^{5}	0.511	0.620	0.699	0.752	0.787	0.815	0.834	0.850	0.863
10^{6}	0.509	0.612	0.692	0.745	0.782	0.809	0.830	0.846	0.860
10^{7}	0.508	0.605	0.684	0.738	0.775	0.803	0.825	0.842	0.855
10^{8}	0.507	0.601	0.680	0.733	0.771	0.800	0.821	0.838	0.852
10^{9}	0.506	0.597	0.676	0.729	0.768	0.797	0.818	0.836	0.850
10^{10}	0.505	0.592	0.671	0.725	0.764	0.793	0.815	0.832	0.847

Suggestion:

- Any correlation to an LFSR with less than 10 taps should be avoided.

References:

- Christof Paar and Jan Pelzl, Understanding Cryptography, Springer, 2010
- Douglas R. Stinson, Cryptography Theory and Practice, $3^{\text {rd }}$ ed., Chapman and Hall/CRC, Taylor \& Francis group, 2006
- Mark Stamp and Richard M. Low, Applied Cryptanalysis: Breaking Ciphers in the Real World, John Wiley and Sons, Inc., publication, Wiley-Interscience, 2007
- Nigel Smart, Cryptography: An Introduction, $3^{\text {rd }}$ Ed., University of Bristol.
- Richard A. Mollin, An Introduction to Cryptography, $2^{\text {nd }}$ ed.,Chapman and Hall/CRC, Taylor \& Francis group, 2007.
- Willi Meier and Othmar Staffelbach, Fast Correlation Attacks on Certain Stream Ciphers, Journal of Cryptology (1989) 1:159-176.
- T. Siegenthaler, Decrypting a class of stream ciphers using ciphertext only, IEEE Trans. Comput, 34, 81-85, 1985.
- S. Palit, B. Roy and A. De, "A Fast Correlation Attack for LFSR-Based Stream Ciphers," ACNS 2003, Lecture Notes in Computer Science, vol. 2843, pp. 331342, 2003

Acknowledgements:

- Dr. Sarbani Palit, Professor, Computer Vision and Pattern Recognition Unit, Indian Statistical Institute, Calcutta.

Thank You

