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ABSTRACT

This work considers the local differential privacy (LDP) aspects of multi-agent reinforcement learn-
ing (MARL). We design a fully decentralized and generic multi-agent locally differential private
(MA-LDP) algorithm that can handle any noise adding mechanisms. It takes the episodic form,
where the data from each agent is anonymized using noise adding mechanism in each episode. MA-
LDP uses the linear function approximations of the transition probabilities and the reward functions.
We prove that the MA-LDP algorithm preserves the user’s data privacy and attains the sub-linear re-
gret for four noise mechanisms with different noise supports. Further, we compare the noise adding
mechanisms with unbounded support to those with bounded support. A key observation is that for a
suitably chosen bounded noise support, the regret of the MA-LDP algorithms is on-par or lower than
the noise mechanism with unbounded support. We validate our theoretical findings on an network
MDP with a large state and action spaces.

Keywords Differential privacy · Decentralized models · Noise mechanisms · Privacy loss · Sub-linear regret · Finite
horizon MDP · Network MDP · Linear function approximations · Reinforcement learning · Bellman equations

1 Introduction

Multi-agent reinforcement learning (MARL) is one of the powerful tools used widely in many real-life applications.
However, most of the algorithms rely on the user given data. Thus, the privacy of the users data is an utmost concern
of any user. To this end, Dwork et al. (2006) introduced the notion of the differential privacy. The idea is to work with
the anonymized user data, yet achieve the same performance and the user experience. Therefore, the notion of Locally
Differentially Private (LDP) is introduced in Dwork and Roth (2014); Kasiviswanathan et al. (2011), which enhanced
the performance while maintaining the privacy. However, to our knowledge the notion of LDP is not considered in
MARL settings, where the privacy of user data is more serious. LDP in MARL can be used to protect the sensitive
information that is shared or collected among the agents. Some of the applications include the health data analysis
where a patients data is sensitive, interactions of agents within a network, say a social media platform etc.

In the MARL setup the agents usually have a common objective; however, the decisions are taken sequentially by
each agent in a decentralised fashion. In this work, we introduce the notion of differential privacy for the MARL
problem. In particular, we address the following questions. 1) Can we design a MARL algorithm that can preserve
the user-data privacy while attaining the same outcome? We answer this question affirmatively and introduce a novel
and generic Multi-Agent Local Differential Privacy (MA-LDP) MARL algorithm. This algorithm can work with
any noise mechanism. In this work, we consider four noise adding mechanisms, Gaussian, Laplace, uniform and
bounded Laplace (BL). Two of which have the unbounded support, whereas other two have bounded support. For each
noise adding mechanism we investigate 3 aspects of our MA-LDP algorithm 1) its ability to preserve user sensitive
information, 2) the effect on the regret, and 3) how its regret fares with that of the other mechanisms. The privacy
from these noise mechanisms ranges from one extreme of no privacy loss (ϵ = 0) and less confidence (δ > 0) to some
privacy loss (ϵ > 0) and high confidence (δ = 0).
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Next, we compare the regret and the privacy guarantees of our MA-LDP algorithm across these noise mechanisms.
This comparison is motivated by the following question: can the noise mechanisms with bounded support attain the
same or better privacy and the regret guarantee as that of the noise mechanisms with unbounded support. Again we
answer this question affirmatively. In particular, we show that the regret for the BL mechanism is of the same order as
that of the Laplace mechanism, if the end points of the BL mechanism are chosen suitably. Our contributions are
(a) To address the LDP aspects in the MARL we introduce four novel noise adding mechanisms. Two of these
mechanisms have unbounded noise support, whereas the remaining two have bounded support. We propose a generic
algorithm MA-LDP that can work with any noise mechanism. Moreover, with these four noise mechanisms our MA-
LDP achieves a sub-linear regret (Sections 5, 6).
(b) These four different noise adding mechanisms yield different privacy guarantees; Gaussian mechanism achieves
(ϵ, δ) privacy, Laplace mechanism achieves (ϵ, 0) privacy, uniform mechanism achieves (0, δ), and finally for bounded
Laplace noise mechanism we get (ϵ, 0) privacy. Thus, the privacy guarantees range from one extreme (ϵ, 0) to (0, δ)
(Section 5, 6)
(c) While the regret of MA-LDP algorithm is sub-linear in total numbers of steps, it is super-linear in number of agents
and the feature dimension for all the noise mechanisms. But this order with respect to number of agents and feature
dimension is the same across all the four noise mechanisms.
(d) We compare the regret of MA-LDP standard (unbounded support) noise mechanisms with those of the bounded
support mechanisms. If the end points of the support of bounded Laplace distribution is of the same order as that of the
distribution parameter .. the regret of BL mechanism is on par with the Laplace mechanism. So, instead of injecting
the potentially unbounded noise values, a suitably chosen bounded support can attain the lower regret (see Table 2,
Section 7).

2 LDP for Decentralized MARL

In this Section, we first introduce the episodic decentralized MARL, and then provide the notion of LDP for the
MARL.

2.1 Episodic Decentralized MARL

LetN = {1, 2, . . . , n} be the set of agents. An instance of multi-agent time inhomogeneous episodic Markov Decision
Process is given by (N,S, {Ai}i∈N , H, {rih}i∈N,h∈H , {Ph}h∈H , {Gt}t≥0). Here S is the finite set of global state-
space. Ai is the finite set of local actions available to agent i ∈ N , i.e., the local action-space of agent i ∈ N . The
global action at any global state s ∈ S is A(s) =

∏
i∈N Ai(s). We use product of the local action-space because

the agents are independently taking the actions. A typical element in A(s) is a vector of size n, one for each agent
as (a1(s), a2(s), . . . , an(s)), where ai(s) ∈ Ai(s) represents the action taken by agent i when the global state is s.
Let K be the total number of episodes; each episode consists of a fixed planning horizon H . We use h to denote an
intermediate stage in planning horizon H . Moreover, let T = KH be the total number of interactions with the MDP.
For a global state s, global action a, each agent i ∈ N realizes a deterministic local reward rih(s, a) ∈ [0, 1] at the stage
h of the planning horizon. It is important to note that the reward of agent i depends on the action taken by other agents
and the global state. Moreover, this reward rih is a private information of the agent i and hence not known to other
agents. Once an action a is taken in state s at stage h, the state change to s′ with probability Ph(s′|s, a). In the MARL,
this transition probability is generally unknown. Finally, Gt is the time varying network that allows the sharing of
some information across the agents at time t = kh. We describe more details about it later.

One of the goals in MARL is to learn a policy π = {πh}Hh=1, that is the collection of H functions, where each πh(s)
is the global action taken in the global state s at stage h. In particular, the aim is to learn an optimal policy, in a
decentralized way, by interacting with the environment and observing the past information. To this end, we define the
global state-action value function for the policy π at stage h Qπ

h(s, a) = r̄h(s, a) + Eπ

[∑H
h′=h+1 r̄h′(sh′ , πh′(s′h))

]
.

Here r̄h = 1
n

∑
i∈N rih and sh = s, ah = a and sh′+1 ∼ Ph′(·|sh′ , ah′). Note that this state-action value function

represents the value of policy π when action a is taken at stage h in the state sh = s, and the policy πh(s) is followed
thereafter. Moreover, we also define the global state value function at stage h as V π

h (s) = Qπ
h(s, πh(s)). As opposed

to the state action value function the state value function represents the value of a state s when policy πh is followed
starting for state s at stage h.

For simplicity of notation, given any function V : S → [0, H], for all (s, a) ∈ S × A, we define the cost-to-go
function as PhV (s, a) =

∑
s′∈S Ph(s′|s, a)V (s′). Using above we write the Bellman equation for the policy π for

all (s, a) ∈ S × A as Qπ
h(s, a) = r̄h(s, a) + PhV

π
h+1(s, a); V

π
h (s) = Qπ

h(s, πh(a)); V
π
H+1(s) = 0. Let the optimal

state-action value be Q⋆
h(s, a) = maxπ Q

π
h(s, a), and the optimal state value function be V ⋆

h (s) = maxπ V
π
h (s).

2
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The Bellman optimality equation for all (s, a) ∈ S × A satisfies Q⋆
h(s, a) = r̄h(s, a) + PhV

⋆
h+1(s, a); V ⋆

h+1(s) =
max
a∈A

Q⋆
h(s, a); V ⋆

H+1(s) = 0. Since r̄h(·, ·) is a bounded function, for any policy π, both V π(·) and Qπ(·, ·) are

also bounded. This work assumes that the transition probability function Ph is written as the linear mixture of given
basis functions (Min et al. (2022); Vial et al. (2022); Liao et al. (2021)). In particular, we make the following standard
assumption about the transition probability function.

Assumption 1 (Transition probability approximation). Suppose the feature mapping ϕ : S ×A×S → Rnd is known
and pre-given. There exists a θ⋆

h ∈ Rnd with ||θ⋆
h||2 ≤

√
nd such that Ph(s′|s, a) = ⟨ϕ(s′|s, a),θ⋆

h⟩ for any triplet
(s′, a, s) ∈ S × A × S and stage h. Also, for a bounded function V : S 7→ [0, H], it holds that ||ϕV (s, a)||2 ≤ H ,
where ϕV (s, a) =

∑
s′∈S ϕ(s

′|s, a)V (s′).

Using above we have, PhV (s, a) =
∑

s′∈S ⟨ϕ(s′|s, a),θ
⋆
h⟩V (s′) = ⟨ϕV (s, a),θ⋆

h⟩. Moreover, recall the Bellman
optimality equation use the averaged reward r̄h(·, ·), however in our decentralized model this averaged reward is not
known to any agent. To this end, each agent maintains an estimate the globally averaged reward function r̄h(·, ·).
Let r̄h(·, ·;w) : S×A → R be the class of parameterized functions where w ∈ Rp for some p << |S||A|. To obtain the
estimate r̄h(·, ·;w) we seek to minimize the following minw Es,a[r̄h(s, a;w)− r̄h(s, a)]2. This optimization problem
can be equivalently characterized as (both have the same stationary points) minw

∑n
i=1 Es,a[r̄h(s, a;w) − rih(s, a)]2.

The details of this equivalence of the optimization problems is given in the Appendix G.1. This motivates the following
updates for parameters of the global reward function parameters wi by agent i ∈ N , w̃i

k,h ← wi
k,h + γk,h · [rih(·, ·)−

r̄h(·, ·;wi
k,h)] ·∇wr̄h(·, ·;wi

k,h); wi
k+1,h =

∑
j∈N lk,h(i, j)w̃

j
k,h. where lk,h(i, j) is the (i, j)-th entry of the consensus

matrix Lk,h obtained using communication network Gk,h in the stage h of the k-th episode. γk,h is the step-size
satisfying

∑
k,h γk,h = ∞ and

∑
k,h γ

2
k,h < ∞, and r̄h(·, ·;wi

k,h) is the estimate of global reward function by agent
i in the stage h of the episode k. We make following standard assumptions on {Lk,h}k,h≥0 and the features for the
reward function approximation Zhang et al. (2018); Trivedi and Hemachandra (2022, 2023).

Assumption 2 (Consensus matrix). The consensus matrices {Lt}t≥0 ⊆ Rn×n satisfies (i) Lt is row stochastic,
and E(Lt) is column stochastic. Further, there exists a constant κ ∈ (0, 1) such that for any lt(i, j) > 0, we
have lt(i, j) ≥ κ; (ii) Consensus matrix Lt respects Gt, i.e., lt(i, j) = 0, if (i, j) /∈ Et; (iii) The spectral norm of
E[L⊤

t (I − 11⊤/n)Lt] is smaller than one.

Assumption 3 (Full rank). For each agent i ∈ N , the reward function r̄(s, a) is parameterized as r̄(s, a;w) =
⟨ψ(s, a),w⟩. Here ψ(s, a) = [ψ1(s, a), . . . , ψk(s, a)] ∈ Rp are the features associated with pair (s, a). We assume that
features are uniformly bounded. Let the feature matrix Ψ ∈ R|S||A|×p have [ψm(s, a), s ∈ S, a ∈ A]⊤ as its m-th
column, then Ψ has full column rank.

Since the global reward is unknown, each agent uses the parameterized reward and maintains its estimate of Vh(·)
and Qh(·, ·). Let V i

h(·) and Qi
h(·, ·) be the estimate of these functions by agent i at stage h. So, the modi-

fied Bellman optimality equation for all (s, a) and for all agents i ∈ N is Q⋆,i
h (s, a;wi

k,h) = r̄h(s, a;wi
k,h) +

PhV
⋆,i
h+1(s, a;wi

k,h); V
⋆,i
h+1(s;wi

k,h) = maxa∈AQ
⋆,i
h (s, a;wi); V ⋆,i

H+1(s;wi
k,H+1) = 0. We later show that as the

number of episodes increases the reward function parameters converge, i.e., as k →∞, wi
k,h → w⋆ a.s. for all i ∈ N

and for all h ∈ [H]. Hence, r̄h(s, a;wi
k,h)→ r̄h(s, a;w⋆), Q⋆,i

h (s, a;wi
k,h)→ Q⋆,i

h (s, a) and V ⋆,i
h (s;wi

k,h)→ V ⋆,i
h (s)

as r̄h(s, a;wi
k,h), Q

⋆,i
h (s, a;wi

k,h) and V ⋆,i
h (s;wi

k,h) are continuous functions of wi, where Q⋆,i
h (s, a) and V ⋆,i

h (s) are
defined as Q⋆,i(s, a) = r̄(s, a;w⋆) + PV ⋆,i(s, a); V ⋆,i(s) = maxa∈AQ

⋆,i(s, a).

