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Introduction

The Clay Mathematics Institute (CMI) grew out of the longstanding
belief of its founder, Mr. Landon T. Clay, in the value of mathematical
knowledge and its centrality to human progress, culture, and intellectual
life. Discussions over some years with Professor Arthur Jaffe helped shape
Mr. Clay’s ideas of how the advancement of mathematics could best be sup-
ported. These discussions resulted in the incorporation of the Institute on
September 25, 1998, under Professor Jaffe’s leadership. The primary objec-
tives and purposes of the Clay Mathematics Institute are “to increase and
disseminate mathematical knowledge; to educate mathematicians and other
scientists about new discoveries in the field of mathematics; to encourage
gifted students to pursue mathematical careers; and to recognize extraordi-
nary achievements and advances in mathematical research.” CMI seeks to
“further the beauty, power and universality of mathematical thinking.”

Very early on, the Institute, led by its founding scientific board — Alain
Connes, Arthur Jaffe, Edward Witten, and Andrew Wiles — decided to
establish a small set of prize problems. The aim was not to define new
challenges, as Hilbert had done a century earlier when he announced his list
of twenty-three problems at the International Congress of Mathematicians
in Paris in the summer of 1900. Rather, it was to record some of the most
difficult issues with which mathematicians were struggling at the turn of the
second millennium; to recognize achievement in mathematics of historical
dimension; to elevate in the consciousness of the general public the fact
that, in mathematics, the frontier is still open and abounds in important
unsolved problems; and to emphasize the importance of working toward
solutions of the deepest, most difficult problems.

After consulting with leading members of the mathematical community,
a final list of seven problems was agreed upon: the Birch and Swinnerton-
Dyer Conjecture, the Hodge Conjecture, the Existence and Uniqueness Prob-
lem for the Navier–Stokes Equations, the Poincaré Conjecture, the P ver-
sus NP problem, the Riemann Hypothesis, and the Mass Gap problem for
Quantum Yang–Mills Theory. A set of rules was established, and a prize
fund of US$7 million was set up, this sum to be allocated in equal parts to
the seven problems. No time limit exists for their solution.
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The prize was announced at a meeting on May 24, 2000, at the Collège
de France. On page xv we reproduce the original statement of the Directors
and the Scientific Advisory Board. John Tate and Michael Atiyah each spoke
about the Millennium Prize Problems: Tate on the Riemann Hypothesis, the
Birch and Swinnerton-Dyer Problem, and the P vs NP problem; Atiyah on
the Existence and Uniqueness Problem for the Navier–Stokes Equations,
the Poincaré Conjecture, and the Mass Gap problem for Quantum Yang–
Mills Theory. In addition, Timothy Gowers gave a public lecture, “On the
Importance of Mathematics”. The lectures — audio, video, and slides —
can be found on the CMI website: www.claymath.org/millennium.

The present volume sets forth the official description of each of the seven
problems and the rules governing the prizes. It also contains an essay by
Jeremy Gray on the history of prize problems in mathematics.

The editors gratefully acknowledge the work of Candace Bott (editorial
and project management), Sharon Donahue (photo and photo credit re-
search), and Alexander Retakh (TEX, technical, and photo editor) for their
care and expert craftsmanship in the preparation of this manuscript.

James Carlson, Arthur Jaffe, and Andrew Wiles
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Landon T. Clay

Landon T. Clay has played a leadership role in a variety of business, sci-
ence, cultural, and philanthropic activities. With his wife, Lavinia D. Clay,
he founded the Clay Mathematics Institute and has served as its only Chair-
man. His past charitable activities include acting as Overseer of Harvard
College, as a member of the National Board of the Smithsonian Institute,
and as Trustee of the Middlesex School. He is currently a Great Benefac-
tor and Trustee Emeritus of the Museum of Fine Arts in Boston and for 30
years has been Chairman of the Caribbean Conservation Corporation, which
operates a turtle nesting station in Costa Rica. He donated the Clay Tele-
scope to the Magellan program of Harvard College in Chile. The Clay family
built the Clay Science Centers at Dexter School and Middlesex School. He
received an A.B. in English, cum laude, from Harvard College.
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Statement of the Directors
and the Scientific Advisory Board

In order to celebrate mathematics in the new millennium, the Clay Math-
ematics Institute of Cambridge, Massachusetts, has named seven “Millen-
nium Prize Problems”. The Scientific Advisory Board of CMI selected these
problems, focusing on important classic questions that have resisted solu-
tion over the years. The Board of Directors of CMI have designated a US$7
million prize fund for the solution to these problems, with US$1 million allo-
cated to each. During the Millennium meeting held on May 24, 2000, at the
Collège de France, Timothy Gowers presented a lecture entitled “The Impor-
tance of Mathematics”, aimed for the general public, while John Tate and
Michael Atiyah spoke on the problems. CMI invited specialists to formulate
each problem.

