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Abstract A conic integer program is an integer programming problem with conic
constraints. Many problems in finance, engineering, statistical learning, and probabilis-
tic optimization are modeled using conic constraints. Here we study mixed-integer sets
defined by second-order conic constraints. We introduce general-purpose cuts for conic
mixed-integer programming based on polyhedral conic substructures of second-order
conic sets. These cuts can be readily incorporated in branch-and-bound algorithms
that solve either second-order conic programming or linear programming relaxations
of conic integer programs at the nodes of the branch-and-bound tree. Central to our
approach is a reformulation of the second-order conic constraints with polyhedral
second-order conic constraints in a higher dimensional space. In this representation
the cuts we develop are linear, even though they are nonlinear in the original space
of variables. This feature leads to a computationally efficient implementation of non-
linear cuts for conic mixed-integer programming. The reformulation also allows the
use of polyhedral methods for conic integer programming. We report computational
results on solving unstructured second-order conic mixed-integer problems as well as
mean–variance capital budgeting problems and least-squares estimation problems with
binary inputs. Our computational experiments show that conic mixed-integer roun-
ding cuts are very effective in reducing the integrality gap of continuous relaxations
of conic mixed-integer programs and, hence, improving their solvability.
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1 Introduction

In the last two decades there have been major advances in our capability of solving
linear integer programming problems. Strong cutting planes obtained through polyhe-
dral analysis of problem structure contributed to this success substantially by streng-
thening linear programming relaxations of integer problems. Powerful cutting planes
based on simpler substructures of problems have become standard features of leading
optimization software packages. The employment of such structural cuts improve the
performance of the linear integer programming solvers dramatically.

On another front, since the late 1980s we have experienced significant advances
in convex optimization, particularly in conic optimization. Starting with Nesterov
and Nemirovski [29–31], polynomial interior point algorithms that have earlier been
developed for linear programming have been generalized to conic optimization pro-
blems such as convex quadratically constrained quadratic programs and semidefinite
programs.

Development of efficient algorithms and publicly available software, e.g., CSDP
[11], DSDP [9], SDPA [45], SDPT3 [42], SeDuMi [39], for conic optimization spur-
red many optimization and control applications in diverse areas ranging from medical
imaging to signal processing, from robust portfolio optimization to truss design. Com-
mercial software vendors, e.g., ILOG and MOSEK, have responded to the demand for
solving (continuous) conic optimization problems by including solvers for second-
order cone programming (SOCP) in their recent versions.

Unfortunately, the phenomenal advances in continuous conic programming and
linear integer programming have so far not translated to improvements in conic integer
programming, i.e., integer programs with conic constraints. Solution methods for conic
integer programming are still limited to branch-and-bound algorithms that solve their
continuous relaxations at the nodes of the search tree. In terms of development, conic
integer programming today is where linear integer programming was before 1980s
when solvers relied on pure branch-and-bound algorithms without the use of any cuts
for improving the continuous relaxations at the nodes of the search tree.

Here we attempt to improve the solvability of conic integer programs. We deve-
lop general purpose cuts that can be incorporated into branch-and-bound solvers for
conic integer programs. Toward this end, we describe valid cuts for the second-order
conic mixed-integer constraints (defined in Sect. 2). The choice of second-order conic
mixed-integer constraint for this study is based on

1. the existence of many important applications modeled with such constraints,
2. the availability of efficient and stable solvers for their continuous SOCP relaxa-

tions, and
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Conic mixed-integer rounding cuts 3

3. the fact that one can form SOCP reformulations and/or relaxations for more general
conic programs, which make the cuts given here widely applicable to conic integer
programming.

Outline. In Sect. 2, we introduce conic mixed-integer programming, briefly re-
view the relevant literature and explain our approach for generating valid cuts. In
Sect. 3, we describe conic mixed-integer rounding cuts for second-order conic mixed-
integer programming. In Sect. 4, we summarize our computational results with the
cuts for solving unstructured second-order conic mixed-integer problems as well as
mean–variance capital budgeting problems and least-squares estimation problems with
binary inputs. Finally, we conclude in Sect. 5.

2 Conic integer programming

A cone K is a subset of R
m such that x ∈ K implies λx ∈ K for all λ ≥ 0. Let

K ⊆ R
m be a pointed, closed, convex cone with nonempty interior (for instance, the

nonnegative orthant R
m+). These conditions on K imply that the binary relation �K on

R
m defined as

x �K y ⇔ y − x ∈ K

is a partial order. For A ∈ Q
m×n and b ∈ Q

m consider the system of inequalities
Ax �K b. For instance, if K = R

m+, then Ax �K b is the usual system of linear
inequalities Ax ≤ b, defining the feasible region of a linear program (LP).

A conic program (CP) is an optimization problem of a linear function over a sub-
set of R

n defined with constraints Ax �K b. Thus, by definition, it generalizes li-
near programming. Starting with Nesterov and Nemirovski [29–31], polynomial-time
interior point algorithms for LP have been generalized to conic programming. The
other generalization of linear programming is the linear integer programming (LIP)
obtained by adding discrete variables. Even though LIP is NP-hard [33], branch-
and-cut algorithms that employ strong cuts are effectively used for finding provably
optimal solutions to large-scale instances of many practical problems [27]. A conic
integer program (CIP) is an integer program with conic constraints; thus, it is the
natural generalization of CP and LIP.

