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Introduction to label noise problems
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Binary Classification Problem

Image source: Internet
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Binary Classification in the presence of label noise
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Motivation: Noisy labels in real life

SOURCES 
OF LABEL 

NOISE

Adversarial noise, Crowd sourcing, Sensor noise, Labelling is
expensive especially for x-ray images etc. 5/66



Learning a classifier: ERM terminology

• D : Joint distribution over X× Y with X ∈ X ⊆ Rn and Y ∈ Y = {−1, 1}

• η(x) := P(Y = 1|x), π := P(Y = 1)

• Decision function f : X 7→ R

• H : Hypothesis class of all measurable functions

• Hlin: Class of linear hypothesis

• Ideal situation: Minimize RD (f) := ED [ℓ0−1(f(x), y)] = ED [1{y 6=sign(f(x))}].

• Solution is Bayes classifier’s prediction, i.e., sign(2η(x) − 1)

• Training sample S := {(x1, y1), . . . , (xm, ym)} ∼ Dm

• Empirical risk minimization (ERM): f̂∗
ℓ
∈ argmin

f∈H
R̂D ,ℓ(f) :=

1
m

m∑︀
i=1

ℓ(f(xi), yi)

• Solving ideal loss function (ℓ0−1) based ERM is NP-hard.

• Use surrogate loss function ℓsur, a convex upper bound on ℓ0−1.
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Label noise: formal setup

• D̃ : Joint distribution on X× Ỹ obtained by inducing noise to D , Ỹ ∈ {−1, 1}

• S̃ = {(x1, ỹ1), . . . , (xm, ỹm)} ∼ D̃m (corrupted data)

• Noise rate ρy(X) := P(Ỹ = −y|Y = y,X = x)

• η̃(x) = P(Ỹ = 1|Y = 1,X = x)η(x) + P(Ỹ = 1|Y = −1,X = x)(1− η(x))

• Noisy true ℓ-risk of classifier f be RD̃ ,ℓ(f) and its minimizer be f̃∗
l
.

• Empirical noisy ℓ-risk is R̂D̃ ,l(f) :=
1
m

m∑︀
i=1

l(f(xi), ỹi).

Definition (Noise tolerance under risk minimization)
[Manwani and Sastry, 2013] For a loss function l and classifiers f̃∗

l
and f∗

l
, risk

minimization is said to be noise tolerant if

RD ,0−1(f̃∗ℓ ) = RD ,0−1(f∗ℓ ). (1)
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Noise models

Symmetric label noise (SLN) model

• The flipping probability is a constant ρ = P(Ỹ = −y|Y = y).

• Corrupted in-class probability η̃(x) = (1− 2ρ)η(x) + ρ.

• Corrupted class marginal π̃ = (1− 2ρ)π + ρ.

Class conditional noise (CCN) model

• The flipping probability is class dependent, i.e.,
ρ+ = (Ỹ = −1|Y = 1) & ρ− = (Ỹ = 1|Y = −1).

• Corrupted in-class probability η̃(x) = (1− ρ+ − ρ−)η(x) + ρ− .

• Corrupted class marginal π̃ = (1− ρ+ − ρ−)π + ρ− .

Instance dependent noise (IDN)

• Label-and instance-dependent (LIN): noise rate ρy(x)

• Purely instance-dependent noise (PIN): noise rate ρ+(x) = ρ−(x) = ρ(x).

Goal: Given a sample S̃ from noisy or corrupted distribution D̃ , obtain a classifier,

which is trained on S̃ ∼ D̃m but evaluated on data from D .
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Various models
Performance criteria: (for designed classifier using test set):
• 01-loss (or Accuracy), using ℓ01(yf(x)) (= ℓ01(f)) loss function.
• cost-sensitive criteria, ℓα(f), α ∈ [0, 1] (i.e., α-weighted 01 loss

fn.)
• Cross-entropy criteria
• Etc.