At each episode k, with the initial state sk,1 agents choose a policy πk. Moreover, in each stage h ∈ [H] of the episode
k, for the observed state sk,h, agents take a action according to the policy πk, i.e., ak,h = πk,h(sk,h). Further, they also
observe a next state sk,h+1 ∼ Ph(·|sk,h, ak,h). The expected regret in the k-th episode is Rk = 1

n

∑
i∈N{V

⋆,i
1 (sk1) −

V i
1 (sk1)}. Hence our objective is to design an algorithm with the sub-linear regret. The total expected regret in K

episodes is defined as RK =
∑K

k=1

(
1
n

∑
i∈N{V

⋆,i
1 (sk1)− V i

1 (sk1)}
)

. Note that we are using V ⋆,i
1 (sk1) instead of

V ⋆
1 (sk1). This is because wi

k,h → w⋆ and hence V ⋆,i
1 (sk1) = V ⋆

1 (sk1) for all i ∈ N . Such an independence of agents is
desirable and is a sign of good decentralised algorithms.

2.2 LDP for MARL

In this Section, we introduce the notion of the multi-agent local differential privacy (MA-LDP). This definition is
inspired by the single agent DP introduce in Dwork et al. (2006) and LDP introduced in Kasiviswanathan et al.

3
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(2011); Duchi et al. (2013). Throughout, we use the following notations. Let Dh = (D1
h, D

2
h, . . . , D

n
h) and D′

h =

(D1′

h , D
2′

h , . . . , D
n′

h ) are the different datasets collected by the server at stage h. Here for each agent i ∈ N , Di
h

and Di′

h differs at exactly one component. Let D1:h−1 be the information collected from stage 1 to stage h, i.e.,
D1:h−1 = (D1,D2, . . . ,Dh−1).

In online RL, each episode k ∈ [K] is viewed as the trajectory associated with a specific user. Thus, there are K
users and n agents. Note that in MA-LDP the agent is different from the user. So, for MA-LDP we guarantee that for
any user the information of any agent i ∈ N send to the server is privatized. Therefore, the server is agnostic to the
sensitive data.
Definition 1 (MA-LDP). For any ϵ ≥ 0, and δ ≥ 0, a randomized mechanismM preserves (ϵ, δ) MA-LDP if for any
two users u and u′ and their corresponding data Du = (D1

u, D
2
u, · · ·Dn

u) ∈ U and Du′ = (D1
u′ , D2

u′ , . . . , Dn
u′) ∈ U ,

it satisfies P(M(Du) ∈ U) ≤ eϵP(M(Du′) ∈ U) + δ, U ∈ U . Here for each agent i ∈ N , the Di
u and Di

u′ differs at
exactly one component.

3 MA-LDP algorithm

In this Section, we introduce the multi-agent locally differential private (MA-LDP) algorithm that achieves the sub-
linear regret. Our MA-LDP algorithm is inspired from the UCRL-VTR algorithm of Jia et al. (2020) and also use
some structure of UCRL-VTR-LDP algorithm for the single agent RL in Liao et al. (2021). Let K be the number of
episodes, and each episode consists of a fixed planning horizon H . Initially, for each agent i ∈ N , the estimate of
the global state value function V i and the global state-action value function Qi is taken as 0 at the H + 1-th stage.
At every stage h, the optimistic estimator of the state action value function for each agent i ∈ N is obtained via the
backward induction algorithm.

For every stage h ∈ [H] and agent i ∈ N , we initially receive Λi
1,h = Σi

1,h = λI and θ̂
i

1,h = 0nd information from the
server for the local user k = 1. For the local user k and the received information Λi

k,h, u
i
k,h, each agent i ∈ N uses the

backward induction algorithm along with an additional UCB bonus term to get the optimistic estimator of the optimal
state-action value function. The update is Qi

k,h(·, ·)← min{H +1− h, βk,h||Σi−1/2

k,h ϕV i
k,h+1

(·, ·)||2 + r̄h(·, ·;wi
k,h) +

⟨θ̂
i

k,h, ϕV i
k,h+1

(·, ·)⟩} here βk,h is identified for each noise mechanism separately. We use βG
k,h, β

L
k,h, β

BU
k,h , β

BL
k,h for

each of the noise mechanisms respectively. These are identified in the next section.

In episode k, each agent i ∈ N realizes the initial global state sk,1 and then for all stages h ∈ [H] it takes action using
the current optimistic estimator of the global state-action value Qi

k,h. In particular, the action taken by agent i ∈ N is
according to the maxmin criteria that captures its best action against the worst possible action by other agents (lines
11-17). Moreover, each agent maintains an intermediate reward function parameters for each stage h ∈ [H]. This
intermediate reward function parameter is used to compute the reward function parameters for the next episode.

Once the action is taken, a new state is realized according to the unknown distribution Ph(·|sh, ah) (line 21). To
get the estimate of the true transition probability parameters each agent requires to send some information to the
server. In MA-LDP algorithm data that is shared with the server from each agent is obtained via the ridge regression
based minimization of the transition probability parameters. Thus, the server requires the true information ∆Λ̃i

k,h =

ϕV i
k,h+1

(sk,h, ak,h)ϕV i
k,h+1

(sk,h, ak,h)⊤ and ∆ũik,h = ϕV i
k,h+1

(sk,h, ak,h)V
i
k,h+1(sk,h+1) for each agent i ∈ N and

and stage h in episode k. However, to preserve the privacy, we privatize the above true information using different
noise adding mechanisms. In particular, to the true information ∆Λ̃i

k,h we add a matrix Wi
k,h, where each entry of the

matrix Wi
k,h is drawn according to a distribution corresponding the noise-adding mechanism used. Moreover, to the

true information ∆ũik,h, we add ξik,h. Again each entry of ξik,h is drawn from different distributions corresponding
to different noise adding mechanisms. Let ∆Λi

k,h and ∆uik,h be the anonymized information that is shared to the
server (lines 26-32), i.e., ∆Λi

k,h ← ∆Λ̃i
k,h + Wi

k,h; ∆uik,h ← ∆ũik,h + ξik,h Server on the other hand collects
this information and use it to updates Σi

k,h and uik,h and hence gives the next estimate of the transition probability
parameters. However, merely adding the noise might not preserve the PSD property, so we shift this matrix by adding
an ηI to guarantee the PSD property. Finally, each agent sends Λi

k,h and uik,h to the k+1-th user. Apart from executing
a policy that uses an optimistic estimator, each agent i ∈ N also updates the Σk,h and uk,h. These updates are used

to estimate the true model parameters θ̂
i

k+1,h. They are inspired from the minimizer to a regularized linear regression
problem similar to Zhou et al. (2021). Lastly, to ensure the privacy of the reward function, the parameters wi of the
reward functions are updated according to the consensus matrix. It is important to note that we use the stochastic

4
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approximation based rule to update the reward function parameters wi. We want to emphasize that our algorithm uses
the most recent reward function parameters. These parameters are updated in each episode, and stage of the episode
via the consensus matrix in line 34 of the MA-LDP algorithm. The convergence of the reward function parameters
ensures the convergence of state-action value function and these are used in regret analysis of MA-LDP algorithm.

Algorithm 1 MA-Gaussian/Laplace-LDP
1: Require: Privacy parameters ϵ, δ; failure probability α; parameter η, wi

0,0 = 0 for all i ∈ N
2: Set σ = 4H3

√
2 log(2.5H/δ)/ϵ for Gaussian; Set b = 4H3

√
nd/ϵ for Laplace

3: for user k = 1, . . . ,K do
4: for i = 1, 2, . . . , n do
5: For local user k:
6: Receive {Σi

k,1, . . . , Σi
k,H , θ̂

i

k,1, . . . , θ̂
i

k,H}
7: end for
8: for i = 1, . . . , n do
9: for h = H, . . . , 1 do

10: Qi
k,h(·, ·)←min {H + 1− h, r̄h(·, ·;wi

k,h) + ⟨θ̂
i

k,h, ϕV i
k,h+1

(·, ·)⟩ + βk,h||Σi−1/2

k,h ϕV i
k,h+1

(·, ·)||2}
11: V i

k,h ← maxai∈Ai Qi
k,h(·, ai, a

−i
k,h)

12: end for
13: end for
14: Receive the initial state sk,1
15: for h = 1, . . . ,H do
16: for i = 1, . . . , n do
17: Take action aik,h ← argmaxa∈Ai mina−i∈A−i Qi

k,h(sk,h, a, a
−i)

18: Set w̃i
k,h ← wi

k,h + γk,h · [rih(·, ·)− r̄h(·, ·;wi
k,h)] · ∇wr̄(·, ·;wi

k,h)
19: end for
20: Set ak,h = (a1k,h, a

2
k,h, . . . , a

n
k,h)

21: Observe the next state sk,h+1

22: for i = 1, . . . , n do
23: ∆Λ̃i

k,h = ϕV i
k,h+1

(sk,h, ak,h)ϕV i
k,h+1

(sk,h, ak,h)⊤

24: ∆ũik,h = ϕV i
k,h+1

(sk,h, ak,h)V i
k,h+1(sk,h+1)

25: Set ∆Λi
k,h ← ∆Λ̃i

k,h + Wi
k,h

26: Set ∆uik,h ← ∆ũik,h + ξik,h
27: end for
28: end for
29: for i = 1, . . . , n do
30: Set Di

k = {∆Λi
k,1, . . . ,∆Λi

k,H ,∆u
i
k,1, . . . ,∆u

i
k,H}

31: end for
32: Send Dk = (D1

k, D
2
k, . . . , D

n
k ) to the server

33: For the server:
34: for h = 1, . . . ,H do
35: for i = 1, . . . , n do
36: Λi

k+1,h ← Λi
k,h +∆Λi

k,h

37: uik+1,h ← uik,h +∆uik,h
38: Σi

k+1,h ← Λi
k+1,h + ηI

39: θ̂
i

k+1,h ← (Σi
k+1,h)

−1uik+1,h

40: end for
41: end for
42: Send {Σi

k+1,1, . . . ,Σ
i
k+1,H , θ̂

i

k+1,1, . . . , θ̂
i

k+1,H} to the user k + 1

43: Update wi
k+1,h =

∑
j∈N lk,h(i, j)w̃

j
k,h, ∀ h ∈ [H]

44: end for

5
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4 Preliminary Results

In this Section, we state the results and the definition that are useful in regret analysis and are common for all the noise
adding mechanisms. To this end, we first define the notion of privacy loss.

Definition 2 (Privacy loss Dwork et al. (2006)). For any neighboring datasets d, d′, a mechanismM, auxiliary input
aux, and an outcome o ∈ R, the privacy loss at outcome o is defined as c(o;M, aux, d, d′) := log P(M(aux,d)=o)

P(M(aux,d′)=o) .

The privacy loss defined above represents the loss incurred by the outcome o, when the data d is replaced by d′. Note
that this loss might be positive or negative. The (ϵ, δ) DP ensures that for neighbouring data d, d′ the absolute value
of the above privacy loss is bounded by ϵ with probability at least 1 − δ. When δ = 0 we get (ϵ, 0) DP, that is, the
absolute privacy loss is at most ϵ a.s. The (0, δ) DP implies that the absolute privacy loss is 0 with confidence 1− δ.

In out decentralized multi-agent LDP setting, the proof of the regret bounds for each of the noise adding mechanism
relies on the asymptotic convergence of reward function parameters. In particular, we show that the reward function
parameters converge independent of agent as k (number of episodes) goes to infinity. To this end, let d(s) be the
stationary distribution of the Markov chain {st}t≥0 under policy π, and π(s, a) be the probability of taking action a in
state s. Moreover, let Ds,a = diag[d(s)π(s, a)] be the diagonal matrix with d(s)π(s, a) as diagonal entries.

Lemma 1. Under assumptions 2 and 3, for the sequence {wi
k,h}, we have limk wi

k,h = w⋆ a.s. for each agent i ∈ N
and for all h ∈ [H], where w⋆ is unique solution to Ψ⊤Ds,a(Ψw⋆ − r̄) = 0.

We would like to emphasize that this convergence is specifically needed for the decentralized multi-agent setting, and
hence novel to our work. The proof is deferred to the Appendix A and it follows on the same lines as in Trivedi and
Hemachandra (2023, 2022); Zhang et al. (2018) that uses stochastic approximations methods of Borkar (2022). Next,
we show that in our MA-LDP algorithm each agent uses an optimistic estimator of the state-action value function in
each episode. To this end, we have the following lemma common to all the noise adding mechanisms except a term
βk,h (see line 10 of the MA-LDP algorithm) that is separately identified in the Appendix C. The proof is via induction
over h, see Appendix B.

Lemma 2. Let Qi
k,h and V i

k,h be the estimate of the global state-action value and global state value functions respec-
tively by agent i ∈ N . Then, for any pairs (s, a, k, h) ∈ S × A × [K] × [H], we have Qi⋆

h (s, a) ≤ Qi
k,h(s, a) and

V ⋆,i
h (s) ≤ V i

k,h(s).

In our regret analysis we also require the following bound on the estimated model parameters.