A particularly interesting (nonlinear) cone with many applications in engineering
and science is the second-order (or Lorentz) cone

Qm+1 := {
(t, to) ∈ R

m × R : ‖ t ‖ ≤ to
}
,

where ‖ · ‖ denotes the Euclidean norm. In this paper, we focus on second-order conic
integer programming. However, as one can reformulate or relax more general conic
programs to second-order conic programs [17] our results are indeed applicable more
generally.
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4 A. Atamtürk, V. Narayanan

Specifically, a second-order conic mixed-integer program is an optimization pro-
blem of the form

min cx + r y

(SOCMIP) s.t. ‖ Ai x + Gi y − bi ‖ ≤ di x + ei y − hi , i = 1, 2, . . . , k (1)

x ∈ Z
n, y ∈ R

p.

Here Ai , Gi , b are rational matrices with mi rows, and c, r, di , ei are rational row
vectors of appropriate dimension, and hi is a rational scalar. Each constraint of SOC-
MIP can be equivalently stated as (Ai x + Gi y − bi , di x + ei y − hi ) ∈ Qmi +1. We
assume that bounds on the variables are included in the constraints of SOCMIP.

For n = 0, SOCMIP reduces to a second-order cone program (SOCP), which is a ge-
neralization of linear programming as well as convex quadratically constrained quadra-
tic programming. In addition to n = 0, if Gi = 0 for all i , then SOCP reduces to linear
programming; if ei = 0 for all i , then it reduces to (convex) quadratically constrained
quadratic program (QCQP) after squaring the constraints. Convex optimization pro-
blems with more general norms, fractional quadratic functions, hyperbolic functions
and others can be formulated as an SOCP. We refer the reader to [3,8,12,20,32] for a
detailed exposure to conic optimization and many applications of SOCP.

2.1 Relevant literature

There has been significant work on deriving conic (in particular semidefinite) relaxa-
tions for (linear) combinatorial optimization problems [2,15,21] for obtaining stronger
bounds than the ones given by their natural linear programming relaxations. We refer
the reader to Goemans [14] for a survey on this topic. Our interest here, however, is not
to find conic relaxations for linear integer problems, but for conic integer problems.

Clearly any method for general nonlinear integer programming applies to conic
integer programming as well. Reformulation–Linearization Technique (RLT) of She-
rali and Adams [34] initially developed for linear 0–1 programming has been extended
to nonconvex optimization problems [36]. Stubbs and Mehrotra [37,38] generalize the
lift-and-project method [6] of Balas et al. for 0–1 mixed convex programming. See also
Balas [5] and Sherali and Shetti [35] on disjunctive programming methods. Kojima
and Tunçel [18] give successive semidefinite relaxations converging to the convex hull
of a nonconvex set defined by quadratic functions. Lasserre [19] describes a hierarchy
of semidefinite relaxations of nonlinear 0–1 programs. Common to all of these general
approaches is a hierarchy of convex relaxations in higher dimensional spaces whose
size grows exponentially with the size of the original formulation. Therefore, using
such convex relaxations in higher dimensions is impractical except for very small
instances. On the other hand, projecting these formulations to the original space of
variables is also difficult except for certain special cases. A partial convexification
based on a small number of disjunctions is a practical tradeoff.

Another stream of research is the development of branch-and-bound algorithms for
nonlinear integer programming based on linear outer approximations [1,10,40,41,43].
The advantage of linear approximations is that they can be solved fast; however,
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Conic mixed-integer rounding cuts 5

the bounds from linear approximations may not be strong. In the case of conic
programming, and in particular second-order cone programming, existence of ef-
ficient algorithms permits the use of continuous conic relaxations at the nodes of
the branch-and-bound tree, although the lack of effective warm-starts is a significant
disadvantage.

Çezik and Iyengar [13] develop valid inequalities for conic integer sets. Given
S = {(x, y) ∈ Z

n × R
m : Ax + Gy �K b}, their approach is to write a valid linear

inequality
λ′ Ax + λ′Gy ≤ λ′b for some λ �K∗ 0, (2)

where K∗ is the dual cone of K, for the continuous relaxation of S and then apply
Chvátal–Gomory (CG) integer rounding cuts or mixed-integer rounding (MIR) cuts
[27] to this linear inequality, as appropriate. However, as also noted by the authors, it
is not clear how to pick λ for implementing such a cut generation approach. Çezik and
Iyengar do not report an implementation of this approach. Note that the resulting MIR
cuts for (2) would be linear in (x, y). For the mixed-integer case, the convex hull of
feasible points is not polyhedral and has curved boundary (see Fig. 2 in Sect. 3). The-
refore, nonlinear inequalities may be more effective for describing or approximating
the convex hull of solutions. Recently, Atamtürk and Narayanan [4] describe lifting
of conic inequalities for conic mixed-integer programming.

2.2 A new approach

Our approach for deriving valid inequalities for SOCMIP is to reformulate second-
order conic constraints in a higher dimensional space that leads to a natural decom-
position into simpler polyhedral sets and to analyze each of these sets. Specifically,
given a second-order conic constraint

‖ Ax + Gy − b ‖≤ dx + ey − h (3)

and the corresponding second-order conic mixed-integer set

C := {
x ∈ Z

n+, y ∈ R
p
+ : (x, y) satisfies (3)

}
,

by introducing auxiliary variables (t, to) ∈ R
m+1, we reformulate (3) as

to ≤ dx + ey − h (4)

ti ≥ |ai x + gi y − bi | , i = 1, . . . ,m (5)

to ≥ ‖ t ‖, (6)

where ai and gi denote the i th rows of matrices A and G, respectively. Observe that each
constraint (5) is indeed a second-order conic constraint as (ai x +gi y −bi , ti ) ∈ Q1+1,
yet polyhedral. Consequently, we refer to a constraint of the form (5) as a polyhedral
second-order conic constraint.
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6 A. Atamtürk, V. Narayanan

Breaking (3) into polyhedral conic constraints allows us to exploit the implicit
polyhedral set for each term in a second-order cone constraint. Cuts obtained for C
in this way are linear in (x, y, t); however, they are nonlinear in the original space of
(x, y). We will illustrate this point in the next section.