Classification nature:
• Binary class
Various types of noise:

– Symmetric Label Noise Model, SLN (also called unifrom noise
model); ρ

– Class Conditional Noise Model, (CCN); ρ+ and ρ−
– Instance dependent noise model; ρ(x)

• Multi-class noise model:
• Etc.
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Methods for learning in the presence of label noise
[Sastry and Manwani, 2017]

• Noise cleaning: correct labels are restored

• Eliminating noisy points: after identifying the noisy points they
are eliminated

• Designing schemes for dealing with label noise: goal is to
minimize the effect of label noise

• Noise tolerant algorithms: designing algorithms that are
unaffected by the label noise (identifying noise robust loss
functions ℓ for minimization.)
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Learning in presence of label noise via Empirical
Risk Minimization
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The resurrection of the label noise [Long and Servedio, 2010]

• Convex potential function: phi : R 7→ R is convex, non-increasing,
differentiable with ϕ′(0) < 0.

• Boosting algorithms that minimize a convex potential function are susceptible
to SLN. AdaBoost minimizes ϕ(z) = e−z, a convex potential.

Which loss functions are not robust against SLN? (via counter examples)

1. Squared loss with f /∈ Hlin,

2. Hinge loss ℓhinge(f(x), y) =mx(0, 1− yf(x)),

3. Exponential loss ℓexp(f(x), y) = exp(−yf(x))

4. Log loss ℓlog−loss(f(x), y) = ln(1+ exp(−yf(x)))

Which loss functions are robust to symmetric label noise (SLN)?
[Manwani and Sastry, 2013]

1. 0-1 loss ℓ0−1(f(x), y) with f ∈ H

2. Squared loss ℓsq(f(x), y) = (y − f(x))2 when f ∈ Hlin
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Is there some magic that makes loss functions robust?

What property of 0-1 loss made it noise robust?

Sufficient condition for SLN robustness (Theorem 1, [Ghosh et al., 2015]): If
ℓ1(f(x)) = ℓ(f(x), 1) and ℓ−1(f(x)) = ℓ(f(x),−1) such that
ℓ1(f(x)) + ℓ−1(f(x)) = K, K > 0, then ℓ(f(x), y) is SLN robust.
Any other loss function satisfying the sufficient condition?

• Novel unhinged loss [Van Rooyen et al., 2015] ℓunhinged(f(x), y) = 1− yf(x)

• Sigmoid loss, ℓsg(x) =
1

1+exp(βf(x)y)

• Ramp loss, ℓra(x) = (1− βf(x)y)+ − (−1− β)f(x)y)+

• Probit loss, ℓpr(x) = 1− (βf(x)y)

Doesn’t need any knowledge of the noise rates!

But what happens when the noise is class conditional?
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Class Conditional Noise (CCN) model, Performance assessment,
etc

Recall, the CCN setup:
The flipping probability is class dependent, i.e.,

ρ+ = (Ỹ = −1|Y = 1) & ρ− = (Ỹ = 1|Y = −1)

The SLN model is a special case of this.
More reasonable assumption
One of the first papers is by Nagarajan Natarajan et al
[Natarajan et al., 2013], [Natarajan et al., 2018]
Also, give performance guarantees
In terms of high probability bounds on the risk of the learned
classifier (from noisy data) in terms of ‘best possible’ risk and some
error terms. 14/66



Modifying the loss functions for noise robustness; Unbiased
loss estimator [Natarajan et al., 2013]

Given a loss fn. ℓ(·, ·), one defines a α-weighted version of it:

ℓα(t, y) := ((1− α)1{y=1} + α1{y=−1})ℓ(t, y)

Also, if ℓ(·, ·) is bounded, one defines

ℓ̃(t, y) :=
(1− ρ−y)ℓ(t, y) − ρyℓ(t,−y)

1− ρ+ − ρ−1

Then,
Eỹ[ ℓ̃(t, ỹ)] = ℓ(t, y)

That is, ℓ̃(t, y) is an unbiased loss estimator of loss ℓ(·, ·)
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Unbaised loss estimator, cont.