Lemma 3. If η = 1, then for any fixed policy π and all pairs (s, a, h, k) ∈ S × A × [H] × [K], with probability at

least 1− α/2 for all i ∈ N , we have ||(Σi
k,h)

1/2(θ̂
i

k,h − θ⋆
h)|| ≤ βk.

The proof of this Lemma uses a decomposition of ||(Σi
k,h)

1/2(θ̂
i

k,h − θ⋆
h)|| in three different terms, we call them

q1,q2, and q3. We give this decomposition in Appendix C. Each of these terms are bounded differently for every
noise mechanism that helps in identifying the respective βk.

5 Gaussian and Laplace noise adding mechanisms (unbounded support)

In this Section, we consider two most popular noise adding mechanisms, Gaussian and Laplace. To our knowledge,
the multi-agent version of these are not studied so far. We first show that our MA-LDP algorithm preserves (ϵ, δ)
and (ϵ, 0) LDP for Gaussian and Laplace mechanisms respectively. We also show that MA-LDP algorithm for these
mechanisms achieves the sub-linear regret.

5.1 Gaussian Noise Adding Mechanism

For the Gaussian mechanism, we add Wi
k,h to Λi

k,h in line (21) of MA-LDP algorithm. Recall, Wi
k,h is a symmetric

matrix, so for l ≤ m, each entry (l,m) of Wi
k,h is sampled from the Gaussian distribution N (0, σ2) distribution.

Moreover, to uik,h we add ξik,h sampled from N (0nd, σ
2Ind×nd) distribution.

Theorem 1. If we choose the parameter σ of the Gaussian distribution N (0, σ2) such that σ =

4H3
√
2 log(2.5H/δ)/ϵ, then, the Gaussian mechanismMG will satisfy (ϵ, δ) MA-LDP property.
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The proof of this Theorem is referred to Appendix D and D.1. and use Theorem A.2 of Liao et al. (2021) (for details see
Appendix G.2). Next, we show that the above mentioned Gaussian mechanism with privacy parameters ϵ, δ achieves
a sub-linear regret.

Theorem 2. Let α ∈ (0, 1), η = 1, privacy parameter ϵ > 0, δ > 0, and βG
k,h = cg(nd)

3/4(H − h +

1)3/2k1/4 log(ndT/α)((log(H − h + 1)/δ))1/4
√
1/ϵ with cg being an absolute constant. Consider the Gaus-

sian noise mechanism with parameter σ as in Theorem 1. Then, for any user k, with probability at least
1 − α, the total regret of MA-LDP algorithm in the first T = KH steps with BL noise mechanism is at most
Õ(n5/4d5/4H7/4T 3/4 log(ndT/α)(log(H/δ))1/4

√
1/ϵ).

Proof. (Sketch Only). Here we provide the outline of the proof. The proof involve four major steps: 1) to show that
the model parameters obtained from the MA-LDP algorithm converges to the true model parameters θ⋆ within the
confidence radius βg

k (Lemma 3 in previous Section). 2) Using induction argument to show that in each step MA-
LDP algorithm uses an optimistic estimator of the state-action value function (Lemma 2 in the previous Section). 3)
The convergence of the reward function parameters that is shown in the previous subsection in Lemma 1. Finally, 4)
bounding the regret via concentration inequalities. The details of this step are given in Appendix E.1.

5.2 Laplace Noise Adding Mechanism

Unlike Gaussian mechanism for the Laplace noise adding mechanisms, we add Wi
k,h to Λi

k,h in line (21) of the MA-
LDP algorithm. Recall, Wi

k,h is a symmetric matrix, so for l ≤ m, each entry (l,m) of Wi
k,h is sampled from the

Laplace distribution L(b) distribution. Moreover, to each entry of uik,h we add ξik,h sampled from L(b; ) distribution.

Theorem 3. If we choose the parameter b of the Laplace distribution L(b) such that b = 4H3
√
nd

ϵ , then, the Laplace
noise adding mechanismML will satisfy (ϵ, 0) MA-LDP property.

The proof of this theorem is deferred to Appendix D and D.2. Next, we provide the upper bound on the regret incurred
by MA-LDP algorithm with Laplace mechanism.

Theorem 4. Let α ∈ (0, 1), η = 1, privacy parameter ϵ > 0, and βL
k,h = cl(nd)

3/4(H − h +

1)3/2k1/4 log(ndT/α)
√

1/ϵ with cl being an absolute constant. Consider the Laplace noise mechanism with pa-
rameter b as in Theorem 3. Then, for any user k, with probability at least 1−α, the total regret of MA-LDP algorithm
in the first T = KH steps with Laplace noise mechanism is at most Õ(n5/4d5/4H7/4T 3/4 log(ndT/α)

√
1/ϵ).

6 Uniform and bounded Laplace noise adding mechanisms

In this Section, we consider the noise adding mechanism with the bounded support. The motivation comes from the
fact that noise mechanisms with unbounded support allows all the noise values to attain the LDP with given privacy
parameters ϵ, δ; some of these noise values can be arbitrarily large. So, the central question is: does restricting the
noise values to a bounded support change the privacy property or the regret or both? If so, how? If it doesn’t affect the
privacy property, then is it that adding a bounded noise attains the same regret with the same privacy parameters. In
this later case, it means that we need not inject huge noises to the system. In the this section, we show that this is indeed
possible, and for a certain relation between the distribution parameters and the support of the Laplace mechanism, our
MA-LDP algorithm attains the same regret up to the constants; this is one of our main result. Moreover, we compare
these regrets with the most natural choice of the uniform noise mechanism. We show that the privacy guarantees of
the uniform and Laplace mechanisms with bounded support are two extremes, (0, δ) and (ϵ, 0) LDP respectively.

6.1 Uniform Noise Adding Mechanism

The uniform (U) mechanism with MA-LDP algorithm works as follows; for a given a > 0 we denote by U [−a, a] the
uniform distribution over the interval [−a, a]. For the uniform mechanism, we add Wi

k,h to Λi
k,h in line (21) of the

MA-LDP algorithm. Recall, Wi
k,h is a symmetric matrix, so for l ≤ m, each entry (l,m) of Wi

k,h is sampled from the
uniform distribution U [−a, a] distribution. Moreover, to uik,h we add ξik,h whose each entry is sampled from U [−a, a]
distribution.

Theorem 5. If we choose the parameter a of the uniform distribution U [−a, a] such that a = 4H3
√
log(2H/δ), then

MA-LDP algorithm with mechanismMU as preserves (0, δ) LDP property.
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The proof of this theorem is deferred to the Appendix D adn D.3 The regret of MA-LDP algorithm with BU mechanism
is given in the following theorem. The proof is given in Appendix E and E.3
Theorem 6. Let α ∈ (0, 1), η = 1, privacy parameter δ > 0, and βU

k,h = cu(nd)
3/4(H − h +

1)3/2k1/4 log(ndT/α)(log(H − h+1/δ))1/4, with cu being an absolute constant. Consider the uniform noise mech-
anism with parameter a as in Theorem 5. Then, for any user k, with probability at least 1 − α, the total regret
of MA-LDP algorithm in the first T = KH steps with uniform noise mechanism is at most Õ(n5/4d5/4H7/4 T 3/4

log(ndT/α)(log(H/δ))1/4).

6.2 Bounded Laplace Noise Adding Mechanism

In this Section, we design another noise adding mechanism with bounded support. We call it bounded Laplace (BL)
mechanism. The BL mechanism is obtained by restricting the support of the Laplace distribution to [−B,B] for a
given B > 0. The probability density of the bounded Laplace distribution, BL(x; b), with parameter b is fBL(x; b) =

(2b
(
1− exp(−B

b

)
)−1 exp

(
−|x|
b

)
, ∀ x ∈ [−B,B], and 0 otherwise. The variance of this distribution is ζ = 2b2(1−

exp(−B
b ))−1−κ where κ = ((B + b)2 + b2)× exp(−B

b )× (1− exp(−B
b ))−1. For the BL mechanism, we add Wi

k,h

to Λi
k,h in line (21) of the MA-LDP algorithm. Recall, Wi

k,h is a symmetric matrix, so for l ≤ m, each entry (l,m)

of Wi
k,h is sampled from BL(b;B) distribution. Moreover, to uik,h we add ξik,h whose each entry is sampled from

BL(b, B) distribution.

Theorem 7. If we choose the parameter b of the bounded Laplace distribution BL(b;B) such that b = 4H3
√
nd

ϵ , then,
the BL mechanismMBL will satisfy (ϵ, 0) MA-LDP property.

The proof of the above theorem is given to the Appendix D and D.4 Thus, the BL mechanism preserves (ϵ, 0) LDP
similar to the unbounded case. The following theorem bounds the regret of MA-LDP algorithm with BL mechanism.
The proof of is deferred to Appendix E and E.4.
Theorem 8. Let α ∈ (0, 1), η = 1, privacy parameter ϵ > 0, and βBL

k,h = cbl(nd)
3/4(H −h+1)3/2k1/4 log(ndT/α)√

1/ϵ, with cbl being an absolute constant. Consider the BL noise mechanism with parameter b as in Theorem 7.
Then, for any user k, with probability at least 1− α, the total regret of MA-LDP algorithm in the first T = KH steps
with BL noise mechanism is at most Õ(n5/4d5/4ζ1/4H1/4T 3/4 log(ndT/α))

Mechanism Type Privacy Order of Regret
Gaussian Unbounded (ϵ, δ) Õ((nd)5/4H7/4T 3/4 log(ndT/α)(log(H/δ))1/4

√
1/ϵ)

Laplace Unbounded (ϵ, 0) Õ((nd)5/4H7/4T 3/4 log(ndT/α)
√
1/ϵ)

Uniform Bounded (0, δ) Õ((nd)5/4H7/4T 3/4 log(ndT/α)(log(H/δ))1/4

Bounded Laplace Bounded (ϵ, 0) Õ((nd)5/4ζ1/4H1/4T 3/4 log(ndT/α))
Table 1: Privacy guarantees and the order of regret for different noise adding mechanisms.

7 Comparison of regret for different noise mechanisms

First, from the regret expressions of Gaussian and Laplace mechanism in Theorems 2 and 4 it follows that
RK(ϵ1)/RK(ϵ2) =

√
ϵ2/ϵ1. Thus, we have:

Theorem 9. If privacy parameters ϵ1 and ϵ2 are such that ϵ1 > ϵ2. Then for both the Gaussian and Laplace mecha-
nisms we have that RK(ϵ1) < RK(ϵ2).

Moreover, we have the following Theorem for the cumulative regret between the Gaussian and Laplace mechanism
for the same privacy parameter ϵ.
Theorem 10. Let RG

K(ϵ), RL
K(ϵ) be the cumulative regret of the Gaussian and Laplace mechanism respectively with

privacy parameters ϵ, δ, and H > 2. Then, RG
K(ϵ) > RL

K(ϵ).

The proof follows from the fact that the Gaussian noise mechanism gives the approximate LDP, i.e., δ > 0, so
log(H/δ) > 1 for all δ ∈ (0, 1) and H > 2. Therefore, RG

K(ϵ)/RL
K(ϵ) = log(H/δ) > 1.

Apart from the above, recall ζ, the variance of the bounded Laplace distribution and is a function of B and b. So,
depending on whether B has the same order as that of b or not, we get different expressions of ζ, thus different
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order of the regret (Theorem 8). So, we compare the regret of the BL mechanism with the Laplace mechanism when
B = O(bγ) for different possible values of γ. For the case of γ > 1, we have that RBL

K /RL
K =

(
H3/ϵ

) γ
2 . If

B RBL
K

O(bγ), 0 ≤ γ ≤ 1 Õ((nd)5/4H7/4T 3/4 log(ndT/α))
√
1/ϵ

O(bγ), γ > 1 Õ((nd)5/4H7/4H3γ/2T 3/4 log(ndT/α))
√
1/ϵγ+1

Table 2: Regret bound for the Bounded Laplace (BL) mechanism. MA-LDP algorithm with BL mechanism offers the
same order of regret as that of the Laplace mechanism when B = O(bγ) for γ ∈ [0, 1].

(
H3/ϵ

) γ
2 > 1 and γ > 1, then the regret of MA-LDP with BL mechanism is more than that of Laplace mechanism.

So, for the given problem instance, the regret of the BL mechanism will be the same as that of the Laplace mechanism
if γ ∈ [0, 1]. Further, if γ > 1 and

(
H3/ϵ

) γ
2 < 1, then BL will have lower regret than that of Laplace. Though the BL

mechanism injects noise from a bounded support, the regret of MA-LDP algorithm with BL mechanism is either on
par or lower with that of the Laplace mechanism in most of the cases, i.e., when B = O(bγ) with γ ∈ [0, 1]. In a very
restrictive setting where γ > 1 and

(
H3/ϵ

) γ
2 > 1, the regret from BL mechanism is more than that of the Laplace

mechanism.
Theorem 11. If the end point B of the support of bounded Laplace, BL, distribution (with parameter b) is of order
O(bγ), where γ ≤ 1, then the order of the regret of the MA-LDP algorithm with BL mechanism is the same as that of
the Laplace mechanism.

8 Computational Experiments

In this section, we give computational results to validate the usefulness of our MA-LDP algorithm. To this end, we
consider a network with q + 2 nodes shown in Figure 1 below, q ≥ 1, i.e., {sin, 1, 2, . . . , q, g}, where sin, g are the
initial and goal nodes respectively. The number of global states are (q + 2)n.

