Sudoku

Anu Thomas

IEOR, IITB

October 7, 2009

Outline

- What is Sudoku?
- History
- Challenges
- Maths of Sudoku
- How to generate Sudoku?
- Solving Sudoku

What is Sudoku?

				3	6	1		
3	5			1	2		4	
6	4				8			
7	3				1	9		
4			3	6	9			8
		6	2				3	1
			6				1	7
	8		1	4			2	3
		3	8	2				

What is Sudoku?

- Sudoku is a puzzle presented on a square grid that is usually 9×9

				3	6	1		
3	5			1	2		4	
6	4				8			
7	3				1	9		
4			3	6	9			8
		6	2				3	1
			6				1	7
	8		1	4			2	3
		3	8	2				
Source: Websudoku [7]								

What is Sudoku?

- Sudoku is a puzzle presented on a square grid that is usually 9×9
- In Japanese "Su" means number and "Doku" refers to single

				3	6	1		
3	5			1	2		4	
6	4				8			
7	3				1	9		
4			3	6	9			8
		6	2				3	1
			6				1	7
	8		1	4			2	3
		3	8	2				

What is Sudoku?

- Sudoku is a puzzle presented on a square grid that is usually 9×9
- In Japanese "Su" means number and "Doku" refers to single
- Rules are very simple, fill each row, column and 3×3 boxes with the digits from 1 to 9 only one time each

				3	6	1		
3	5			1	2		4	
6	4				8			
7	3				1	9		
4			3	6	9			8
		6	2				3	1
			6				1	7
	8		1	4			2	3
		3	8	2				

What is Sudoku?

- Sudoku is a puzzle presented on a square grid that is usually 9×9
- In Japanese "Su" means number and "Doku" refers to single
- Rules are very simple, fill each row, column and 3×3 boxes with the digits from 1 to 9 only one time each
- Now this puzzle is very popular and available in internet, books, newspapers, mobiles etc.

History

- In $18^{\text {th }}$ century Leonhard Euler developed the concept of "Latin Squares" where numbers in a grid appear only once, across and up and down.

History

- In $18^{\text {th }}$ century Leonhard Euler developed the concept of "Latin Squares" where numbers in a grid appear only once, across and up and down.
- Dell Magazines in the US published a number puzzle "Number Place" using Euler's concept with a 9×9 square grid (1979).

History

- In $18^{\text {th }}$ century Leonhard Euler developed the concept of "Latin Squares" where numbers in a grid appear only once, across and up and down.
- Dell Magazines in the US published a number puzzle "Number Place" using Euler's concept with a 9×9 square grid (1979).
- Sudoku was popularized by the Japanese puzzle company Nikoli (1984).

History

- In $18^{\text {th }}$ century Leonhard Euler developed the concept of "Latin Squares" where numbers in a grid appear only once, across and up and down.
- Dell Magazines in the US published a number puzzle "Number Place" using Euler's concept with a 9×9 square grid (1979).
- Sudoku was popularized by the Japanese puzzle company Nikoli (1984).
- By 2004, many interested people developed computer programs to generate them.

History

- In $18^{\text {th }}$ century Leonhard Euler developed the concept of "Latin Squares" where numbers in a grid appear only once, across and up and down.
- Dell Magazines in the US published a number puzzle "Number Place" using Euler's concept with a 9×9 square grid (1979).
- Sudoku was popularized by the Japanese puzzle company Nikoli (1984).
- By 2004, many interested people developed computer programs to generate them.
- The Times newspaper in London published the first game November 12, 2004. Within a few months, other British and US newspapers began publishing their own Sudoku puzzles.

Challenges

- The number of 9×9 Latin squares is $5524751496156892842531225600 \approx 5.525 \times 10^{27}[3]$.

Challenges

- The number of 9×9 Latin squares is $5524751496156892842531225600 \approx 5.525 \times 10^{27}$ [3].
- Bertram Felgenhauer and Frazer Jarvis claims that there are $6670903752021072936960 \approx 6.671 \times 10^{21}$ valid Sudoku grids $[2,5]$.