In particular, we have,

Eỹ[ ℓ̃α(t, ỹ)] = ℓα(t, y)

with ℓα(·, ·) is the α-weighted version of bounded ℓ(·, ·)
Now, consider the following ERM scheme:

f̂ ←− rgmin
f∈H

R̂ℓ̃α(f) :=
m∑︁
1
ℓ̃α(f(Xi, Ỹi)))

For a given classifier f, the above sample average converges to
RD (ℓα(f)) even when it is computed in CCN set up.
Why?

Unbiasedness of ℓ̃α

16/66



Unbaised loss estimator, cont.

In particular, we have,
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CCN model, Unbiased loss estimator

Recall, that definition of unbiased loss estimator is in terms of CCN
noise rates, ρ+ and ρ−
Noise rates are usually unknown
The last step in this ERM scheme is to cross-validate (CV) the above
for various over a set/grid of CCN rates
Performance evaluation:

P[RD (ℓα(f̂)) ≤min
f∈F

+4LρRC(F ) + 2

√︃
log( 1

δ
)

2m
] ≥ 1− δ

Here, Lρ is Lipschitz constant of ℓ and RC(F ) is Rademacher
complexity of class ofF
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CCN model, other performance measures
[Natarajan et al., 2018]

Noise robust classifiers are designed to optimize a given linear
combination of the confusion matrix, called
Utility of margin based classifier f(·)

UD (f) = a11TPD (f) + a10FPD (f) + a01FND (f) + a00TND (f)

for some given {aij}, i, j ∈ {0, 1}
These include AM, the arithmetic mean, apart from accuracy.
AM(f(·)) is via a11 = 1

2(1−π) , and a00 =
1
2π , where π = P(Y = 1)

under D
The Bayes classifier is a suitable threshold of the in-class probability
η(x)—- for AM, it is π
A high probability bound on the regret of the algo – deviation from
the best possible utility – is provided.
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Modifying the loss fns. for noise robustness
[Patrini et al., 2016]

The (empirical) mean operator of a learning sample S is defined as

μS := ES[yx]

A loss ℓ is a-linear-odd (a-LOL) when ℓo(x) = (ℓ(x) − ℓ(−x))/2 = ax
for any a ∈ R
Mean operator μ is a sufficient statistic amongHlin and a-LOL loss
ℓ(·)

19/66



Modifying the loss fns. for noise robustness
[Patrini et al., 2016]

Factorization theorem For a linear classifier f ∈ Hlin

RS(ℓ(f))) =
1

2
RS2x + ℓo(f(μS))

where S2x is ‘doubled-sample’ with features x repeated with both
labels and hence is label free.
This yields better high probability performance bound
Also, this bound has a term with a multiplier that does not blow with
high noise rates ρ+ and ρ− as in Nagarajan Natarajan et al.
The multiplier is 0.6 irrespective of the noise rates.
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Modifying the loss functions to account for noise robustness
[Liu and Tao, 2016]

Importance weighted sampling

• Rely on the idea of rewriting the true clean risk RD ,ℓ(f) as RD̃ ,βℓ
where β = PD (X,Y)

PD̃ (X,Ỹ)

• As the noise is only in labels β = PD (X,Y)
PD̃ (X,Ỹ)

= PD (Y|X)
PD̃ (Ỹ|X)

which in
turn becomes a function only of noise rates and corrupted in
class probability η̃.

• Present three methods for η̃ estimation with the corresponding
consistency analysis.

– Probabilistic classifier approach
– Kernel density estimation
– Density ratio estimation method

• If perfect examples exist then ρ̂−Ỹ = min
X∈{X1,...,Xm}

ˆ̃η(X)
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Peer loss functions [Liu and Guo, 2019]
• Inspired by peer prediction framework that studies how to elicit information

from self-interested agents without verification.

• Reward function S(yA, yB) where yA/B is the noisy observation of the ground
truth by agent A/B.