Our approach extends the successful polyhedral method for linear integer program-
ming, in which one studies the facial structure of simpler substructures to second-
order conic integer programming. To the best of our knowledge such an analysis for
second-order conic mixed-integer sets has not been done previously.

3 Conic mixed-integer rounding

For a mixed integer set X ⊆ Z
n × R

p, we use relax(X) to denote its continuous
relaxation in R

n ×R
p obtained by dropping the integrality restrictions and conv(X) to

denote the convex hull of X . In this section we describe conic mixed-integer rounding
cuts for conic mixed-integer programming. We will first present the inequalities on
a simple case with a single integer variable; subsequently, we will derive the general
inequalities.

3.1 The simple case

Let us first consider the mixed-integer set

S0 :=
{
(x, y, w, t) ∈ Z × R

3+ : | x + y − w − b | ≤ t
}
. (7)

defined by a simple, yet non-trivial polyhedral second-order conic constraint with
one integer variable. The continuous relaxation relax(S0) has four extreme rays:
(1, 0, 0, 1), (−1, 0, 0, 1), (1, 0, 1, 0), and (−1, 1, 0, 0), and one extreme point:
(b, 0, 0, 0), which is infeasible for S0 if f := b−
b� > 0. It is easy to see that if f > 0,
conv(S0) has four extreme points: (
b�, f, 0, 0), (
b�, 0, 0, f ), (�b, 0, 1 − f, 0) and
(�b, 0, 0, 1 − f ). Figure 1 illustrates S0 for the restriction y = w = 0.

Proposition 1 The simple conic mixed-integer rounding inequality

(1 − 2 f )(x − 
b�)+ f ≤ t + y + w (8)

is valid for S0 and cuts off all points in relax(S0)\ conv(S0).

Proof We first show validity of (8) for S0. Consider the base inequality

|x + y − w − b| ≤ t (9)

of S0. For x = 
b� − α with α ≥ 0, (9) becomes t ≥ |y − w − f − α| and (8)
becomes t ≥ −y −w + f − α(1 − 2 f ). Now since |y − w − f − α| − (−y −w +
f − α(1 − 2 f )) = 2 max {y − f − α f, w + α(1 − f )} ≥ 0, (8) is implied by (9)
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Conic mixed-integer rounding cuts 7

and w ≥ 0 when x ≤ 
b�. On the other hand, for x = �b + α with α ≥ 0, (9)
becomes t ≥ |(1 − f )+ α + y − w| and (8) becomes t ≥ −w − y + (1 − f ) +
α(1−2 f ). Then, since |(1 − f )+ α + y − w|− (−w− y + (1− f )+α(1−2 f )) =
2 max {α f + y, w − (1 − f )− α(1 − f )} ≥ 0, (8) is implied by (9) and y ≥ 0 when
x ≥ �b. Hence, inequality (8) is valid for S0.

To see that (8) is sufficient to cut off all points in relax(S0)\ conv(S0), consider the
polyhedron S′

0 defined by the inequalities:

x + y − w − b ≤ t (10)

−x − y + w + b ≤ t (11)

−y ≤ 0 (12)

−w ≤ 0 (13)

(1 − 2 f )x − y − w − t ≤ (1 − 2 f )
b� − f. (14)

Since S′
0 has four variables, any basic solution of it is defined by four of the inequalities

among (10)–(14) at equality. We enumerate all five basic solutions below:

1. Inequalities (10), (11), (12), (13):(x, y, w, t)=(b, 0, 0, 0) (infeasible if b �∈ Z).
2. Inequalities (10), (11), (12), (14):(x, y, w, t) = (�b, 0, 1 − f, 0).
3. Inequalities (10), (11), (13), (14):(x, y, w, t) = (
b�, f, 0, 0).
4. Inequalities (10), (12), (13), (14):(x, y, w, t) = (�b, 0, 0, 1 − f ).
5. Inequalities (11), (12), (13), (14):(x, y, w, t) = (
b�, 0, 0, f ).

Hence the extreme points of S′
0 are precisely the extreme points of conv(S0). ��

The simple conic mixed-integer rounding inequality (8) can be used to derive nonli-
near conic mixed-integer inequalities for nonlinear conic mixed-integer sets. The first
observation useful in this direction is that the piecewise-linear conic inequality

|(1 − 2 f )(x − 
b�)+ f | ≤ t + y + w (15)

Fig. 1 Simple conic mixed-integer rounding cut
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8 A. Atamtürk, V. Narayanan

is valid for S0. See Fig. 1 for the restriction y = w = 0.
In order to illustrate the nonlinear cuts, based on cuts for the polyhedral second-

order conic constraints (5), let us now consider the simplest nonlinear second-order
conic mixed-integer set

T0 :=
{
(x, y, t) ∈ Z × R × R :

√
(x − b)2 + y2 ≤ t

}
. (16)

The continuous relaxation relax(T0)has exactly one extreme point (x, y, t) = (b, 0, 0),
which is infeasible for T0 if b �∈ Z. Formulating T0 as

t1 ≥ |x − b| (17)

t2 ≥ |y| (18)

t ≥
√

t2
1 + t2

2 (19)

we write the piecewise-linear conic inequality (15) for (17). Substituting out the auxi-
liary variables t1, t2, we obtain the simple nonlinear conic mixed-integer rounding
inequality √

((1 − 2 f )(x − 
b�)+ f )2 + y2 ≤ t, (20)

which is valid for T0.