Figure 1: (Left) The MDP problem instance that we consider. (Right) Cumulative regret with number of episodes for
the Laplace and Gaussian mechanism.

In each state the actions available to each agent are Ai = {−1, 1}d−1, for given d ≥ 2. So, the total number of
actions is 2n(d−1). Each agent i ∈ N receives a reward of 5/1000 units for taking any action in sin, a reward of
1000 for action in g, and the reward of 0 unit for action in other nodes. The collective objective of the agents is to
reach the goal node in a decentralized way while maximizing the overall reward. To address humongous state, action
space, we parameterize the transition probability as Pθ(s′|s, a) = ⟨ϕ(s′|s, a),θ(s)⟩ for each (s′, a, s) ∈ S × A × S.
The feature design for this transition probability is novel to our work and is given below. Let S(s) is the set all
feasible states from state s. We define the global features as: ϕ(s′|s, a) = (ϕ(s′

1 |s1, a1), . . . , ϕ(s′n |sn, an)), if s ̸=
g, s′ ∈ S(s); 0nd, if s ̸= g, s′ /∈ S(s), 0nd, if s = g, s′ ̸= g, and (0nd−1, α(s)), if s = g, s′ = g. We identify
α(s) as α(s) = |S(s)|

n

{
x0

2 + xq+1 +
∑q

j=1
xj

3

}
. Here x0, x1, . . . , xq, xq+1 are the number of agents at the nodes

sin, 1, . . . , q, g respectively in the state s. The local features ϕ(s′
i |si, ai) are defined in Appendix F. Moreover, the
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transition probability parameters for any state s are taken as θ(s) =
(
θ1, 1

α(s) ,θ
2, 1

α(s) . . . ,θ
n, 1

α(s)

)
where θi ∈{

− ∆
n(d−1) ,

∆
n(d−1)

}d−1

, and ∆ < δ. More details of the experiments and the MDP involved are given in Appendix
F.1. The result below shows that the above choice of feature design ϕ(s′|s, a) and model parameters θ(s) a yields a
valid MDP.
Lemma 4. For every θ(s), features ϕ(s′|s, a) satisfies the following: (a)

∑
s′⟨ϕ(s′|s, a),θ(s)⟩ = 1, ∀ s, a; (b) ⟨ϕ(s′ =

g|s = g, a),θ(s)⟩ = 1, ∀ a; (c) ⟨ϕ(s′ ̸= g|s = g, a),θ(s)⟩ = 0, ∀ a.

The proof of this Lemma is deferred to the Appendix F.1. We implement our MA-LDP algorithm with various
privacy parameters on the Gaussian and Laplace mechanisms with unbounded support. Figure 1 shows the cumulative
regret with n = 2, number of nodes in the network as 3, planning horizon H = 5. All the values are averaged
over 10 runs; each run has K = 8500 episodes. Here are some observations from the experiments. Firstly, for a
given mechanism, the cumulative regret with lower privacy losses are higher than the higher privacy losses. That is
RK(ϵL = 0.1) > RK(ϵL = 0.2); and RK(ϵG = 0.05) > RK(ϵG = 0.2). This illustrates the results of Theorems 9
and 10 that compare cumulative regrets of various privacy losses.

9 Related Work

The idea of DP is first introduced in Dwork et al. (2006). DP is motivated by the designing the algorithms that preserve
the user’s sensitive data. It indicates that changing or removing a data point has little influence on any observable
output. However, DP has risk of data leakage, and is vulnerable to membership influence attacks Shokri et al. (2017).
Hence a stronger notion ‘Locally DP’ is introduced Kasiviswanathan et al. (2011); Duchi et al. (2013). Under LDP,
users send privatized data to the server and each individual user maintains its own sensitive data. The server, on the
other hand, is totally agnostic about the sensitive data. The LDP problem in the multi-agent distributed optimization
is studied in Dobbe et al. (2018). The amplification of the privacy in machine learning is studied in Cyffers and Bellet
(2022). The optimal noise adding mechanism are introduced in Geng and Viswanath (2015). Apart from the learning
and decision making the notion of DP is also common in other fields of science including Hu and Fang (2022); Duchi
et al. (2013). In particular, Hu and Fang (2022) study the K armed bandit problem with distributionally trust model
of the DP that guarantees the privacy without trustworthy server. Recently, Jia et al. (2020); Jin et al. (2020) propose
single agent RL scheme with linear function approximation of the transition probability function. Recently, Liao
et al. (2021) use the UCRL-VTR algorithm of Jia et al. (2020) and incorporate the notion of DP into it. However,
these consider a single agent taking the decisions in the finite horizon models. In this work, we introduce MA-LDP
algorithm in a fully decentralized MARL framework that use different noise mechanisms and identify conditions when
bounded support mechanism attains regret that is comparable to that is offered by conventional mechanisms.

10 Discussion

In this work, we consider the notion of the LDP in the fully decentralized MARL setting. We first define LDP for
MARL and then propose a generic MA-LDP algorithm which can handle any noise adding mechanism. We show
that the MA-LDP algorithm preserves the privacy for four different noise adding mechanisms, then prove that it also
achieves the sub-linear regret. Next, we compare the noise mechanisms with bounded support with that of unbounded
support. Our key observation is that if the support of bounded noise distribution is picked appropriately, the regret
is lower than the unbounded support noise mechanism. Thus, injecting a bounded noise is often sufficient for LDP
without substantially affecting the nature of the regret. We illustrate our results on a networked MDP with many states
and actions.

The work we consider offers a rich set of further possibilities. We mention some of these here. Firstly, our regret
bound is super-linear in the number of agents and feature dimension; towards this, a nice update rule for the optimistic
estimators of the state-action value function can be attempted. Secondly, to our knowledge, the regret bound we show
are of its first kind, so an attempt to get a better sub-linear regret bound is possible. Moreover, a matching lower bound
can also be tried. A careful study of bounded support noise mechanism that leads to the lower regret bounds with low
noise values would be interesting.
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A Proofs of convergence of reward function parameters (Lemma 1)

Proof. Let t = kh, therefore, as k →∞ we have t→∞. The proof of this result is on the same lines to Zhang et al.
(2018); Trivedi and Hemachandra (2023, 2022). We briefly give the proof details here.

To prove the convergence of the reward function parameters, we use the following Proposition to give bounds on wi
t

for all i ∈ N . For proof, we refer to Zhang et al. (2018).

Proposition 1. Under assumptions 2, and 3 the sequence {wi
t} satisfy supt ||wi

t|| <∞ a.s., for all i ∈ N .

Let Ft = σ(rτ ,wτ , sτ , aτ , Lτ−1, τ ≤ t) be the filtration which is an increasing σ-algebra over time t. Define the
following for notation convenience. Let rt = [r1t , . . . , r

n
t ]

⊤ ∈ Rn , and wt = [(w1
t )

⊤, . . . , (wn
t )

⊤]⊤ ∈ Rnp. Moreover,
let A ⊗ B represent the Kronecker product of any two matrices A and B. Let yt = [(y1t )

⊤, . . . , (ynt )
⊤]⊤, where

yit+1 = [(rit+1 − ψ⊤
t wi

t)ψ
⊤
t ]

⊤. Recall, ψt = ψ(st, at). Let I be the identity matrix of the dimension p × p. Then
update of wt can be written as

wt+1 = (Lt ⊗ I)(wt + γt · yt+1). (1)

Let 1 = (1, . . . , 1) represents the vector of all 1’s. We define the operator ⟨w⟩ = 1
n (1

⊤ ⊗ I)w = 1
n

∑
i∈N wi. This

⟨w⟩ ∈ Rp represents the average of the vectors in {w1,w2, . . . ,wn}. Moreover, let J = ( 1n11
⊤) ⊗ I ∈ Rnp×np is

the projection operator that projects a vector into the consensus subspace {1 ⊗ u : u ∈ Rp}. Thus Jw = 1 ⊗ ⟨w⟩.
Now define the disagreement vector w⊥ = J⊥w = w− 1⊗ ⟨w⟩, where J⊥ = I −J . Here I is np× np dimensional
identity matrix. The iteration wt can be decomposed as the sum of a vector in disagreement space and a vector in
consensus space, i.e., wt = w⊥,t + 1⊗ ⟨wt⟩. The proof of convergence consists of two steps.

Step 01: To show limt w⊥,t = 0 a.s. From Proposition 1 we have P[supt||wt|| < ∞] = 1, i.e.,
P[∪K1∈Z+ {supt||wt|| < K1}] = 1. It suffices to show that limt w⊥,t1{supt||wt||<K1} = 0 for any K1 ∈ Z+.
Lemma 5.5 in Zhang et al. (2018) proves the boundedness of E

[
||β−1

t w⊥,t||2
]

over the set {supt||wt|| ≤ K1}, for
any K1 > 0. We state the lemma here.

Proposition 2 (Lemma 5.5 in Zhang et al. (2018)). Under assumptions 2, and 3 for any K1 > 0, we have

supt E[||β−1
t w⊥,t||21{supt||wt||≤K}] <∞.

From Proposition 2 we obtain that for any K1 > 0, ∃ K2 < ∞ such that for any t ≥ 0, E[||w⊥,t||2] < K2γ
2
t over

the set {supt ||wt|| < K1}. Since
∑

t γ
2
t <∞, by Fubini’s theorem we have

∑
t E(||w⊥,t||2 1{supt ||wt||<K1}) <∞.

Thus,
∑

t ||w⊥,t||21{supt ||wt||<K1} <∞ a.s. Therefore, limt w⊥,t 1{supt||wt||<K1} = 0 a.s. Since {supt||wt|| <∞}
with probability 1, thus limt w⊥,t = 0 a.s. This ends the proof of Step 01.

Step 02: To show the convergence of the consensus vector 1⊗ ⟨wt⟩, first note that the iteration of ⟨wt⟩ (Equation (1))
can be written as

⟨wt+1⟩ =
1

N
(1⊤ ⊗ I)(Lt ⊗ I)(1⊗ ⟨wt⟩+ w⊥,t + γt yt+1)

= ⟨wt⟩+ γt⟨(Lt ⊗ I)(yt+1 + γ−1
t w⊥,t)⟩

= ⟨wt⟩+ γt E(⟨yt+1⟩|Ft) + βtξt+1, (2)

where

ξt+1 = ⟨(Lt ⊗ I)(yt+1 + γ−1
t w⊥,t)⟩ − E(⟨yt+1⟩|Ft), and

⟨yt+1⟩ = [(r̄t+1 − ψ⊤
t ⟨wt⟩)ψ⊤

t ]
⊤.

Note that E(⟨yt+1⟩|Ft) is Lipschitz continuous in ⟨wt⟩. Moreover, ξt+1 is a martingale difference sequence and
satisfies

E[||ξt+1||2 | Ft] ≤ E[||yt+1 + γ−1
t w⊥,t||2Rt

| Ft] + ||E(⟨yt+1⟩ | Ft)||2, (3)

where Rt =
L⊤

t 11
⊤Lt⊗I
n2 has bounded spectral norm. Bounding first and second terms in RHS of Equation (3), we

have, for any K1 > 0
E(||ξt+1||2|Ft) ≤ K3(1 + ||⟨wt⟩||2),

over the set {supt ||wt|| ≤ K1} for some K3 < ∞. Thus condition (3) of assumption 4 is satisfied. The ODE
associated with the Equation (2) has the form

⟨ẇ⟩ = −Ψ⊤Ds,aΨ⟨w⟩+Ψ⊤Ds,ar̄ (4)

12
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Let the RHS of Equation (4) be h(⟨w⟩). Note that h(⟨w⟩) is Lipschitz continuous in ⟨w⟩. Also, recall that Ds,a =
diag[d(s) · π(s, a), s ∈ S, a ∈ A]. Hence the ODE given in Equation (4) has unique globally asymptotically stable
equilibrium w⋆ satisfying

Ψ⊤Ds,a(r̄ −Ψw⋆) = 0.

Moreover, from Propositions 1, and 2, the sequence {wt} is bounded almost surely, so is the sequence {⟨wt⟩}. Spe-
cializing Corollary 8.1 and Theorem 8.3 on page 114-115 in Borkar (2022) we have limt ⟨wt⟩ = w⋆ a.s. over the set
{supt ||wt|| ≤ K1} for any K1 > 0. This concludes the proof of Step 02.

The proof of the Theorem follows from Proposition 1 and results from Step 01. Thus, we have limt wi
t = w⋆ a.s. for

each i ∈ N . This implies, limk wi
kh = w⋆ a.s. for each i ∈ N and for all h ∈ [H].