• Correlation agreement (CA) builds Δ matrix that captures the stochastic
correlation between yA and yB

• For ρ+1 + ρ−1 < 1, sign(Δ) = I2×2
• Peer samples: Randomly draw two distinct noisy samples say m1 and m2

• ℓpeer(f(xm), ỹm) := ℓ(f(xm), ỹm) − ℓ(f(xm1 ), ỹm2 )

• If ℓ here is indicator function and π = 0.5, then the minimizer of corrupted
true peer loss risk is equal to clean Bayes classifier.

Inherently class conditional noise robust! 22/66



Learning in the presence of label noise via deep
neural networks
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Multi-class noise robust loss functions

• [Ghosh et al., 2017] provided a sufficient condition for
robustness of multi-class losses under uniform or symmetric
noise

•
k∑︀
i=1

ℓ(f(x), i) = C,∀x,∀f.

• ℓMAE(p̂, ej) = ‖ej − p‖1 is robust

• Categorical cross entropy and Mean squared error do not satisfy
it; MSE being bounded enjoys more robustness properties

• Issue with MAE : Difficult optimization as gradients saturate
quickly.

Even though CCE is not noise robust, a lot of research has been going
on in making modifications that are either empirically or
theoretically proven to be noise robust
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Modified CCE losses

• Robust log loss [Kumar and Sastry, 2018]:
– Design a loss function that has good properties of CCE like easy

optimization and satisfies symmetry condition

ℓrll(p̂, ej) = log
α+1
α
− log(α + p̂) +

∑︀
t=1,t 6=j

1
k−1 log(α + p̂j)

• Generalized cross entropy GCE [Zhang and Sabuncu, 2018]:
– Inspired from the fact that CCE puts more emphasis on training

difficult samples; overfitting problem in the presence of label
noise

Lq(p̂, ej) =
(1− p̂qj )

q
, q ∈ [0, 1)

– q −→ 0 leads to CCE loss, q −→ 1 leads to MAE
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Modified CE losses continued
Symmetric cross entropy [Wang et al., 2019]:

• CCE over-fits on some easy losses but under-fits on some difficult classes;
Combine CCE and reverse CCE

• Reverse CCE has been shown to be robust to uniform noise
ℓsymCCE(p̂, ej) = −α

∑︀k
i=1

eji log(p̂i) − β
∑︀k

i=1
p̂i log(eji)

• α takes care of over-fitting part of CCE and β provides flexibility in robustness

• Representation from second last layer projected to 2-D when noise is 60%
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Multi-class noise robust loss functions

LDMI [Xu et al., 2019]

• Relies on a generalized version of mutual information called
Determinant based Mutual Information (DMI)

• LDMI is claimed to theoretically robust to any noise type and any
noise level

• If U := 1
NOL ten LDMI = − log(‖det(U)‖)
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Multi-class noise robust loss functions

• Active passive losses [Ma et al., ]: Can make any loss function
robust by normalization but empirical performance is bad;
propose active passive loss functions.

• Bi-tempered logistic loss [Amid et al., 2019]: Propose a
theoretically sound bi-tempered loss function that is a
non-convex generalization of logistic loss and requires tuning
two temperature parameters. Robust to SLN only.

• Trimmed CCE [Rusiecki, 2019]: Decides a parameter h as
threshold that decides the examples to include based on their
CCE.

• Taylor CCE [Feng et al., 2020]: Uses Taylor expansion of the
cross entropy loss and control the terms to include in the loss
function. 28/66



Loss correction approach [Patrini et al., 2017]

Multi-class classification : y ∈ {0, 1}c with c classes; network’s prediction p̂(y|x)

Let T ∈ [0, 1]c×c be the noise transition matrix s.t. Tij = p(ỹ = ej|y = ei) and
’known’ row stochastic

• Backward correction procedure: ℓ←(p̂(y|x)) = T−1ℓ(p̂(y|x))

– Loss correction is unbiased
– RD̃ ,ℓ←(p̂(y|x)) = RD ,ℓ(p̂(y|x)) =⇒ the minimizers are same

• Forward correction procedure: ℓ→
ψ
(h(x)) = ℓ(TTψ−1h(x)) (better!)