Proposition 2 The simple nonlinear conic mixed-integer rounding inequality (20)
cuts off all points in relax(T0)\ conv(T0).

Proof First, observe that for x = 
b� − δ, the constraint in (16) becomes t ≥√
(δ + f )2 + y2, and (20) becomes t ≥ √

( f − (1 − 2 f )δ)2 + y2. Since (δ+ f )2 −
( f − (1 − 2 f )δ)2 = 4 f δ(1 + δ)(1 − f ) ≥ 0 for δ ≥ 0 and for δ ≤ −1, we see
that (20) is dominated by relax(T0) unless 
b� < x < �b. When −1 < δ < 0 (i.e.,
x ∈ (
b�, �b)), 4 f δ(1 + δ)(1 − f ) < 0, implying that (20) dominates the constraint
in (16).

We now show that if (x1, y1, t1) ∈ relax(T0) and satisfies (20), then (x1, y1, t1) ∈
conv(T0). If x1 �∈ (
b�, �b), it is sufficient to consider (x1, y1, t1) ∈ relax(T0) as
(20) is dominated by relax(T0) in this case. Now, the ray R1 := {(b, 0, 0) + α(x1 −
b, y1, t1) : α ∈ R+} ⊆ relax(T0). Let the intersections of R1 with the hyperplanes
x = 
x1� and x = �x1 be (
x1�, ȳ1, t̄1), (�x1, ŷ1, t̂1), which belong to T0. Then
(x1, y1, t1) can be written as a convex combination of points (
x1�, ȳ1, t̄1), (�x1, ŷ1,

t̂1); hence (x1, y1, t1) ∈ conv(T0).
On the other hand, if x1 ∈ (
b�, �b), it is sufficient to consider (x1, y1, t1) that

satisfies (20), since (20) dominates the constraint in (16) for x ∈ [
b�, �b]. If f = 1/2,
(x1, y1, t1) is a convex combination of (
b�, y1, t1) and (�b, y1, t1). Otherwise, all
points on the ray R2 := {(x0, 0, 0) + α(x1 − x0, y1, t1) : α ∈ R+}, where x0 =

b�− f

1−2 f , satisfy (20). Let the intersections of R2 with the hyperplanes x = 
b� and

x = �b be (
b�, ȳ1, t̄1), (�b, ŷ1, t̂1), which belong to T0. Note that the intersections
are nonempty because x0 �∈ [
b�, �b]. Then we see that (x1, y1, t1) can be written as

123



Conic mixed-integer rounding cuts 9

Fig. 2 Nonlinear conic mixed-integer rounding cut

a convex combination of (
b�, ȳ, t̄) and (�b, ŷ, t̂). Hence, (x1, y1, t1) ∈ conv(T0) in
this case as well. ��

Proposition 2 shows that the curved convex hull of T0 can be described using only
two second-order conic constraints. The following example illustrates Proposition 2.

Example 1 Consider the second-order conic set given as

T0 =
⎧
⎨

⎩
(x, y, t) ∈ Z × R × R :

√(
x − 4

3

)2

+ (y − 1)2 ≤ t

⎫
⎬

⎭
.

The unique extreme point of relax(T0) (
4
3 , 1, 0) is fractional. Here 
b� = 1 and f = 1

3 ;
therefore,

conv(T0)=
⎧
⎨

⎩
(x, y, t) ∈ R

3 :
√(

x − 4

3

)2

+ (y − 1)2 ≤ t,

√
1

9
x2 + (y − 1)2 ≤ t

⎫
⎬

⎭
.

We show the inequality
√

1
9 x2 + (y − 1)2 ≤ t and the region it cuts off in Figure 2.

Observe that the function values are equal at x = 1 and x = 2 and the cut eliminates
the points between them.
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10 A. Atamtürk, V. Narayanan

3.2 The general case

In this section we present valid inequalities for the mixed-integer sets defined by
general polyhedral second-order conic constraints (5). Toward this end, let

S := {x ∈ Z
n+, y ∈ R

p
+, t ∈ R : t ≥ |ax + gy − b|}.

We refer to the inequalities x ≥ 0, y ≥ 0, and the base inequality t ≥ |ax + gy − b|
as the trivial inequalities. We assume that the coefficients ai and gi are nonzero,
since otherwise the corresponding variables can be dropped from S without loss of
generality. The following result simplifies the presentation.

Proposition 3 For any nontrivial facet-defining inequality γ x + πy + δt ≤ π0 of
conv(S) the following statements are true:

1. δ = −1;
2. πi < 0 for all i = 1, . . . , p;

3. πi
π j

=
∣
∣
∣ gi

g j

∣
∣
∣ for all i, j = 1, . . . , p.