B Proof of Lemma 2

Proof. The proof of this lemma is by induction over h. Consider the basic case h = H+1. By assumption we have that
Qi

k,H+1(·, ·) = 0 = Q⋆,i
H+1(·, ·), and V i

k,H+1(·) = 0 = V ⋆,i
H+1(·). Now suppose that this statement is true for all h+ 1,

so we have Qi
k,h+1(·, ·) ≥ Q⋆,i

k,h+1(·, ·), and V i
k,h+1(·) ≥ V ⋆,i

k,h+1(·). For any stage h and (s, a), if Qi
k,h(s, a) ≥ H ,

then the statement is also true for stage h, i.e., Qi
k,h(s, a) ≥ H ≥ Q⋆,i

h (s, a). However, if Qi
k,h(s, a) ≤ H , then

consider the following:

Qi
k,h(s, a)−Q

⋆,i
h (s, a)

(i)
= r̄h(s, a;wi

k,h) +
〈
θ̂
i

k,h, ϕV i
k,h+1

(s, a)
〉
+ βk||Σi−1/2

k,h ϕV i
k,h+1

(s, a)||2

− r̄h(s, a;wi
k,h)− PhV

⋆,i
h+1(s, a)

=
〈
θ̂
i

k,h, ϕV i
k,h+1

(s, a)
〉
+ βk||Σi−1/2

k,h ϕV i
k,h+1

(s, a)||2 − PhV
⋆,i
h+1(s, a)

(ii)
=
〈
θ̂
i

k,h, ϕV i
k,h+1

(s, a)
〉
+ βk||Σi−1/2

k,h ϕV i
k,h+1

(s, a)||2 − PhV
⋆,i
h+1(s, a)

−
〈
θ⋆
h, ϕV i

k,h+1
(s, a)

〉
+
〈
θ⋆
h, ϕV i

k,h+1
(s, a)

〉
= βk||Σi−1/2

k,h ϕV i
k,h+1

(s, a)||2 −
〈
θ̂
i

k,h − θ⋆
h, ϕV i

k,h+1
(s, a)

〉
− PhV

⋆,i
h+1(s, a) + PhV

i
k,h+1(s, a)

(iii)

≥ βk||Σi−1/2

k,h ϕV i
k,h+1

(s, a)||2 − ||Σi1/2

k,h (θ̂
i

k,h − θ⋆
h)||2||Σi−1/2

k,h ϕV i
k,h+1

(s, a)||2

− PhV
⋆,i
h+1(s, a) + PhV

i
k,h+1(s, a)

(iv)

≥ −PhV
⋆,i
h+1(s, a) + PhV

i
k,h+1(s, a)

(v)

≥ 0

In (i) we use the update of Qi
k,h(s, a) as in line 7 of the MA-LDP algorithm 1. In (ii) we add and subtract a inner

product term. Inequality (iii) follows from the Cauchy-Schwartz inequality. The inequality (iii) follows from Lemma
3, and (iv) is by induction assumption. Finally, the last inequality (v) uses the monotone property of Ph with respect
to the partial ordering of the function.

C Finding βk (Proof of Lemma 3)

In this Section, we give the details of βk for each of the noise adding mechanism. To this end, we first decompose
||(Σi

k,h)
1/2(θ̂

i

k,h − θ⋆
h)|| = ||(Σi

k,h)
−1/2(q1 + q2 + q3)|| into three terms. Note that this decomposition is common

to all the noise adding mechanism. However, to get the exact expression we bound each term differently for different
noise mechanisms. Consider the difference

θ̂
i

k,h − θ⋆
h

(i)
= (Σi

k,h)
−1

k−1∑
τ=1

{ϕV i
τ,h+1

(sτ,h, aτ,h)V
i
τ,h+1(sτ,h+1) + ξiτ,h} − θ⋆

h

13
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= (Σi
k,h)

−1

{
−Σi

k,hθ
⋆
h +

k−1∑
τ=1

{ϕV i
τ,h+1

V i
τ,h+1 + ξiτ,h}

}
(ii)
= (Σi

k,h)
−1

{
−(λI +

k−1∑
τ=1

ϕV i
τ,h+1

ϕ⊤V i
τ,h+1

+ Wi
h)θ

⋆
h +

k−1∑
τ=1

{ϕV i
τ,h+1

V i
τ,h+1 + ξiτ,h}

}

= (Σi
k,h)

−1

{
−λθ⋆

h −
k−1∑
τ=1

ϕV i
τ,h+1

ϕ⊤V i
τ,h+1

θ⋆
h −Wi

hθ
⋆
h +

k−1∑
τ=1

{ϕV i
τ,h+1

V i
τ,h+1 + ξiτ,h}

}
(iii)
= (Σi

k,h)
−1

{
(−λI−Wi

h)θ
⋆
h +

k−1∑
τ=1

ϕV i
τ,h+1

[
V i
τ,h+1 − PhV

i
τ,h+1

]
+

k−1∑
τ=1

ξiτ,h

}

where Wi
h =

∑k−1
τ=1 Wi

τ,h. Here (i) uses the definition of θ̂
i

k,h given in line 30 of the algorithm 1. The (ii) uses the
update definition of Σi

k,h. In (iii) we combine some terms and use the linear function approximation of the transition
probability. So, from the above equation we can write the following:

||(Σi
k,h)

1/2(θ̂
i

k,h − θ⋆
h)|| = ||(Σi

k,h)
−1/2(q1 + q2 + q3)|| (5)

where q1 = (−λI−Wi
h)θ

⋆
h; q2 =

∑k−1
τ=1 ϕV i

τ,h+1

[
V i
τ,h+1 − PhV

i
τ,h+1

]
; and q3 =

∑k−1
τ=1 ξ

i
τ,h.

To complete the proof we need to bound each q1,q2,q3. Here, we give the general framework for bounding each of
these terms, and later we will specialize them to each of thee noise adding mechanism.

Bounding q1

To bound q1, we need to give the upper and the lower bound on the eigenvalues of the symmetric matrix Wi
h. Recall,

each entry of matrix Wi
j,h is sampled from the a distribution (Gaussian, Laplace, uniform, and bounded Laplace). So,

the variance of the matrix Wi
h is (k− 1)σ2, where σ2 is the variance of the corresponding noise distribution. So, from

the known concentration results of Tao (2012), we have that

P

(∣∣∣∣∣
∣∣∣∣∣
k−1∑
τ=1

Wi
τ,h

∣∣∣∣∣
∣∣∣∣∣ ≥ σ√k − 1(

√
4nd+ 2 log(6H/α))

)
≤ α

6H
(6)

that is
P
(∣∣∣∣Wi

h

∣∣∣∣ ≥ Γ
)
≤ α

6H
(7)

where Γ = σ
√
k − 1(

√
4nd+ 2 log(6H/α)).

For the symmetric matrix Wi
h the PSD property might not be preserved, so we add a basic matrix 2ΓI to the matrix

W i
h =

∑k−1
τ=1 Wi

τ,h for each stage h ∈ [H]. Thus, the eigenvalues of the shifted matrix are bounded in the interval
[Γ, 3Γ] with probability 1− α/6. Define the following event

E1 := {∀ h ∈ [H], ∀ j ∈ [nd], Γ ≤ σj ≤ 3Γ}, (8)

where σj’s are the eigenvalues of the matrix Wi
h, and we have P(E1) ≥ 1−α/6. Let ρmax = 3Γ+λ, and ρmin = Γ+λ.

Then for the term q1, we have

||(Σi
k,h)

−1/2q1||
(i)

≤ ||(Wi
h + λI)−1/2q1||

= ||(Wi
h + λI)−1/2(−Wi

h − λI)θ⋆
h||

= ||(Wi
h + λI)1/2θ⋆

h||
(ii)

≤ √ρmax||θ⋆
h||

(iii)

≤
√
ρmaxnd

=

√
{3σ
√
k − 1(

√
4nd+ 2 log(6H/α)) + λ}nd

14
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=

√
3ndσ

√
k − 1(

√
4nd+ 2 log(6H/α)) + λnd.

Since ρmax = 3Γ+ λ = 3σ
√
k − 1(

√
4nd+2 log(6H/α)) + λ and ||θ⋆

h|| ≤
√
nd. The first inequality holds because

(Σi
k,h)

−1/2 ⪰ (Wi
h + λI)−1/2. The second inequality holds due to event E1. And the last inequality (iii) holds

because of the Assumption 1.

Bounding q2

For the term q2, we have the following

||(Σi
k,h)

−1/2q2|| = ||
k−1∑
τ=1

ϕV i
τ,h+1

[V i
τ,h+1 − PhV

i
τ,h+1]||(Σi

k,h)
−1 (9)

≤ ||
k−1∑
τ=1

ϕV i
τ,h+1

[V i
τ,h+1 − PhV

i
τ,h+1]||(Z)−1 , (10)

where Z = λI +
∑k−1

τ=1 ϕV i
τ,h+1

ϕ⊤
V i
τ,h+1

. The inequality holds because, Σi
k,h ⪰ Z = λI +

∑k−1
τ=1 ϕV i

τ,h+1
ϕ⊤
V i
τ,h+1

.

Let ηiτ,h+1 = V i
τ,h+1 − PhV

i
τ,h+1 = V i

τ,h+1 − ϕ⊤V i
τ,h+1

θ⋆
h. Moreover, let {Gt}∞t=1 be a filtration, {ϕV i

τ,t
, ηiτ,t}∞t=1 a

stochastic process so that ϕV i
τ,t

is Gt-measurable and ηiτ,t is Gt+1-measurable. With above notations, we have

|ηiτ,h| = |V i
τ,h − PhV

i
τ,h| ≤ H. (11)

The above is true because V i
τ,h ≤ H . Further, we have

E[(ηiτ,h)2|Gh] ≤ E[(V i
τ,h)

2|Gh] ≤ H2. (12)

Moreover, we define the following event

E2 =

{
∀ h ∈ [H], ||q2||Z−1 ≤ 4H

(
2

√
nd log

(
1 +

(k − 1)H2

ndλ

)
log

(
24(k − 1)2

α

)
+ log

(
24(k − 1)2

α

))}
.

(13)

From Theorem 2 of Zhou et al. (2021) we have that the probability of the above event is at least 1− α/6.

Bounding q3

The term q3 can be bounded as

||
k−1∑
τ=1

ξiτ,h||(Σi
k,h)

−1 ≤ ||
k−1∑
τ=1

ξiτ,h||(Wi
h+λI)−1 ≤

1
√
ρmin

||
k−1∑
τ=1

ξiτ,h||2 (14)

where the first inequality holds due to the fact that Σi
k,h ⪰ Wi

h + λI, and the second inequality holds due to the
definition of event E1. So, with probability 1− α/6H , we have

||
k−1∑
τ=1

ξiτ,h||2 ≤ σ
√
(k − 1)nd log

12ndH

α
. (15)

We define the event E3 as

E3 =

{
∀ h ∈ [H] : ||

k−1∑
τ=1

ξiτ,h||2 ≤ σ
√
(k − 1)nd log

12ndH

α

}
. (16)

Taking the union bound on all the stage h ∈ [H], we have

||
k−1∑
τ=1

ξiτ,h||(Σi
k,h)

−1

(i)

≤ 1
√
ρmin

||
k−1∑
τ=1

ξiτ,h||2
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(ii)

≤
σ
√
(k − 1)nd log 12ndH

α
√
ρmin

(iii)
=

σ
√

(k − 1)nd log 12ndH
α√

σ
√
k − 1(

√
4nd+ 2 log(6H/α)) + λ

(iv)

≤
√
σ(k − 1)1/4

√
nd log 12ndH

α√√
4nd+ 2 log(6H/α)

(v)

≤ (nd)1/4
√
σ(k − 1)1/4

√
log(12ndH/α). (17)

The inequality (i) follows from the relation between the l2 norm and the norm on (Σi
k,h)

−1 and hence bounded by the
1√
ρmin

. The inequality (ii) follows from definition of event E3. In (iii) we use the definition of ρmin. Inequality (iv)

follows after dropping λ ≥ 0 in the previous expression. Finally (v) follows by combining the common terms.

Combining the above bounds for q1,q2,q3 from Equations (9), (13), and (17), we have that with probability at least
1− α/2, we have for each i ∈ N and for each h ∈ [H],

||(Σi
k,h)

1/2(θ̂
i

k,h − θ⋆
h)|| ≤ βk (18)

here,
βk = c(nd)3/4

√
σk1/4 log(ndT/α) (19)

where c is an absolute constant (different for different mechanisms.)

In the next Section, we identify the βk for each noise adding mechanism.

C.1 βG
k for the Gaussian mechanism

For the (ϵ, δ) LDP for the Gaussian noise adding mechanism, the σ is taken as σ =
2H
√

2 log(2.5H/δ)∆f

ϵ . This is
obtained using the Lemma 5 given in Appendix G.2. Moreover, ∆f is the l2 sensitivity which is identified as 2H2.