– lψ is a proper composite loss, i.e., its minimizer assumes the
particular shape of the link function applied to the p(y|x)

• Estimating T: find x̄i = argmxx∈X p̂(ỹ = ei|x) and then T̂ij = p̂(ỹ = ei|x̄i)

[Lukasik et al., 2020] show connection b/w label smoothing and loss correction

approaches; attribute its de-noising properties to ℓ2 regularization.
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Co-teaching [Han et al., 2018]
• Relies on training on selected/identified clean samples and the idea that DNNs

learn easy instances first and then move on to difficult instances

• Correct labels would tend to have small loss instances

• Keep the batch size high initially and decrease in later stage of learning

• Two networks have different learning abilities so they can filter different types
of error introduced by noisy labels and the error flows can be reduced by peer
networks mutually.
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Deep k-NN for noisy labels [Bahri et al., 2020]

• Fits in the class of data cleaning methods that detects and filters
dirty data.

• Results are based on the notion of how spread out the noisy
labelled points are. Also, doesn’t assume any particular noise
model

• The proposed example filters out the examples that disagree
with the estimate of in-class probability η(x) computed on
noisy data

• Works both for the cases when some clean labelled examples
are available too. And has been shown to be robust to the
choice of neighbouring parameter in k-NN.

• Provide statistical guarantees like convergence rates and finite
sample analysis. 31/66



Why can’t I have ‘some’ clean labelled data?
[Hendrycks et al., 2018]

• Leverage the fact that a small set of
clean labels is often procurable (Gold
standard)

• Estimate the corruption matrix C
(defined as T earlier)

– Learn a classifier on corrupted
data

– Use the averaged probability
predictions from this model
on the clean data as estimates

• Experiments suggest major strength lies
in the estimate of noise matrix
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Using GANs for classification task from noisy labels
Generative adversarial networks [Goodfellow et al., 2014]
• Two player min-max game between discriminator D and generator G.

min
G
mx

D
EpD (x)[ log(D(x))] + Ep(z)[ log(1− D(G(z)))]

• G : Z 7→ X , synthesizes new samples by mimicking target distribution D .

• D : X 7→ R, decides whether the sample is real or fake (generated from G).

• p(z) and pD (x) are density functions of the random variables in Z andX .

Figure: A schematic for GANs. Source: https://medium.com/sigmoid/
a-brief-introduction-to-gans-and-how-to-code-them-2620ee465c30
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WasserteinGANY [Tripathi and Hemachandra, 2019b]
Objective function of WGANY

min
Gdn

mx
Ddn

E
(x,y)∼D

[Ddn(x, y)] − E
(x′ ,y′)∼D ′

[Ddn(x′, y′)]

• Gdn : X × Ỹ 7→ X × Y , Ddn : X × Y 7→ R

• (x′, y′) := (Gf
dn
(x, ỹ),Gl

dn
(x, ỹ)) = Gdn(x, ỹ), with (x, ỹ) ∼ D̃

• Goal: Minimize the divergence between clean distribution D and correctly
labelled generated model distribution D ′.

    WGAN*
Classification 

model MCorrectly labelled 
generated dataset

Output: Label noise robust classifier learnt 
using correctly labelled generated dataset

Noisy data

Clean data 
(0.1% or 1%)

Noisy test data fed to 
trained generator

STAGE 1 STAGE 2
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Additional benefits for Imbalanced datasets (MNIST)

For high noise rates, WGAN based schemes have lead to higher average AM values
(WGANXtraY(5) and WGANXtraYEntr(5)) in comparison to GLC
[Hendrycks et al., 2018] and baseline SimpleNN with no modification for label noise
robustness. 35/66



Other interesting recent studies

• [Chen et al., 2019]: Relate the noise rates to test set accuracy and propose an
algorithm for learning

• SIGUA [Han et al., ]: avoids undesired memorization in over parameterized
networks by reducing the learning rate for ascent on bad data (outliers,
corrupted labels)