Proof 1. Let γ x +πy+δt ≤ π0 be a nontrivial facet-defining inequality of conv(S).
Since for any point (x, y, t) on the facet, the point (x, y, t + ε) with ε > 0 is
feasible, validity of the inequality implies δ ≤ 0. To see δ �= 0, let (x, 0, t) be a
feasible point such that γ x > π0. As t can be chosen arbitrarily large such a point
exists. Unless δ < 0, inequality γ x + πy + δt ≤ π0 is not valid for this point.
Therefore, by scaling we may assume δ = −1.

2. If gi > 0 let (x, y, t) be a point on the facet such that ax + gy − b < t . Such a
point exists because the facet is nontrivial. Since the point (x, y + εei , t − εgi ) is
feasible for some small ε > 0, we have πi < 0. On the other hand, if gi < 0 let
(x, y, t) be a point on the facet such that −ax − gy + b < t . Such a point exists
because the facet is nontrivial. Since the point (x, y + εei , t − εgi ) is feasible for
some small ε > 0, we have πi < 0 as well.

3. Suppose gi , g j > 0. Let (x, y, t) be a point on the facet such that yi > 0.
Such a point exists because the facet is distinct from yi = 0. Then, the point
(x, y − εei + ε

gi
g j

e j , t) is also feasible. Evaluating the inequality for these points

shows πi
π j

≤ gi
g j

. By symmetry, πi
π j

≥ gi
g j

as well. The result for other pairs follows
from this observation as S can be equivalently stated using |−ax − gy + b| ≤ t
instead of |ax + gy − b| ≤ t and this rewriting of the base constraint has no
impact on the facial structure.

��
Due to Proposition 3 it is sufficient to consider the polyhedral second-order conic

constraint ∣
∣ax + y+ − y− − b

∣
∣ ≤ t, (21)

where all continuous variables with positive coefficients are aggregated into y+ ∈ R+
and those with negative coefficients are aggregated into y− ∈ R+ to represent a general
polyhedral conic constraint of the form (5).
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Fig. 3 Conic mixed-integer rounding function

Definition 1 For 0 ≤ f < 1 let the conic mixed-integer rounding (MIR) function
ϕ f : R → R be

ϕ f (a) =
{
(1 − 2 f )n − (a − n), if n ≤ a < n + f,
(1 − 2 f )n + (a − n)− 2 f, if n + f ≤ a < n + 1.

n ∈ Z (22)

The conic mixed-integer rounding function ϕ f is piecewise linear and continuous.
Figure 3 illustrates ϕ f . A function θ : R → R is superadditive on R if θ(a)+ θ(b) ≤
θ(a + b) for all a, b ∈ R.

Lemma 1 The conic MIR function ϕ f is superadditive on R.

Proof The proof follows from writing ϕ f as a nonnegative combination of two
superadditive functions. Observe that ϕ f (a) = θ(a)+ 2(1 − f )ψ f (a), where θ(a) =
−a and ψ f (a) = 
a� + (

a−
a�− f
1− f )+. The linear function θ is clearly superadditive

and ψ f is the superadditive MIR function for linear MIP [27]. ��

Theorem 1 For any α �= 0 the conic mixed-integer rounding inequality

n∑

j=1

ϕ fα (a j/α)x j − ϕ fα (b/α) ≤ (t + y+ + y−)/|α| (23)

where fα = b/α − 
b/α�, is valid for S. Moreover, if α is chosen such that α = a j

and b/a j > 0 for some j ∈ {1, . . . , n} and ai ≤ b for all i ∈ {1, . . . , n} \ { j}, then
(23) is facet-defining for conv(S).
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12 A. Atamtürk, V. Narayanan

Proof First consider the case α = 1. Writing the conic inequality (21) as

∣
∣
∣
∣
∣
∣

⎡

⎣
∑

f j ≤ f


a j�x j+
∑

f j> f

�a jx j

⎤

⎦+
⎡

⎣
∑

f j ≤ f

f j x j+y+
⎤

⎦−
⎡

⎣
∑

f j> f

(1− f j )x j+y−
⎤

⎦ −b

∣
∣
∣
∣
∣
∣
≤ t

where f j := a j − 
a j�, we see that x ′ = ∑
f j ≤ f 
a j�x j + ∑

f j> f �a jx j ∈ Z,

y′ = ∑
f j ≤ f f j x j + y+ ∈ R+, and w′ = ∑

f j> f (1 − f j )x j + y− ∈ R+. Then the

corresponding simple conic MIR inequality on variables (x ′, y′, w′, t) is

(1 − 2 f )

⎡

⎣
∑

f j ≤ f


a j�x j +
∑

f j> f

�a jx j − 
b�
⎤

⎦ + f

≤ t +
∑

f j ≤ f

f j x j + y+ +
∑

f j> f

(1 − f j )x j + y−.

Rewriting this inequality using ϕ f , we obtain

n∑

j=1

ϕ f (a j )x j − ϕ f (b) ≤ t + y+ + y−.

To see that the inequality is facet-defining for conv(S), suppose conditions of the
theorem are satisfied for α = 1. Then, consider the four affinely points (x, y+, y−, t)
on the face: (
b�e j , f, 0, 0), (
b�e j , 0, 0, f ), (�be j , 0, 1 − f, 0) and (�be j , 0, 0,
1 − f ). The remaining n − 1 affinely independent points on the face defined by (23)
are as follows: For i ∈ {1, . . . , n}\ { j},
(1) if ai − 
ai� < f : (ei + 
b − ai�e j , {b − ai }, 0, 0)
(2) if ai − 
ai� ≥ f : (ei + �b − aie j , 0, 0, 1 − {b − ai })
where {b − ai } = b − ai − 
b − ai�. Finally, scaling the base inequality as

∣
∣
∣
∣

1

α
(ax + gy − b)

∣
∣
∣
∣ ≤ t/ |α|

the result holds for α �= 0. ��
Proposition 4 Conic mixed-integer rounding inequalities with α = a j , j = 1, . . . , n
are sufficient to cut off all fractional extreme points of relax(S).