Using this σ =
4H3
√

2 log(2.5H/δ)

ϵ in Equation (19), we have βG
k for the Gaussian mechanism is

βG
k = cg(nd)

3/4H3/2k1/4 log(ndT/α)(log(H/δ))1/4
√
1/ϵ. (20)

C.2 βL
k for the Laplace mechanism

The variance of the Laplace mechanism is 2b2, and for (ϵ, 0) LDP we identify b = 2H∆f
ϵ , where ∆f is the l1

sensitivity. The l1 sensitivity in MA-LDP is 2H2
√
nd. Therefore, b = 4H3

√
nd

ϵ . Substituting this in Equation (19), we
have βL

k for the Laplace mechanism as

βL
k = cl(nd)

3/4H3/2k1/4 log(ndT/α)
√
1/ϵ. (21)

C.3 βU
k for the uniform mechanism

The variance of the uniform mechanism is a2/3, and for (0, δ) LDP we identify a = 4H3
√

log
(
2H
δ

)
. Substituting

this in Equation (19), we have βL
k for the Laplace mechanism as

βU
k = cu(nd)

3/4H3/2k1/4 log(ndT/α)(log(H/δ))1/4. (22)

C.4 βBL
k for the bounded Laplace mechanism

The variance of the bounded Laplace mechanism is 2b2

1−exp(−B
b )
−κ, where κ =

((B+b)2+b2)×exp(−B
b )

1−exp(−B
b )

. Thus, for (ϵ, 0)

LDP, similar to Laplace with unbounded support, we identify b = 4H3
√
nd

ϵ . Substituting this in Equation (19), we
have βBL

k for the bounded Laplace mechanism as

βBL
k = cbl(nd)

3/4ζ1/4k1/4 log(ndT/α). (23)

16



Local Differential Privacy Preserving Mechanisms for Multi-Agent Reinforcement Learning

D Proof of privacy guarantee of noise adding mechanism

In this Section, we prove the privacy guarantees of the MA-LDP algorithm for all the noise adding mechanisms. To
this end, we first find the l1 and l2 sensitivity of the information shared to the server by each agent i ∈ N . To this
end, we first compute the l2 sensitivity coefficient for the MA-DP algorithm. Let ∆ũik,h and ∆Λ̃i

k,h be the noise-free
information of agent i ∈ N at the h-th stage of k-th episode. That is,

∆ũik,h = ϕV i
k,h+1

(sk,h, ak,h)V i
k,h+1(sk,h+1)

∆Λ̃i
k,h = ϕV i

k,h+1
(sk,h, ak,h)ϕV i

k,h+1
(sk,h, ak,h)⊤

For ∆ũik,h, the sensitivity coefficient is upper bounded as

||∆ũik,h − (∆ũik,h)
′||2 ≤ ||ϕV i

k,h+1
|| · |V i

k,h+1|+ ||ϕ′V i
k,h+1
|| · |V ′i

k,h+1| ≤ 2H2 (24)

Similarly, the sensitivity of ∆Λ̃i
k,h is upper bounded as

||ϕV iϕ⊤V i − ϕ′V iϕ′
⊤

V i ||F ≤ ||ϕV iϕ⊤V i ||F + ||ϕ′V iϕ′
⊤

V i ||F

=
√
tr[ϕV iϕ⊤V iϕV iϕ⊤V i ] +

√
tr[ϕ′V iϕ′

⊤

V iϕ′V iϕ′
⊤

V i ]

= ϕ⊤V iϕV i + ϕ′
⊤

V iϕ′V i

≤ 2H2

Thus, l2 sensitivity of both the information is 2H2. Next we find the l1 sensitivities. Recall, for any matrix A ∈ Rl×l

, we have that ||A||1 ≤
√
l||A||2. Similarly, for any vector x ∈ Rl, we have ||x||1 ≤

√
l||x||2. Using this property on

the information’s we have
||∆ũik,h − (∆ũik,h)

′||2 ≤
√
nd||∆ũik,h − (∆ũik,h)

′||1 ≤ 2
√
ndH2 (25)

Similarly, we have

||ϕV iϕ⊤V i − ϕ′V iϕ′
⊤

V i ||F ≤ ||ϕV iϕ⊤V i ||F + ||ϕ′V iϕ′
⊤

V i ||F ≤
√
nd||ϕV iϕ⊤V i ||1 +

√
nd||ϕ′V iϕ′

⊤

V i ||1 ≤ 2
√
ndH2

Thus, the l1 sensitivity of both the information is 2
√
ndH2. Let Dh = (D1

h, D
2
h, . . . , D

n
h) and D′

h =

(D′1
h , D

′2
h , . . . , D

′n
h ) are the different datasets collected by the server at stage h. For simplicity of notation, let

M = (M1,M2, . . . ,Mn) and let α = (α1,α2, . . . ,αn). Moreover, let (M,α) be a possible outcome of the algorithm.
Further, let ∆Λk,h = (∆Λ1

k,h,∆Λ2
k,h, . . . ,∆Λn

k,h) and ∆uk,h = (∆u1k,h,∆u
2
k,h, . . . ,∆u

n
k,h) be the information from

all the agents. Let D1:h−1 be the information collected from stage 1 to stage h, i.e., D1:h−1 = (D1,D2, . . . ,Dh−1).
Also let Wk,h = (W 1

k,h,W
2
k,h, . . . ,W

n
k,h) and ξk,h = (ξ1k,h, ξ

2
k,h, . . . , ξ

n
k,h). Then, we have

P(∀ h ∈ [H], (∆Λk,h,∆uk,h) = (M,α) | D1:h−1)

P(∀ h ∈ [H], ((∆Λk,h)′, (∆uk,h)′) = (M,α) | D′
1:h−1)

=

H∏
h=1

P((Wk,h, ξk,h) = (M−∆Λ̃k,h,α−∆ũk,h) | D1:h−1)

P(((Wk,h)′, (ξk,h)
′) = (M− (∆Λ̃k,h)′,α− (∆ũk,h)′) | D′

1:h−1)

=

H∏
h=1

P((Wk,h, ξk,h) = (M−∆Λ̃k,h,α−∆ũk,h) | Dh−1)

P(((Wk,h)′, (ξk,h)
′) = (M− (∆Λ̃k,h)′,α− (∆ũk,h)′) | D′

h−1)

=

H∏
h=1

P(Wk,h = M−∆Λ̃k,h | Dh−1)× P(ξk,h = α−∆ũk,h | Dh−1)

P((Wk,h)′ = M− (∆Λ̃k,h)′ | D′
h−1)× P((ξk,h)′ = α− (∆ũk,h)′ | D′

h−1)

The first and the second equations again uses the Markov property and the last inequality is true because of the
independence of the two information one is for the Wk,h and ξk,h.

D.1 (ϵ, δ) privacy for Gaussian mechanism (Theorem 1)

Consider P(Wk,h = M − ∆Λ̃k,h | Dh−1). Since the Gaussian noise in the information is independent across the
agents, we have that

P(Wk,h = M−∆Λ̃k,h | Dh−1) =
∏
i∈N

P(W i
k,h = Mi −∆Λ̃i

k,h | Dh−1) (26)
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Now from Lemma 5, and the sensitivity definition of ∆Λ̃i
k,h, for σ = 4H3

√
2 log(2.5H/δ)/ϵ, then with probability

at least 1− δ/2nH for each W i
k,h for each agent i ∈ N , we have that

P(W i
k,h = Mi −∆Λ̃i

k,h | Dh−1) ≤ exp
( ϵ

2nH

)
× P((W i

k,h)
′ = Mi − (∆Λ̃i

k,h)
′ | D′

h−1) (27)

Taking the union bound on the agents and applying the composition theorem, we have that with probability at least
1− δ/(2H)

P(Wk,h = M−∆Λ̃k,h | Dh−1) ≤ exp
( ϵ

2H

)
× P((Wk,h)

′ = M− (∆Λ̃k,h)
′ | D′

h−1) (28)

Moreover, for the other term P(ξk,h = α−∆ũk,h |Dh−1) note again that by the independence of the noise distribution,
we have

P(ξk,h = α−∆ũk,h | Dh−1) =
∏
i∈N

P(ξik,h = αi −∆ũik,h | Dh−1) (29)

Using the property of the Gaussian distribution, we have

P(ξik,h = αi −∆ũik,h | Dh−1)

P((ξik,h)′ = αi − (∆ũik,h)
′ | D′

h−1)
=

exp
(
−||αi −∆ũik,h||2/2σ2

)
exp

(
−||αi −∆ũik,h + (∆ũik,h − (∆ũik,h)

′)||2/2σ2
)

= exp

(
−
||αi −∆ũik,h||2

2σ2
+
||αi −∆ũik,h + (∆ũik,h − (∆ũik,h)

′)||2

2σ2

)

≤ exp

(
−
||αi −∆ũik,h||2

2σ2
+
||αi −∆ũik,h||2

2σ2

+
||∆ũik,h − (∆ũik,h)

′||2

2σ2

)
= exp

(
||∆ũik,h − (∆ũik,h)

′||2

2σ2

)
.

Here the first equation is due to the Gaussian mechanism. The first inequality follows from the triangle inequality.
Again using the Lemma 5, with probability at least 1− δ/(2H) for each agent i ∈ N , we have that

P(ξik,h = αi −∆ũik,h | Dh−1) ≤ exp
( ϵ

2nH

)
× P((ξik,h)′ = αi − (∆ũik,h)

′ | D′
h−1) (30)

Therefore, we have with probability 1− δ/(2H) that

P(ξk,h = α−∆ũk,h | Dh−1) ≤ exp
( ϵ

2H

)
× P((ξk,h)′ = α− (∆ũh)

′ | D′
h−1) (31)

Now taking the union bound for Wk,h, ξk,h terms and all the stages h ∈ [H], with probability at least 1 − (2H) ×
δ/(2H) = 1− δ, we have

log

[
P(∀ h ∈ [H], (∆Λk,h,∆uk,h) = (M,α) | D1:h−1)

P(∀ h ∈ [H], ((∆Λk,h)′, (∆uk,h)′) = (M,α) | D′
1:h−1)

]
≤ ϵ. (32)

Therefore, from Theorem 12, we conclude that Algorithm 1 preserves (ϵ, δ)-LDP property with the Gaussian mecha-
nism.

D.2 (ϵ, 0) privacy for Laplace mechanism (Theorem 3)

To prove that algorithm 1 with Laplace noise adding mechanism achieves (ϵ, 0)-LDP, we need to show that the above
equation is upper bounded by eϵ with probability 1. Using the independence of the information across the agents, we
have that

P(Wk,h = M−∆Λ̃k,h | Dh−1) =
∏
i∈N

P(W i
k,h = Mi −∆Λ̃i

k,h | Dh−1) (33)
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Now from Theorem 1, and the sensitivity definition of ∆Λ̃i
k,h, if we set b = 4H3

√
nd

ϵ , then for each W i
k,h for each

agent i ∈ N , we have that

P(W i
k,h = Mi −∆Λ̃i

k,h | Dh−1) ≤ exp
( ϵ

2nH

)
× P((W i

k,h)
′ = Mi − (∆Λ̃i

k,h)
′ | D′

h−1) (34)

Taking the union bound on the agents and applying the composition theorem, we have that with probability 1,

P(Wk,h = M−∆Λ̃k,h | Dh−1) ≤ exp
( ϵ

2H

)
× P((Wk,h)

′ = M− (∆Λ̃k,h)
′ | D′

h−1) (35)

Moreover, for the other term P(ξk,h = α−∆ũk,h |Dh−1) note again that by the independence of the noise distribution,
we have

P(ξk,h = α−∆ũk,h | Dh−1) =
∏
i∈N

P(ξik,h = αi −∆ũik,h | Dh−1) (36)

Using the property of the Laplace distribution, we have

P(ξik,h = αi −∆ũik,h | Dh−1)

P((ξik,h)′ = αi − (∆ũik,h)
′ | D′

h−1)
=

nd∏
j=1

exp
(

−ϵ|(αi)j−(∆ũi
k,h)j |

2nH||∆ũi
k,h−(∆ũi

k,h)
′||1

)
exp

( −ϵ|(αi)j−((∆ũi
k,h)

′)j |
2nH||∆ũi

k,h−(∆ũi
k,h)

′||1

)
=

nd∏
j=1

exp

(
−ϵ|(αi)j − (∆ũik,h)j |+ ϵ|(αi)j − ((∆ũik,h)

′)j |
2nH||∆ũik,h − (∆ũik,h)

′||1

)

≤
nd∏
j=1

exp

(
ϵ|(∆ũik,h)j − ((∆ũik,h)

′)j |
2nH||∆ũik,h − (∆ũik,h)

′||1

)

= exp
( ϵ

2nH

)
In above, we use subscript j to denote the j-th element of the corresponding vector. Here the first equation is due to
the Laplace mechanism. The first inequality follows from the triangle inequality. So with probability 1 for each agent
i ∈ N , we have that

P(ξik,h = αi −∆ũik,h | Dh−1) ≤ exp
( ϵ

2nH

)
× P((ξik,h)′ = αi − (∆ũik,h)

′ | D′
h−1) (37)

Therefore, we have with probability 1 that

P(ξk,h = α−∆ũk,h | Dh−1) ≤ exp
( ϵ

2H

)
× P((ξk,h)′ = α− (∆ũh)

′ | D′
h−1) (38)

Now taking the union bound for Wk,h, ξk,h terms and all the stages h ∈ [H], with probability 1, we have

log

[
P(∀ h ∈ [H], (∆Λk,h,∆uk,h) = (M,α) | D1:h−1)

P(∀ h ∈ [H], ((∆Λk,h)′, (∆uk,h)′) = (M,α) | D′
1:h−1)

]
≤ ϵ (39)

Therefore, Algorithm 1 preserves (ϵ, 0)-LDP property with the Laplace mechanism.