• Search strategies [Yang et al., 2019]: Deciding how many examples to discard
that are supposedly noisy at every iteration by formulating it as a bi-level
optimization problem

• Label noise information [Harutyunyan et al., 2020]: Memorized information
of a network is quantified as the Shannon mutual information between
weights and the vectors of all training labels

• Early stopping [Li et al., 2020]: prove that using first order methods with early
stopping for training over parameterized neural networks make them robust
to label noise

• ... 36/66



Instance dependent (aka non-uniform noise model), ρ(x)

• Loss fn ℓ(·) is robust to non-uniform label noise if ℓ(·) satisfies
– ℓ1(f(x)) + ℓ−1(f(x)) = K, K > 0,
– If true risk is zero, i.e., RD (f∗) = R∗(f∗) = R∗ = 0

• In fact, classifier from noisy data, f̃∗D̃ , is same as f∗

• So, if true risk, R∗ is zero, then 01-loss fn, ℓ01(·) is robust to
non-uniform noise.

• Suppose true risk R∗ = 0. In addition to 01-loss, ℓ01(·),
– Sigmoid loss, ℓsg(x) =

1
1+exp(βf(x)y)

– Ramp loss, ℓra(x) = (1− βf(x)y)+ − (−1− β)f(x)y)+

– Probit loss, ℓpr(x) = 1− (βf(x)y)

are robust to non-uniform noise for sufficiently large
(respective) β.

• For large β, these loss fns. are sufficiently steep near 0 to apprx
ℓ01.
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Non-uniform noise robustness, cont.

• The assumption RD f∗D ) = RD (f∗) = 0 is not very restrictive as
D is hypothetical, [[Manwani and Sastry, 2013]],
[[Ghosh et al., 2017]], etc.

• This condition seems necessary – if you R∗li 6= 0, then one can
have a counter-example where ℓ01 is not noise robust among
linear classifiers, [Manwani and Sastry, 2013].
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Non-uniform noise robustness, An example

On going work: Learning hedonic cooperative games with noisy
preferences

• Each player in a cooperative game has preferences on coalitions
to join involving other players

• Prediction of core stable grand coalition formation is modelled
as classification problem

• Say, preferences are noisy.

• A instance dependent noisy ‘label’ model.

• But, RD (f∗) = 0, as stable coalition prediction formation can
be predicted when clean/original preferences are known.

• Thus, above loss fns with large enough tunable parameter β are
robust to noisy preferences
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Learning is more than 0-1 loss based binary classi-
fication
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Cost sensitive learning with noisy labels

• Differential costing of mis-classifications due to nature of decision
systems like medicine where safety critical decisions are made.

• The availability of data could be skewed like the number of customers
defaulting credit card is very low

Some solutions

• Balance out the training data by up-sampling ( down-sampling) the
minority (majority) class

• Use an α-weighted classification loss like

ℓα,0−1(f(x), y) = (1− α)1[y=1,f(x)<0] + α1[y=−1,f(x)≥0]

where α is either user given or cross-validated for.

What if the labels are noisy?
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Cost sensitive learning with noisy labels [Natarajan et al., 2018]

ℓα = ((1− α)1[y=1] + α1[y=−1])ℓ(f(x, y)) loses its consistency
property in the presence of label noise

• Approach of unbiased estimators as defined earlier has a
version for weighted losses too.

• Cross validate the imbalance parameter α and the noise rates!

• Accuracy is not a good measure for imbalanced datasets; hence
use Arithmetic mean.

What happens when α is given? Can we avoid estimating the noise
rates?
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Cost sensitive learning for SLN models
[Tripathi and Hemachandra, 2019a]
• Is risk minimization under weighted 0-1 loss uniform noise tolerant?

NO!! Look for surrogates! α-weighted uneven margin loss functions
[Scott, 2012].

Definition ((α, γ, ρ)-robustness of
risk minimization)
For a loss function lα,un and classifiers f̃∗lα,un and
f∗
lα,un

, risk minimization is said to be
(α, γ, ρ)-robust if

RD,α(f̃∗lα,un ) = RD,α(f∗lα,un )

Further, if the classifiers in equation (2) are
f∗
r,lα,un

and f̃∗
r,lα,un

then, we say that regularized
risk minimization under lα,un is
(α, γ, ρ)-robust.