Proof After aggregating continuous variables as in (21), relax(S) has n + 3 variables
and n + 4 constraints. Therefore, if x j > 0 in an extreme point solution, then the
remaining n + 3 constraints must be active. Thus, the continuous relaxation relax(S)
has at most n fractional extreme points (x j , 0, 0, 0) of the form x j

j = b/a j > 0, and
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Conic mixed-integer rounding cuts 13

x j
i = 0 for all i �= j , which are infeasible if b/a j �∈ Z. But for such a fractional

extreme point (x j , 0, 0, 0) inequality (23) reduces to

ϕ fa j
(1)x j − ϕ fa j

(b/a j ) ≤ (t + y+ + y−)/
∣
∣a j

∣
∣ ,

or equivalently,

(1 − 2 fa j )x j − (1 − 2 fa j )
b/a j� − fa j ≤ (t + y+ + y−)/
∣
∣a j

∣
∣ ,

which by Proposition 1 cuts off the fractional point with x j
j = b/a j �∈ Z. ��

Application to linear MIPs. Next we show that mixed-integer rounding (MIR)
inequalities [16,27,28] for linear mixed-integer programming can be obtained as conic
MIR inequalities. First, observe that any two linear inequalities

α1x + β1 y ≤ γ1 and α2x + β2 y ≤ γ2

can be written equivalently in the conic form as

∣
∣
∣
∣

(
α1−α2

2

)
x+

(
β1−β2

2

)
y− γ1−γ2

2

∣
∣
∣
∣ ≤ γ1 + γ2

2
−

(
α1+α2

2

)
x −

(
β1 + β2

2

)
y.

We will use this observation in the sequel.
Consider a linear mixed-integer set

ax − y ≤ b, x ≥ 0, y ≥ 0, x ∈ Z
n, y ∈ R (24)

and the corresponding valid MIR inequality

n∑

j=1

(

a j� + ( f j − f )+

1 − f

)
x j − 1

1 − f
y ≤ 
b�, (25)

where f j := a j − 
a j� for j = 1, . . . , n and f := b − 
b�.

Proposition 5 Every MIR inequality (25) is a conic MIR (23) inequality.

Proof After writing the inequalities ax − y ≤ b and y ≥ 0, in the conic form

−ax + 2y + b ≥ |ax − b|

we apply the conic mixed-integer rounding inequality to obtain get

−ax + 2y + b ≥
n∑

j=1

ϕ f (a j )x j − ϕ f (b).
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14 A. Atamtürk, V. Narayanan

After rearranging this inequality as

2y + 2(1 − f )
b� ≥
∑

f j ≤ f

(
(1 − 2 f )
a j� − f j + a j

)
x j

+
∑

f j> f

(
(1 − 2 f )�a j − (1 − f j )+ a j

)
x j

and dividing it by 2(1 − f ) we obtain the MIR inequality (25). ��
Example 2 In this example we illustrate that conic mixed-integer rounding cuts can
be used to generate valid inequalities that are difficult to obtain by Chvátal–Gomory
(CG) integer rounding in the case of pure integer programming. It is well-known that
the CG rank of the polytope P given by inequalities

2kx1 + x2 ≤ 2k, −2kx1 + x2 ≤ 0, x2 ≥ 0

for a positive integer k equals exactly k [see 33, pg. 344]. Below we show that the
non-trivial facet x2 ≤ 0 of the convex hull of integer points in P can be obtained by a
single application of the conic MIR cut.

Writing constraints 2kx1 + x2 ≤ 2k and −2kx1 + x2 ≤ 0 in conic form, we obtain

|2kx1 − k| ≤ k − x2. (26)

Dividing the conic constraint (26) by 2k and treating 1
2 − x2

2k as a continuous variable,
we obtain the conic MIR cut

1

2
≤ 1

2
− x2

2k
,

which is equivalent to x2 ≤ 0.

Writing two linear inequalities in conic form suggests a way of generating cuts that
are based on two constraints of an MIP. Because in the conic form two constraints are
used together, this approach may have a practical advantage for generating stronger
cuts compared to the ones obtained from aggregating the two constraints. Exploring the
potential effectiveness of cuts from a conic reformulation rather than an aggregation
of constraints for linear MIP is worthy of an extensive computational study, but it is
beyond the scope of the current paper, which is focused on conic MIP.

Conic Aggregation. It is possible to generate other cuts for the second order conic
mixed integer set C by aggregating constraints (5) in conic form: for λ,µ ∈ R

m+, we
have λ′t ≥ λ′(Ax + Gy − b) and µ′t ≥ µ′(−Ax − Gy + b). Writing these two
inequalities in conic form, we obtain

(
λ+ µ

2

)′
t +

(
µ− λ

2

)′
(Ax + Gy)+

(
λ− µ

2

)′
b

≥
∣
∣
∣
∣

(
µ− λ

2

)′
t +

(
λ+ µ

2

)′
(Ax + Gy)−

(
λ+ µ

2

)′
b

∣
∣
∣
∣ . (27)
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Conic mixed-integer rounding cuts 15

Then we can write the corresponding conic MIR inequalities for (27) by treating the
left-hand side of inequality (27) as a single continuous variable. Constraint (27) allows
us to utilize multiple polyhedral conic constraints (5) in deriving a cut. We use this
conic aggregation in the computational study presented next.