D.3 (0, δ) privacy for uniform mechanism (Theorem 5)

For the uniform distribution ϵ = 0, thus setting a = 4H3 log(2H/δ) satisfies the following with probability at least
1− δ/(2H)

P(W i
k,h = Mi −∆Λ̃i

k,h | Dh−1) ≤ P((W i
k,h)

′ = Mi − (∆Λ̃i
k,h)

′ | D′
h−1) (40)

Moreover, for the other term P(ξk,h = α−∆ũk,h |Dh−1) note again that by the independence of the noise distribution,
we have

P(ξk,h = α−∆ũk,h | Dh−1) =
∏
i∈N

P(ξik,h = αi −∆ũik,h | Dh−1) (41)

Using the property of the uniform distribution, we have that

P(ξik,h = αi −∆ũik,h | Dh−1)

P((ξik,h)′ = αi − (∆ũik,h)
′ | D′

h−1)
=

nd∏
j=1

1/2a

1/2a
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= 1 = exp(0)

So, for each agent i ∈ N , we have with probability at least 1− δ/(2nH), the following

P(ξik,h = αi −∆ũik,h | Dh−1) ≤ exp(0)× P((ξik,h)′ = αi − (∆ũik,h)
′ | D′

h−1) (42)

Therefore, we have with probability 1− δ/(2H) that

P(ξk,h = α−∆ũk,h | Dh−1) ≤ exp(0)× P((ξk,h)′ = α− (∆ũh)
′ | D′

h−1) (43)

Now taking the union bound for Wk,h, ξk,h terms and all the stages h ∈ [H], with probability 1− δ, we have

log

[
P(∀ h ∈ [H], (∆Λk,h,∆uk,h) = (M,α) | D1:h−1)

P(∀ h ∈ [H], ((∆Λk,h)′, (∆uk,h)′) = (M,α) | D′
1:h−1)

]
= 0 (44)

Therefore, Algorithm 1 preserves (0, δ)-LDP property with the uniform mechanism.

D.4 (ϵ, 0) privacy for bounded Laplace mechanism (Theorem 7)

The proof of (ϵ, 0) LDP for the bounded Laplace is exactly same as the Laplace as given in Appendix D.2, so we avoid
writing it.

E Proof of Regret Bounds

In this Section, we give the proof the upper bound on the regret of MA-LDP with different noise adding mechanisms.
We first bound the regret for any noise mechanism, and then use the noise mechanism to give the explicit bound for
each noise mechanism. Consider the following difference

V ⋆,i
h (sk,h)− V πk,i

h (sk,h)
(i)

≤ V i
k,h(sk,h)− V

πk,i
h (sk,h)

= max
a
Qi

k,h(sk,h, a)−max
a
Qπk,i

h (sk,h, a)

(ii)

≤ Qi
k,h(sk,h, ak,h)−Q

πk,i
h (sk,h, ak,h)

(iii)

≤ r̄h(sk,h, ak,h;wi
k,h) +

〈
θ̂
i

k,h, ϕV i
k,h+1

(sk,h, ak,h)
〉

(45)

+ βk||Σi−1/2

k,h ϕV i
k,h+1

(sk,h, ak,h)||2

− r̄h(sk,h, ak,h;wi
k,h)− PhV

πk,i
h+1 (sk,h, ak,h)

=
〈
θ̂
i

k,h, ϕV i
k,h+1

(sk,h, ak,h)
〉
+ βk||Σi−1/2

k,h ϕV i
k,h+1

(sk,h, ak,h)||2

− PhV
πk,i
h+1 (sk,h, ak,h) + PhV

i
k,h+1(sk,h, ak,h)− PhV

i
k,h+1(sk,h, ak,h)

=
〈
θ̂
i

k,h − θ⋆
h, ϕV i

k,h+1
(sk,h, ak,h)

〉
+ βk||Σi−1/2

k,h ϕV i
k,h+1

(sk,h, ak,h)||2

− PhV
πk,i
h+1 (sk,h, ak,h) + PhV

i
k,h+1(sk,h, ak,h)

(iv)

≤ ||Σi1/2

k,h θ̂
i

k,h − θ⋆
h||2||Σi−1/2

k,h ϕV i
k,h+1

(sk,h, ak,h)||2 − PhV
πk,i
h+1 (sk,h, ak,h)

+ βk||Σi−1/2

k,h ϕV i
k,h+1

(sk,h, ak,h)||2 + PhV
i
k,h+1(sk,h, ak,h)

(v)

≤ 2βk||Σi−1/2

k,h ϕV i
k,h+1

(sk,h, ak,h)||2 − PhV
πk,i
h+1 (sk,h, ak,h) + PhV

i
k,h+1(sk,h, ak,h) (46)

(i) follows from the previous Lemma 2, in (ii) we replace the max over all the actions by ak,h. The inequality (iii) uses
the update of state-action value function from line 10 of the MA-DP algorithm. In (iv) we use the Cauchy-Schwartz
inequality. Finally (v) follows from the Lemma 3. Apart from the above, we also have the following

V i
h+1(sk,h)− V

πk,i
h+1 (sk,h) ≤ V

i
h+1(sk,h) ≤ H (47)

Combining the Equations (46) and (47) we have the following:

V i
h+1(sk,h)− V

πk,i
h+1 (sk,h)
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≤ min{H, 2βk||Σi−1/2

k,h ϕV i
k,h+1

(sk,h, ak,h)||2 − PhV
πk,i
h+1 (sk,h, ak,h) + PhV

i
k,h+1(sk,h, ak,h)}

≤ min{H, 2βk||Σi−1/2

k,h ϕV i
k,h+1

(sk,h, ak,h)||2} − PhV
πk,i
h+1 (sk,h, ak,h) + PhV

i
k,h+1(sk,h, ak,h),

where the second inequality holds because V i
k,h+1 ≥ V

⋆,i
h+1 ≥ V

πk,i
h+1 . Adding V πk,i

h+1 (sk,h+1)− V i
k,h+1(sk,h+1) to both

sides in the above equation we have the following:

V i
h+1(sk,h)− V

πk,i
h+1 (sk,h) + [V πk,i

h+1 (sk,h+1)− V i
k,h+1(sk,h+1)]

≤ min{H, 2βk||Σi−1/2

k,h ϕV i
k,h+1

(sk,h, ak,h)||2} − PhV
πk,i
h+1 (sk,h, ak,h) + PhV

i
k,h+1(sk,h, ak,h)

+ [V πk,i
h+1 (sk,h+1)− V i

k,h+1(sk,h+1)] (48)

Summing these inequalities for k = 1, 2, . . . ,K and stages h = h′, . . . ,H , we have

K∑
k=1

[V i
k,h′(sk,h′)− V πk,i

h′ (sk,h′)] ≤ 2

K∑
k=1

H∑
h=h′

βk min{1, ||Σi−1/2

k,h ϕV i
k,h+1

(sk,h, ak,h)||2}

+

K∑
k=1

H∑
h=h′

[[Ph(V
i
k,h+1 − V

πk,i
h+1 )](sk,h, ak,h)− [V i

k,h+1 − V
πk,i
h+1 ](sk,h+1)] (49)

Define the following event E4 as

E4 =

{
∀ h′ ∈ [H],

K∑
k=1

H∑
h=h′

[[Ph(V
i
k,h+1 − V

πk,i
h+1 )](sk,h, ak,h)− [V i

k,h+1 − V
πk,i
h+1 ](sk,h+1)]

≤ 4H
√

2T log(2H/α)

} (50)

Since, [[Ph(V
i
k,h+1 − V

πk,i
h+1 )](sk,h, ak,h)− [V i

k,h+1 − V
πk,i
h+1 ](sk,h+1)] forms the martingale difference sequence and it

is less than 4H , i.e.,

[[Ph(V
i
k,h+1 − V

πk,i
h+1 )](sk,h, ak,h)− [V i

k,h+1 − V
πk,i
h+1 ](sk,h+1)] ≤ 4H (51)

Applying the Azuma-Hoeffdings inequality, we have that E4 holds with probability at least 1− α/2. That is P(E4) ≥
1− α/2. Recall, Σ ⪰ λI , and choosing h′ = 1 we have

K∑
k=1

H∑
h=1

βk min{1, ||Σi−1/2

k,h ϕV i
k,h+1

(sk,h, ak,h)||2} ≤ βK
K∑

k=1

H∑
h=1

min{1, ||Σi−1/2

k,h ϕV i
k,h+1

(sk,h, ak,h)||2}

≤ HβK
√

2ndK log(1 +K/λ) (52)

The above inequalities hold because of the Cauchy-Schwartz and the Theorem 7. Finally, on the events E1, E2, E3, E4,
we conclude with probability at least 1− α, we have the exact expression of the regret as follows:

RK ≤ HβK
√

2ndK log(1 +K/λ) + 4H
√
2T log(2H/α). (53)

E.1 Regret bound for Gaussian mechanism (Theorem 2)

To complete the regret bound for MA-LDP algorithm with the Gaussian mechanism, we substitute βG
K given in Equa-

tion (20) in the regret expression given in Equation (53). Recall,

βG
K = cg(nd)

3/4H3/2K1/4 log(ndT/α)(log(H/δ))1/4
√

1/ϵ. (54)

Thus, the regret of MA-LDP algorithm with Gaussian noise adding mechanism is given by

RG
K ≤ cgH(nd)3/4H3/2K1/4 log(ndT/α)(log(H/δ))1/4

√
1/ϵ

·
√
2ndK log(1 +K/λ) + 4H

√
2T log(2H/α)

≤ Õ(n5/4d5/4H7/4T 3/4 log(ndT/α)(log(H/δ))1/4
√
1/ϵ) (55)

This ends the proof of the regret upper bound for the Gaussian mechanism.
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E.2 Regret bound for Laplace mechanism (Theorem 4)

To complete the regret bound for MA-LDP algorithm with the Laplace mechanism, we substitute βL
K given in Equation

(21) in the regret expression given in Equation (53). Recall,

βL
K = cl(nd)

3/4H3/2K1/4 log(ndT/α)
√

1/ϵ. (56)

Thus, the regret of MA-LDP algorithm with Gaussian noise adding mechanism is given by

RL
K ≤ clH(nd)3/4H3/2K1/4 log(ndT/α)

√
1/ϵ

·
√

2ndK log(1 +K/λ) + 4H
√
2T log(2H/α)

≤ Õ(n5/4d5/4H7/4T 3/4 log(ndT/α)
√

1/ϵ) (57)

This ends the proof of the regret upper bound for the Laplace mechanism.

E.3 Regret bound for uniform mechanism (Theorem 6)

To complete the regret bound for MA-LDP algorithm with the uniform mechanism, we substitute βU
K given in Equation

(22) in the regret expression given in Equation (53). Recall,

βU
K = cu(nd)

3/4H3/2k1/4 log(ndT/α)(log(H/δ))1/4. (58)

Thus, the regret of MA-LDP algorithm with uniform noise adding mechanism is given by

RL
K ≤ cuH(nd)3/4H3/2k1/4 log(ndT/α)(log(H/δ))1/4

·
√

2ndK log(1 +K/λ) + 4H
√
2T log(2H/α)

≤ Õ(n5/4d5/4H7/4T 3/4 log(ndT/α)(log(1/δ))1/4) (59)

This ends the proof of the regret upper bound for the uniform mechanism.

E.4 Regret bound for bounded Laplace mechanism (Theorem 8)

To complete the regret bound for MA-LDP algorithm with the Bounde Laplace mechanism, we substitute βBL
K given

in Equation (23) in the regret expression given in Equation (53). Recall,

βBL
K = cbl(nd)

3/4ζ1/4K1/4 log(ndT/α). (60)

and ζ = 2b2

1−exp(−B
b )
− κ, where κ =

((B+b)2+b2)×exp(−B
b )

1−exp(−B
b )

. Thus, the regret of MA-LDP algorithm with Bounded
Laplace noise adding mechanism is given by

RBL
K ≤ cblH(nd)3/4ζ1/4K1/4 log(ndT/α)

·
√
2ndK log(1 +K/λ) + 4H

√
2T log(2H/α)

≤ Õ(n5/4d5/4H1/4T 3/4ζ1/4 log(ndT/α)) (61)

This ends the proof of the regret upper bound for the Bounded Laplace mechanism.

F More details of experiments

Here we give more details of the experiments and the other results stated in the main paper. The following figure
shows the MDP we consider in the experiments.

Recall, the feature we use in the experiments are as follows: Let S(s) is the set all feasible states from state s.

ϕ(s′|s, a) =


(ϕ(s′

1 |s1, a1), . . . , ϕ(s′n |sn, an)), if s ̸= g, s′ ∈ S(s)
0nd, if s ̸= g, s′ /∈ S(s)
0nd, if s = g, s′ ̸= g
(0nd−1, α(s)), if s = g, s′ = g,

(62)
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sin gq1 · · · · · ·

Figure 2: Network with q + 2 nodes.

where we identify α(s) as α(s) = |S(s)|
n

{
x0

2 + xq+1 +
∑q

j=1
xj

3

}
. Here x0, x1, . . . , xq, xq+1 are the number of

agents at the nodes sin, 1, . . . , q, g respectively in the state s. The local features ϕ(s′
i |si, ai) are defined as

ϕ(s′
i

|si, ai) =



(
−ai, 1−δ

n

)⊤
, if si = s′

i

= sin(
ai, δ

n

)⊤
, if si = sin, s

′i = g(
−ai, 1−δj,j

n

)⊤
, if si = si

′
= j ∈ {1, 2, . . . , q},(

ai,
δj,j+1

n

)⊤
, if si = j, si

′
= j + 1, ∀ j ∈ {1, 2, . . . , q},(

0d−1,
δj,j−δj,j+1

n

)⊤
, if si = j, si

′
= j − 1, ∀ j ∈ {1, 2, . . . , q},

0⊤
d , if si = g, s′

i

= sin(
0d−1,

1
n

)⊤
, if si = g, s′

i

= g.

Here δj,j ≥ δj,j+1, and 0⊤
d = (0, 0, . . . , 0)⊤ of d dimension. Moreover, the transition probability parameters for any

state s are taken as θ(s) =
(
θ1, 1

α(s) ,θ
2, 1

α(s) . . . ,θ
n, 1

α(s)

)
where θi ∈

{
− ∆

n(d−1) ,
∆

n(d−1)

}d−1

, and ∆ < δ.