• α-weighted uneven margin
squared loss
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Cost sensitive learning in label noise
Approach 1: lα,usq is (α, γ, ρ) robust with f ∈ Hlin α-weighted γ-uneven margin
squared loss:
lα,usq(f(x), y) = (1− α)1{y=1}(1− f(x))2 + α1{y=−1}

1
γ
(1+ γf(x))2, for γ > 0.

• Can be obtained by just solving a linear system of equations

• High probability bound available on the risk

Approach 2: Re-sampling based scheme

• α-weighted uneven margin 0-1 loss function:

l0−1,α,γ(f(x), y) = (1− α)1{Y=1,f(x)≤0} +
α

γ
1{Y=−1,γf(x)>0}, ∀α ∈ (0, 1) (2)

• Noisy cost sensitive Bayes classifier: f̃∗
0−1.α,γ = sign

(︁
η̃(x) − α

γ+(1−α)γ

)︁
• Issues: most algorithms use a threshold of 0.5 and can’t use η̃ for prediction

• Solution:

1. Re-balance noisy dataset with r∗ = α

γ(1−α) .
2. Estimate η̃b from re-balanced noisy data.
3. For test point x0, prediction is ŷ0 = sign(η̃b(x0) − 0.5). 44/66
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Learning to re-weight examples for robust deep learning
[Ren et al., 2018]

• Reduce the effect of training set biases like label noise and class
imbalance on neural networks

• Propose a meta learning algorithm that learns to assign weights
to training examples based on their gradient directions.

• Assumes availability of a clean and balanced validation set at
the end of every iteration.
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Generative Adversarial Networks and label noise I

Relevant problem for the ones that use label information like
conditional GANs

• RCGAN [Thekumparampil et al., 2018]: Modifies generator’s
loss by adding a suitable noisy classifier (learnt before hand on
noisy data on a certain hypothesis class using a certain loss
function) based loss term as regularizer.
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Generative Adversarial Networks and label noise II

• rcGAN and rACGAN [Kaneko et al., 2019]: Noise transition
model is used while training the discriminator.
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Positive-Unlabelled Learning

Exists when an observation of positive example is more reliable Eg.: a
protein catalyzing a reaction or a social media user liking a product.
• [Jain et al., 2016]: label noise robust algorithm that estimates

the class priors first, i.e., π and then posterior distribution η.
– Works well for density estimation even in high dimension data

as it transforms the full dimensional input space to a univariate
space

• [Shi et al., 2018]: Treat a PU learning problem as a label noise
problem by labelling all unlabelled examples as negative:

– Decompose the empirical risk for positive and negative
examples.

– Upper bound the empirical risk on the negative examples using
the results from [Patrini et al., 2016] for hinge loss.
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Interaction of label noise with other problems

• Active Learning [Kremer et al., 2018]

• Domain Adaptation [Yu et al., 2020]
• Possibly in fairness literature with different interpretation of

noise:
– due to human biases [Jiang and Nachum, 2020]
– noisy version of unobserved variable is only available

[Fogliato et al., 2020]
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Experiment designing

• Real datasets: Clothing1M [Xiao et al., 2015] is known to be
noisy

• Synthetic data: Data can be generated in certain way and then
noise is induced by flipping the labels. [Ghosh et al., 2015].
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Categorical feature noise [Petety et al., 2020]

Possible existence examples:

• Room with many sensors connected in series (or with individual
battery) measuring temperature, humidity, etc., as binary value,
i.e., high or low.

• A power failure (or battery failures) will lead to all (or individual)
sensors/attributes providing noisy observations with same (or
different) probability.

• The feature vector x is all categorical

• The flipping of these values can alter the classifier

Squared loss is robust if the flipping probability is same for all the
features but there are counter examples for 0-1 loss
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