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Definition

Consider the optimization problem of form

min
x∈Ω

f(x),

where Ω ⊂ Rn is the feasible region and f : Ω ⊂ Rn → R ∪ {∞}.
We define such a problem as Derivative Free Optimization (DFO) if:

Nature of f is unknown and is generally computed through a
computer simulation.
Derivative information about f is unknown.
Sometimes knowledge about constraints defining Ω is also
unknown.
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Growing Importance of DFO

Many real world optimization problems are quite complex in
nature. They lack gradient information and are often plagued by
noise.
Automatic differentiation is not possible with many commercial
software as they don’t provide source code.
Technological advancements in computer hardware and
increasing sophistication in software leads to new opportunities
for optimization.
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Applications of DFO

Some examples which are modelled as DFO [2] are:
Parameter tuning of algorithms e.g. tuning parameters in
nonlinear optimization, MINLP solvers etc.
Error analysis of stability and accuracy for a numerical
computation e.g. estimation of matrix condition number,
analysis of numerical stability for fast matrix inversion.
Design of various engineering problems for e.g. design of rotor
blade of helicopter, aeroacoustic shape design and
hydrodynamic design.
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Expectations from a DFO Algorithm

Following properties are desired from a DFO algorithm:
Should be able to solve smooth and nonsmooth problems.
Should have good convergence properties.
Since most DFO problems are quite expensive to compute, the
algorithm should achieve good results in a very limited budget.
Should be scalable to high dimensional ( >100 ) problems.
A low computational time (excluding function evaluation time)
is desired.
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Algorithms for DFO

Algorithms for DFO can be broadly classified into following three
approaches:

Direct Search Methods (Nelder-Mead Simplex, Hooke-Jeeves
method, Generalized Pattern Search and Mesh Adaptive
Direction Search etc).
Model based Methods or Surrogate based Methods (NEWUOA,
ORBIT etc).
A combination of above two approaches (NOMAD, SID-PSM etc).
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Structure of Direct Search Algorithm

Each iteration comprise of two steps.�� ��Search
Flexible step.
Doesn’t affect convergence directly.
Good implementation can greatly enhance the speed of algorithm.�� ��Poll
More rigid step.
Ensures theoretical convergence.
Search local vicinity of current incumbent solution.

The algorithm first calls the search step and creates trial points. If
search fails, it goes to poll step.
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Search Step

Generation of only finite number of trial points is allowed.
Searches the feasible space in global sense.
Flexible step. Problem specific search procedure can be
implemented.
Allows usage of generic search strategies like speculative search,
VNS, LH, and particle swarm etc.
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Acceptance Condition

Let xk be the current incumbent solution. Then the new point xk+1

is accepted only if [2, 3]

f(xk+1) < f(xk)− ρ(∆k),

where ∆k is the step length and ρ : R+ → R+ is a continuous
function which satisfies lim

y→0+

ρ(y)
y = 0 and ρ(y1) ≤ ρ(y2) if y1 < y2.
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Poll Step
�� ��Poll Set

Pk = {xk +∆kd : d ∈ Dk}

�� ��Poll Directions Dk [1] A distinct positive spanning set (different
from previous iteration) is constructed from nonnegative integer
combination of directions of D (set of positive bases).
Evaluation of function at points in Pk .
Determine whether iteration was successful or not.
If successful we update ∆k as:

∆k+1 → 4∆k .
If unsuccessful:

∆k+1 → ∆k/4.
With increasing iterations, the set of poll directions, being
normalized, grow dense in unit sphere. Thus any direction in Rn

can be approximated with arbitrary precision.
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Illustration of Poll Step

∆k = 1 ∆k+1 = 1/4 ∆k+2 = 1/16

Poll steps during failure and corresponding shrinks
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Motivation

Direct search methods are robust but slow.
Model based methods are very effective on smooth problems as
they tend to utilize underlying structural properties of the given
function.
An approach which is effective as well as robust, is desired.
Gives good solution within a low computational budget.
Can handle large dimensional problems.
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Our Approach

Comprises of poll step and search step.
We generate n+ 1 uniform angled directions and corresponding
trial points across a given point.
After every poll step, a quadratic model is fitted across the trial
points and its minimum is computed (only if model is positive
definite).
If model fitting step is successful, algorithm restarts from the
quadratic minima.
We evaluate simplex gradient about current point using above
trial points.
Apply scaled conjugate gradient method using simplex gradient.
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Results on Chained Rosenbrock Function [4]

f(x) =

n∑
i=2

[100(x2
i−1 − xi)

2 + (xi−1 − 1)2]
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Future Work

Extend to handle general constraints.
Add ability to handle discrete and categorical variables.
Add more model search approaches like RBF etc.
Extend to global optimization.
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Software

Written completely in C.
Dependencies: Lapack and Blas libraries.
Works on linux based machines only.
One can download my code from�� ��https://github.com/gcmouli1/CSCG-DS
Instructions for its usage are given in the website.
Email-id of author: gcmouli1@gmail.com
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