Challenges

- The number of 9×9 Latin squares is $5524751496156892842531225600 \approx 5.525 \times 10^{27}[3]$.
- Bertram Felgenhauer and Frazer Jarvis claims that there are $6670903752021072936960 \approx 6.671 \times 10^{21}$ valid Sudoku grids[2, 5].
- Ed Russell and Frazer Jarvis asserts that there are 5472730538 essentially different Sudoku grids[5].

Challenges

- The number of 9×9 Latin squares is $5524751496156892842531225600 \approx 5.525 \times 10^{27}[3]$.
- Bertram Felgenhauer and Frazer Jarvis claims that there are $6670903752021072936960 \approx 6.671 \times 10^{21}$ valid Sudoku grids[2, 5].
- Ed Russell and Frazer Jarvis asserts that there are 5472730538 essentially different Sudoku grids[5].
- The general problem of solving Sudoku puzzles on $n^{2} \times n^{2}$ boards of $n \times n$ blocks is known to be NP-complete [4]. However, Dancing Links algorithm can solve the puzzles in fractions of a second.

Challenges

- The number of 9×9 Latin squares is $5524751496156892842531225600 \approx 5.525 \times 10^{27}[3]$.
- Bertram Felgenhauer and Frazer Jarvis claims that there are $6670903752021072936960 \approx 6.671 \times 10^{21}$ valid Sudoku grids[2, 5].
- Ed Russell and Frazer Jarvis asserts that there are 5472730538 essentially different Sudoku grids[5].
- The general problem of solving Sudoku puzzles on $n^{2} \times n^{2}$ boards of $n \times n$ blocks is known to be NP-complete [4]. However, Dancing Links algorithm can solve the puzzles in fractions of a second.
- Uniqueness cannot be guaranteed even if 77 out of 81 grids are known. The inverse problem - the fewest givens that render a solution unique - is unsolved.

Challenges

- The number of 9×9 Latin squares is $5524751496156892842531225600 \approx 5.525 \times 10^{27}[3]$.
- Bertram Felgenhauer and Frazer Jarvis claims that there are $6670903752021072936960 \approx 6.671 \times 10^{21}$ valid Sudoku grids[2, 5].
- Ed Russell and Frazer Jarvis asserts that there are 5472730538 essentially different Sudoku grids[5].
- The general problem of solving Sudoku puzzles on $n^{2} \times n^{2}$ boards of $n \times n$ blocks is known to be NP-complete [4]. However, Dancing Links algorithm can solve the puzzles in fractions of a second.
- Uniqueness cannot be guaranteed even if 77 out of 81 grids are known. The inverse problem - the fewest givens that render a solution unique - is unsolved.
- The maximum number of independent clues is 33 and the minimum is 17 (not yet proved).

Maths of Sudoku

Sudoku can be interpreted as many known mathematical problems
(1) Special case of 9×9 Latin square problem.

Maths of Sudoku

Sudoku can be interpreted as many known mathematical problems
(1) Special case of 9×9 Latin square problem.
(2) A proper 9 -coloring problem of a particular graph with 81 vertices's and given a partial 9-coloring.

Maths of Sudoku

Sudoku can be interpreted as many known mathematical problems
(1) Special case of 9×9 Latin square problem.
(2) A proper 9 -coloring problem of a particular graph with 81 vertices's and given a partial 9-coloring.
(3) 9×9 grid can be studied as $Z_{3} \oplus Z_{3}$.

Maths of Sudoku

Sudoku can be interpreted as many known mathematical problems
(1) Special case of 9×9 Latin square problem.
(2) A proper 9-coloring problem of a particular graph with 81 vertices's and given a partial 9-coloring.
(3) 9×9 grid can be studied as $Z_{3} \oplus Z_{3}$.
(9) Genereal Sudoku problem can be formulated as a binary integer linear program (BILP)[1].