4 Computational experiments

In this section we report our computational results with the conic mixed-integer
rounding inequalities. We tested the effectiveness of the cuts on three different pro-
blem sets with and without structure. The first set consists of randomly generated
SOCMIP instances with no structure. The second set is from a mean–variance capital
budgeting problem, whereas the third set is from a binary least-squares estimation
problem. The data set used in the experiments can be downloaded from http://ieor.
berkeley.edu/~atamturk/data.

All experiments were performed on a 3.2 GHz Pentium 4 Linux workstation with
1GB main memory using CPLEX1 (Version 11.0) second-order conic MIP solver. We
used CPLEX’s barrier algorithm to solve SOCPs at the nodes of a branch-and-bound
algorithm. CPLEX solver was run with default options, with the exception of primal
heuristic options, which were turned off as they often increased the solution time.
CPLEX restricts conic constraints that can be input into its solver to only

∑n
i=1 t2

i ≤ t2
0 .

Therefore, the auxiliary variables t0, t1, . . . , tn had to be used explicitly for entering
the problems to the solver. This allows, though, the cuts to be added as linear cuts in
the (x, y, t) space.

Conic MIR cuts (23) were added only at the root node using a simple separation heu-
ristic. We performed a simple version of conic aggregation (27) on pairs of constraints
using only 0–1 valued multipliers λ and µ, and checked for violation of conic MIR
cut (23) for each integer variable x j with fractional value for the continuous relaxa-
tion using α ∈ {

1a j , 2a j , 4a j , 6a j , 8a j , 10a j
}
. For problems with binary variables

(Sects. 4.2, 4.3), if the continuous relaxation value of a variable is greater than 0.7, we
complement the variable before applying cut (23). Thus, the heuristic implementation
of scaling and complementing variables follows Marchand and Wolsey [24] for linear
MIP.

4.1 Random SOCMIP instances

In Table 1, we report our computations for randomly generated SOCMIP instances of
the form (1) with cones Q2, Q25, and Q50. The coefficients of A,G, b, d, e, and h
are generated from Uniforms(0,3). In the table we show the size of the cone (m), the
number of integer variables in the formulation (n), the number of cuts, the integrality
gap (the percentage gap between the optimal solution and the continuous relaxation),
the number of nodes explored in the search tree, and CPU time (in seconds) with

1 CPLEX is a registered trademark of ILOG, Inc.

123

http://ieor.berkeley.edu/~atamturk/data
http://ieor.berkeley.edu/~atamturk/data


16 A. Atamtürk, V. Narayanan

Table 1 Computations with random SOCMIP instances

m n Without cuts (23) With cuts (23)
% gap nodes time % gap nodes time cuts

2 200 90.84 27 0.4 0.51 1 0.2 21

400 84.31 56 0.4 0.00 0 0.2 31

600 79.31 82 0.5 0.00 0 0.3 51

800 87.16 168 0.9 0.63 3 0.5 76

1000 91.74 208 1.6 1.28 3 1.2 117

25 200 38.52 73 1.9 2.58 9 1.5 68

400 61.78 5638 241.1 6.82 39 7.3 39

600 54.93 328 19.3 1.73 6 3.1 61

800 73.45 549 50.3 0.81 3 3.3 71

1000 84.81 598 79.5 2.01 8 6.2 63

50 200 50.69 61 5.3 0.00 0 0.6 41

400 53.71 126 16.8 2.94 5 4.6 39

600 62.19 269 51.4 1.63 3 5.8 71

800 79.25 392 97.4 1.37 4 8.0 104

1000 83.64 568 188.3 1.43 4 8.1 127

Average 71.8 609.5 50.3 1.6 5.9 3.4 65.3

and without adding the conic mixed-integer rounding cuts (23). Each row of the table
shows the averages for five instances.

We see that conic MIR cuts are very effective in closing the integrality gap. Most
of the instances has 0% gap at the root node after adding the cuts and were solved
without branching, and the remaining ones are solved within only a few nodes. Average
integrality gap at the root node is reduced from 71.8% to only 1.6%. This improvement
reduces the average number of nodes explored in the search from 609.5 to only 5.9.
The solution time of continuous SOCP relaxation did not increase much with the
addition of the cuts. This is probably due to the fact that the added cuts are linear
in (x, y, t) space. A comparison of the overall computation time shows that with the
addition of the conic MIR cuts computational effort is reduced by more than an order
of magnitude.