F.1 Proof of Lemma 4

Proof. We consider two cases. In case 1, s ̸= g and case 2, s = g.

Case 01: (s ̸= g ). Without loss of generality we consider the following state s = (sinit, . . . , sinit︸ ︷︷ ︸
x0 times

,

1, 1, . . . , 1︸ ︷︷ ︸
x1 times

, 2, 2, . . . , 2︸ ︷︷ ︸
x2 times

, q − 1, q − 1, . . . , q − 1︸ ︷︷ ︸
xq−1 times

, q, q, . . . , q︸ ︷︷ ︸
xq times

g, g, . . . , g︸ ︷︷ ︸
(n−x0−x1−...,−xq) times

), i.e., x0 agents are at sinit, x1

agents are at node 1, x2 agents at node 2, and so on, finally remaining n − x0 − x1 − · · · − xq agents are at g.
Consider an agent i, who is at sinit node. Let |S(s)| denotes the number of next states feasible from state s. A sim-
ple calculation shows that |S(s)| = 2x0 × 3x1 × 3x2 · · · × . . . 3xq × 1n−x0−x1−...,−xq . Out of these possible next
states, there are exactly |S(s)|

2 states in which agent i will remain at sinit, and in |S(s)|
2 states the agent i moves to

node 1. The probability that the next node of agent i is sinit given that the current node of agent i is sinit is given by
−⟨ai,θi⟩+ 1−δ

n ×
1

α(s) . And the probability that the next node of agent i is 1 given that the current node of agent i is

sinit is ⟨ai,θi⟩+ δ
n ×

1
α(s) . These probabilities are obtained using the features defined in Equation (62). Since, this is

true for all the agents 1, 2, . . . , x0 which are at sinit. So, the contribution to the probability term from these x0 agents
who are at sinit is∑x0

i=1

{(
−⟨ai,θi⟩+ 1−δ

n ×
1

α(s)

)
× |S(s)|

2

}
+
∑x0

i=1

{(
⟨ai,θi⟩+ δ

n ×
1

α(s)

)
× |S(s)|

2

}
= |S(s)|

2 × 1
n ×

x0

α(s) . (63)

Next consider an agent i who is at node j ∈ {1, 2, . . . , q}. Out of next possible states, the number of next possible
states where agent i will remain at node j is |S(s)|

3 , move to node j+1 is |S(s)|
3 states and moves to node j−1 is |S(s)|

3 .
The probability of staying at node j is −⟨ai,θi⟩+ 1−δj,j

n × 1
α(s) ; moving to node j+1 is ⟨ai,θi⟩+ δj,j+1

n × 1
α(s) ; and

probability of going to node j − 1 is δj,j−δj,j+1

n × 1
α(s) . This is true for all the agents who are at node j in the state s.
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Therefore, the contribution in the overall probability from this agent is
xj∑
i=1

{(
−⟨ai,θi⟩+ 1− δj,j

n
× 1

α(s)

)
× |S(s)|

3

}
+

xj∑
i=1

{(
⟨ai,θi⟩+ δj,j+1

n
× 1

α(s)

)
× |S(s)|

3

}

+

xj∑
i=1

(
δj,j − δj,j+1

n
× 1

α(s)

)
× |S(s)|

3
=
|S(s)|
3
× 1

n
× xj
α(s)

.

(64)

The above expression is valid for any node j ∈ {1, 2, . . . , q}. Finally consider the agent who is at node g, the number
of next states in which the agent stays at node g is |S(s)|. Let xq+1 = n− x0 − x1 − · · · − xq . The probability of this
is 1

n
xq+1

α(s) , so Therefore, the contribution in the probability from the agent who is at node g is

xq+1∑
i=1

|S(s)| × 1

n
× 1

α(s)
= |S(s)| × 1

n
× xq+1

α(s)
(65)

Adding Equations (63), (64) and (65), we have∑
s′ ̸=g

⟨ϕ(s′|s, a),θ(s)⟩ =
(
|S(s)|
2
× 1

n
× x0
α(s)

)
+

q∑
j=1

(
|S(s)|
3
× 1

n
× xj
α(s)

)
+

(
|S(s)| × 1

n
× xq+1

α(s)

)

=
|S(s)|
nα(s)

x02 + xq+1 +

q∑
j=1

xj
3


Since, we set α(s) = |S(s)|

n

{
x0

2 + xq+1 +
∑q

j=1
xj

3

}
, we have that the above summation as 1.

Case 02: (s = g). For this case, the probability is∑
s′
⟨ϕ(s′|s = g, a),θ(s)⟩ =

∑
s′ ̸=g

⟨ϕ(s′|s = g, a),θ(s)⟩+ ⟨ϕ(s′ = g|s = g, a),θ(s)⟩

= ⟨0,θ(s)⟩+ ⟨(0nd−1, α(s)),θ(s)⟩ = 1

Therefore, in both cases, we have ∑
s′
⟨ϕ(s′|s = g, a),θ(s)⟩ = 1, ∀ s, a.

The other two statements of the Lemma follow by feature design and model parameter space.

G Some useful results

G.1 Equivalence of the optimization problems

To start with we show the equivalence of the optimization problems we obtain from the least square minimizer of the
global reward function. Recall the optimization problem is

minw Es,a[r̄(s, a)− r̄(s, a;w)]2. (OP 1)

We prove the following key Proposition which enables the decentralized working of our algorithm.
Proposition 3 (Zhang et al. (2018), Trivedi and Hemachandra (2022)). The optimization problem in Eq. (OP 1) is
equivalently characterized as (both have the same stationary points)

minw

n∑
i=1

Es,a[r
i(s, a)− r̄(s, a;w)]2. (OP 2)

Proof. Taking the first order derivative of the objective function in optimization problem (OP 1) w.r.t. w, we have:

−2× Es,a[r̄(s, a)− r̄(s, a;w)]×∇wr̄(s, a;w)

= −2× Es,a

[
1

n

∑
i∈N

ri(s, a)− r̄(s, a;w)

]
×∇wr̄(s, a;w),
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= − 2

n
× Es,a

[∑
i∈N

ri(s, a)− n · r̄(s, a;w)

]
×∇wr̄(s, a;w),

= − 2

n
× Es,a

[∑
i∈N

(
ri(s, a)− r̄(s, a;w)

)]
×∇wr̄(s, a;w).

Ignoring the factor 1
n in the above equation, we exactly have the first order derivative of the objective function in OP

2. Thus, both optimization problems have the same stationary points. Hence, OP 1 is an equivalent characterization
of OP 2.

G.2 Lemma for Gaussian mechanism

For the Gaussian mechanism, we can only hope for the (ϵ, δ) LDP. In this subsection, we show that our MA-LDP
algorithm with Gaussian mechanism indeed preserves the differential privacy. To this edn, we have following Theorem
(Theorem A.2 in Liao et al. (2021) )
Theorem 12 (Theorem A.2 Liao et al. (2021)). If the privacy loss c satisfy Po∼M(d)[c(o;M, aux, d, d′) > ϵ] ≤ δ for
all auxiliary input aux and neighboring data sets d, d′, then the mechanismM satisfies (ϵ, δ)-LDP property.

The basic idea involved in the above Theorem is that the if we set the privacy parameter δ then for any auxiliary input
aux the probability that any outcome o obtained using the privacy preserving mechanism incurs at least ϵ privacy loss
then the mechanismM satisfies the (ϵ, δ)-LDP. The proof of this Theorem is available in Liao et al. (2021); Abadi
et al. (2016) and is based on the construction of an event containing all possible outcomes for which the absolute
privacy loss is at least ϵ.
Lemma 5 (Gaussian Mechanism Dwork et al. (2006); Liao et al. (2021)). Let f : NX → Rd be an arbitrary d-
dimensional function (a query), and define the l2 sensitivity as ∆2f = maxadj(x,y) ||f(x)− f(y)||2, where adj(x, y)
indicates that x, y are different at one entry only. For any 0 ≤ ϵ ≤ 1 and c2 > 2 log(1.25/δ), the Gaussian mechanism
with parameter σ ≥ c∆2f/ϵ is (ϵ, δ)-LDP.

The following Analogous Lemma for the Laplace Mechanism is also available in Theorem 3.6 of Dwork and Roth
(2014).
Lemma 6 (Laplace Mechanism; Theorem 3.6 Dwork and Roth (2014)). Let f : NX → Rd be an arbitrary d-
dimensional function (a query), and define the l1 sensitivity as ∆f = max||x−y||1=1 ||f(x) − f(y)||1. For any
0 ≤ ϵ ≤ 1 the Laplace mechanism with parameter b = ∆f

ϵ preserves (ϵ, 0) differential privacy.

G.3 Other important results

Lemma 7 (Lemma 11, Abbasi-Yadkori et al. (2011)). Let {ϕt}t≥0 be the bounded sequence in Rd satisfying
supt≥0||ϕt|| ≤ 1. Let Λ0 ∈ Rd×d be a positive definite matrix. For any t ≥ 0, we define Λt = Λ0 +

∑t
j=0 ϕ

⊤
j ϕj .

Then, if the smallest eigenvalue of Λ0 satisfies λmin(Λ) ≥ 1, we have

log

[
det(Λt)

det(Λ0)

]
≤

t∑
j=1

ϕ⊤j Λ
−1
j−1ϕj ≤ 2 log

[
det(Λt)

det(Λ0)

]
(66)

Theorem 13 (Theorem 2 of Zhou et al. (2021)). Let {Gt}∞t=1 be the filtration. Let {xt, ηt}t≥1 be a stochastic process
so that xt ∈ Rd is Gt-measurable and ηt be Gt+1 measurable. Fix, R,L, σ, λ, µ⋆ ∈ Rd. For t ≥ 1 let yt =< µ⋆, xt >
+ηt and suppose that ηt, xt also satisfy

|ηt| ≤ R, E[η2t |Gt] ≤ σ2, ||xt||2 ≤ L (67)

Then, for any 0 < δ < 1, with probability at least 1− δ we have

∀ t ≥ 0, ||
t∑

i=1

xiηi||Z−1
t
≤ βt, ||µt − µ⋆||Zt

≤ βt +
√
λ||µ⋆||2, (68)

where for t ≥ 1, µt = Z−1
t bt, Zt = λI +

∑t
i=1 xix

⊤
i , bt =

∑t
i=1 yixi and

βt = 8σ
√
d log(1 + tL2/(dλ)) log(4t2/δ) + 4R log(4t2/δ) (69)
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Lemma 8 (Kushner-Clark Lemma Kushner and Yin (2003); Metivier and Priouret (1984)). Let X ⊆ Rp be a compact
set and let h : X → Rp be a continuous function. Consider the following recursion in p-dimensions

xt+1 = Γ{xt + γt[h(xt) + ζt + βt]}. (70)

Let Γ̂(·) be transformed projection operator defined for any x ∈ X ⊆ Rp as

Γ̂(h(x)) = lim0<η→0

{
Γ(x+ ηh(x))− x

η

}
,

then the ODE associated with Equation (70) is ẋ = Γ̂(h(x)).

Assumption 4. Kushner-Clark lemma requires the following assumptions

1. Stepsize {γt}t≥0 satisfy
∑

t γt =∞, and γt → 0 as t→∞.

2. The sequence {βt}t≥0 is a bounded random sequence with βt → 0 almost surely as t→∞.

3. For any ϵ > 0, the sequence {ζt}t≥0 satisfy

lim
t

P

(
supp≥t

∥∥∥∥∥
p∑

τ=t

γτζτ

∥∥∥∥∥ ≥ ϵ
)

= 0.

Kushner-Clark lemma is as follows: suppose that ODE ẋ = Γ̂(h(x)) has a compact setK⋆ as its asymptotically stable
equilibria, then under Assumption 4, xt in Equation (70) converges almost surely to K⋆ as t→∞.

G.4 Generating a bounded Laplace distribution, BL (Ross, 2022)

The cdf of the bounded Laplace random variable, BL can be obtained as follows:

FBL(x) =

∫ x

−B

1

2b
(
1− exp(−B

b

)
)
exp

(
−|x|
b

)
(71)

=

∫ 0

−B

1

2b
(
1− exp(−B

b

)
)
exp

(x
b

)
+

∫ x

0

1

2b
(
1− exp(−B

b

)
)
exp

(
−x
b

)
(72)

=
1

2b
(
1− exp(−B

b

)
)
[b− b exp(−B

b
)]− 1

2b
(
1− exp(−B

b

)
)
[b exp(

−x
b

)− b] (73)

=
2− exp(−B

b )− exp(−x
b )

2
(
1− exp(−B

b

)
)

(74)

To simulate this, let u = FBL(x), where u ∼ U(0, 1), then

u =
2− exp(−B

b )− exp(−x
b )

2
(
1− exp(−B

b

)
)

(75)

exp(
−x
b

) = 2− exp(
−B
b

)− 2u

(
1− exp(

−B
b

)

)
(76)

−x
b

= log

(
2− exp(

−B
b

)− 2u

(
1− exp(

−B
b

)

))
(77)

x = −b log
(
2− exp(

−B
b

)− 2u

(
1− exp(

−B
b

)

))
(78)

Note, this x will follow the Laplace distribution with bounded support.
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