Sudoku BILP formulation

Decision variable
$x_{i j k}= \begin{cases}1, & \text { if element }(i, j) \text { of the } n \times n \text { Sudoku matrix contains integer } k \\ 0, & \text { otherwise. }\end{cases}$

$$
\begin{array}{ll}
\min & \mathbf{0}^{T} \mathbf{x} \\
\text { s.t. } & \sum_{i=1}^{n} x_{i j k}=1, \quad j=1: n, k=1: n \quad \text { (only one } k \text { in each column) } \\
& \sum_{j=1}^{n} x_{i j k}=1, \quad i=1: n, k=1: n \quad \text { (only one } k \text { in each row) } \\
& \sum_{j=m q-m+1}^{m q} \sum_{i=m p-m+1}^{m p} x_{i j k}=1, \quad k=1: n, p=1: m, q=1: m \\
& \sum_{k=1}^{n} x_{i j k}=1 \quad i=1: n, j=1: n \quad \text { (every position in matrix must be filled) } \\
& x_{i j k}=1 \quad \forall(i, j, k) \in G \quad \text { (given elements } G \text { in matrix are set "on") } \\
x_{i j k} \in\{0,1\}
\end{array}
$$

How to generate Sudoku

(1) Brute force. With a full Sudoku matrix in hand, we could then simply omit entries to create a puzzle.

How to generate Sudoku

(1) Brute force. With a full Sudoku matrix in hand, we could then simply omit entries to create a puzzle.
(2) Creating New Puzzles from Old Puzzles.

- Relabeling symbols
- Row, stack, column permutations
- Reflection, transposition or (1/4 turn) rotation (2)

Classification

- In general Sudoku puzzles are classified as Easy, Medium and Hard based on number of given clues.
- The difficulty of a puzzle is related to the depth of thinking required.
- In my experience, easy puzzle can be solved systematically, medium puzzles required a guess and hard puzzles need two guesses.

Source: Websudoku [7]

Solving Tips

- Unique Missing Candidate: If eight of the nine elements in any virtual line (row, column or block) are already determined, the final element has to be the one that is missing.

Solving Tips

- Unique Missing Candidate: If eight of the nine elements in any virtual line (row, column or block) are already determined, the final element has to be the one that is missing.
- Naked Singles: Eliminate possible candidates, except one using other dependencies.

Solving Tips

- Unique Missing Candidate: If eight of the nine elements in any virtual line (row, column or block) are already determined, the final element has to be the one that is missing.
- Naked Singles: Eliminate possible candidates, except one using other dependencies.
- Hidden Singles: Isolating a row/column and submatrix for a candidate.

Solving Tips

- Unique Missing Candidate: If eight of the nine elements in any virtual line (row, column or block) are already determined, the final element has to be the one that is missing.
- Naked Singles: Eliminate possible candidates, except one using other dependencies.
- Hidden Singles: Isolating a row/column and submatrix for a candidate.
- Locked Candidates: Locked candidates are forced to be within a certain part of a row, column or block.

Solving Tips

- Unique Missing Candidate: If eight of the nine elements in any virtual line (row, column or block) are already determined, the final element has to be the one that is missing.
- Naked Singles: Eliminate possible candidates, except one using other dependencies.
- Hidden Singles: Isolating a row/column and submatrix for a candidate.
- Locked Candidates: Locked candidates are forced to be within a certain part of a row, column or block.
- Naked and Hidden Pairs, Triplets, Quads,…

Shall we solve?

5			7		9			2
9	6			1			7	5
		3				6		
	8		4		6		1	
6								4
	9		2		8		5	
		9				2		
1	5			8			4	7
3			6		1			9

Sudoku addiction

- Sudoku, which literally means single, celibate, unmarried the precise description of people who become hopelessly addicted.
- In June 2008 an Australian drugs-related jury trial costing over AU $\$ 1,000,000$ was aborted when it was discovered that five of the twelve jurors had been playing Sudoku instead of listening to evidence.
- Some unofficial reports claim that addiction to Sudoku caused Apollo 13 and Titanic disaster.

Thank You

References

B
Bartlett，Chartier，Langville and Rankin，Integer Programming Model for the Sudoku Problem，The J．of Online Mathematics and Its Applications，Vol 8 （2008）
图 Bertram Felgenhauer and Frazer Jarvis，Enumerating possible Sudoku grids，2005

RS．E．Bammel and J．Rothstein，The number of 9×9 Latin squares，Discrete Math．， 11 （1975），93－95．

Takayuki YATO and Takahiro SETA，Complexity and Completeness of Finding Another Solution and Its Application to Puzzles， 2003.
國 http：／／www．afjarvis．staff．shef．ac．uk／sudoku／， 2005.
http：／／en．wikipedia．org／wiki／Sudoku
國 http：／／www．websudoku．com
盽 http：／／www．sudoku．com