4.2 Mean–variance capital budgeting

The second data set consists of capital budgeting problems with a mean–variance
objective [7,25,44]

max
{
r x − γ x ′V x : cx ≤ d, x ∈ {0, 1}n}

, (28)

where r is the expectation and V is the covariance matrix of uncertain return for n
projects that must satisfy a budget constraint cx ≤ d, and γ > 0 is the investor’s
risk-averseness parameter. As the purpose of the application is illustration only, for
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Table 2 Mean–variance capital budgeting instances

γ n Without cuts (23) With cuts (23)
% gap nodes time % gap nodes time cuts

1 20 27.92 228 2.6 7.99 88 1.1 13

40 14.27 2932 99.0 5.63 1162 34.2 21

60 12.21 5423 1233.3 3.93 3018 525.9 31

80 11.32 11149 2066.9 2.81 4410 793.0 31

100 9.61 20635 7728.3 2.68 8129 2271.5 35

2 20 29.19 267 2.8 7.62 79 0.96 11

40 17.83 3118 106.8 4.92 1048 30.6 24

60 15.37 5688 1482.5 4.09 3142 603.7 28

80 13.24 12581 2270.1 2.96 4591 872.2 29

100 10.63 22074 8062.3 2.59 8005 2547.7 32

5 20 34.11 376 4.2 8.02 103 1.26 15

40 21.02 3682 130.3 5.31 1247 36.8 20

60 17.84 5849 1639.0 4.51 3305 641.3 32

80 14.39 14719 2581.6 3.40 4742 819.4 30

100 11.42 24338 7849.2 3.76 7491 2841.3 36

Average 17.4 8870.6 2350.6 4.7 3370.7 801.4 25.9

simplicity of the model we ignore the financing structure and assume that a fixed
budget d is available for the projects. Because the objective is concave quadratic, it
can be written in conic quadratic form. In particular, for a ∈ R

n such that a′V = 1
2γ r ,

problem (28) is equivalent to

a′a − min
{

x ′V x − 2a′V x + a′a : cx ≤ d, x ∈ {0, 1}n}
, (29)

which can be stated in conic quadratic form as

a′a −
(

min
{

t : ||V 1/2x − a|| ≤ t, cx ≤ d, x ∈ {0, 1}n , t ∈ R+
})2

. (30)

Note that this transformation of a convex quadratic function into the conic quadratic
form is different from the one suggested by Ben-Tal and Nemirovski [see 8, pg. 104]
and fits our approach for deriving cutting planes.

For these experiments the coefficients of r, a, and V 1/2 are generated from Uni-
form(0,5) and b is set as b = ∑n

i=1 ai . We observe in Table 2 that the capital budgeting
instances are much harder to solve compared to the unstructured randomly generated
SOCMIPs even though the integrality gaps are smaller. The integrality gaps decrease
as the number of variables increases, but increase with γ as the quadratic term gains
more weight. With the addition of cuts, the integrality gap at root node reduces from
an average of 17.4 to 4.7% and we see close to threefold reduction in the number of
nodes and computation time.
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Table 3 Binary least squares estimation problem

n/m n Without cuts (23) With cuts (23)
% gap nodes time % gap nodes time cuts

1 20 19.10 104 1.9 5.82 47 0.9 14

40 11.81 2104 70.0 4.88 590 26.1 17

60 9.42 4431 900.4 3.68 974 515.9 20

80 6.05 8053 1498.5 2.04 3061 581.2 22

100 4.34 22301 7731.4 1.83 5736 2018.9 28

5 20 16.03 109 0.4 7.01 49 0.1 5

40 14.90 13085 57.4 6.14 1017 5.8 9

60 17.51 17815 261.5 6.18 3242 68.3 11

80 9.81 31783 1049.3 3.20 3928 117.5 16

100 11.06 38509 1112.8 3.29 7804 316.4 20

10 20 12.25 49 0.2 4.96 10 0.2 2

40 15.08 3620 25.9 5.20 918 4.0 9

60 16.33 15691 210.5 5.31 2104 32.1 8

80 9.40 39362 458.8 3.52 3489 38.2 10

100 11.18 50579 788.6 3.63 8120 109.9 10

Average 12.3 16506.3 944.5 4.5 2739.3 255.7 13.4

4.3 Least squares estimation with binary inputs

The third data set comes from a least squares problem with binary inputs

min
{||Qx − y|| : x ∈ {−1,+1}n}

. (31)

Least squares with binary inputs is a fundamental problem in signal processing in
digital communication networks. Given an observed noisy output vector y ∈ R

m ,
problem (31) must be solved for decoding the binary input vector x ∈ {−1,+1}n for
a matrix Q ∈ R

m×n [22,23,26]. Letting z = 1
2 (1+ x) and b = 1

2 Q1+ y, we can state
(31) in the conic quadratic form

min
{
t : ||Qz − b|| ≤ t, z ∈ {0, 1}n , t ∈ R+

}
.

For the experiments the coefficients of Q are generated from Uniform(0,5) and y
from Uniform(0, n/2). The results are reported in Table 3. We observe that, similar to
the capital budgeting instances, integrality gaps decrease as the number of variables
grows. There does not seem to be a consistent pattern in the gaps as a function of the
output size m. Nevertheless, the problems become significantly easier as the output
size decreases compared to the input size. With the addition of the cuts, the integrality
gap at the root node reduces from an average of 12.3 to 4.5% and we see about 83%
reduction in the number of nodes and 73% reduction in the computation time.
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5 Conclusion

In this paper, we introduced conic mixed-integer rounding cuts for conic integer
programming. Crucial to our approach is a reformulation of the second-order conic
constraints with polyhedral second-order constraints in a higher dimensional space.
In this representation the cuts are linear, even though they are nonlinear in the original
space of variables. This feature leads to a computationally efficient implementation of
nonlinear cuts for conic mixed-integer programming. The reformulation also allows
the use of polyhedral methods for conic integer programming. Computations with
unstructured SOCMIP problems as well as instances for mean–variance capital bud-
geting problems and least-squares estimation problems with binary inputs show the
effectiveness of the conic MIR approach.
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