One hundred years earlier, on August 8, 1900, David Hilbert delivered
his famous lecture about open mathematical problems at the second Interna-
tional Congress of Mathematicians in Paris. This influenced our decision to
announce the millennium problems as the central theme of a Paris meeting.

The rules that follow for the award of the prize have the endorsement of
the CMI Scientific Advisory Board and the approval of the Directors. The
members of these boards have the responsibility to preserve the nature, the
integrity, and the spirit of this prize.

Directors: Finn M.W. Caspersen, Landon T. Clay, Lavinia D. Clay,
Randolph R. Hearst III, Arthur Jaffe, and David R. Stone

Scientific Advisory Board: Alain Connes, Arthur Jaffe, Andrew Wiles,
and Edward Witten

Paris, May 24, 2000
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Collège de France

Paris meeting

Alain Connes, Collège de France, and David Ellwood, Clay Mathematics
Institute, undertook the planning and organization of the Paris meeting,
assisted by the generous help of the Collège de France and the CMI staff.
The videos of the meeting, available at www.claymath.org/millennium,
were shot and edited by François Tisseyre.
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A History of Prizes in Mathematics

Jeremy Gray

1. Introduction

Problems have long been regarded as the life of mathematics. A good
problem focuses attention on something mathematicians would like to know
but presently do not. This missing knowledge might be eminently practical,
it might be wanted entirely for its own sake, its absence might signal a
weakness of existing theory — there are many reasons for posing problems.
A good problem is one that defies existing methods, for reasons that may
or may not be clear, but whose solution promises a real advance in our
knowledge.

In this respect the famous three classical problems of Greek mathematics
are exemplary. The first of these asks for the construction of a cube twice the
volume of a given cube. The second asks for a method of trisecting any given
angle, and the third for the construction of a square equal in area to a given
circle.1 Because Euclid, in his Elements, used only straight edge and circle
(ruler and compass) to construct figures, a modern interpretation of the
problems has restricted the allowed solution methods to ruler and compass
constructions, but none of the Greek attempts that have survived on any of
these problems obey such a restriction, and, indeed, none of the problems
can be solved by ruler and compass alone. Instead, solutions of various kinds
were proposed, involving ingenious curves and novel construction methods,
and there was considerable discussion about the validity of the methods that
were used. A number of distinguished mathematicians joined in, Archimedes
among them, and it seems that the problems focused attention markedly on
significant challenges in mathematics.

In addition to the contributions to mathematics that the problems eli-
cited, there is every sign that they caught the public’s attention and were
regarded as important. Socrates, in Plato’s dialogue Meno, had drawn out

1To speak of just classical problems is something of a misnomer. There were other
equally important problems in classical times, such as the construction of a regular seven-
sided polygon.

3
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of a slave boy the knowledge of how to construct a square twice the size of
a given square, thus demonstrating his theory of knowledge. Plato claimed
that the analogous problem of duplicating the cube was ordained by the
Gods, who required the altar at Delos to be doubled exactly. Less exaltedly,
the problem of squaring the circle rapidly became a by-word for impossibility,
and Aristophanes, a contemporary of Plato’s, could get a laugh from an
Athenian audience by introducing a character who claimed to have done it.
Since all these problems possess simple, approximate, ‘engineering’ solutions,
the Greek insistence on exact, mathematically correct, solutions is most
striking.

To solve an outstanding problem is to win lasting recognition, as with the
celebrated solution of the cubic equation by numerous Italian mathemati-
cians at the start of the 16th century. In 1535, Tartaglia was challenged
by one Antonio Fior to solve 30 problems involving a certain type of cubic
equation. Fior had been taught the solution to the cubic by Scipione del
Ferro of Bologna, who seems to have discovered it. As was the custom of
the day, Tartaglia replied with 30 problems of his own on other topics, two
months in advance of the contest date. With one day to go, Tartaglia dis-
covered the solution method for Fior’s cubics and won the contest and the
prize, which was thirty dinners to be enjoyed by him and his friends. Such
contests naturally promoted secrecy rather than open publication, because
only the solutions but not the methods had to be revealed. Tartaglia later
divulged the method in secret to Cardano, who some years later published it
in his Ars Magna in 1545. Cardano argued that since the original discovery
was not Tartaglia’s, he had had no right ask that it be kept secret. Moreover,
by then Cardano had extended the solution to all types of cubic equations,
and his student, Ferrari, had gone on to solve the quartic equation as well.2

The tradition of setting challenging problems for one’s fellow (or, per-
haps, rival) mathematicians persisted. In 1697 the forceful Johann Bernoulli
posed the brachistochrone problem, which asks for the curve joining two
points along which a body will most quickly descend. He received three
answers. Newton’s he recognised at once: “I know the lion by his claw,” he
said. In fact, goaded by the way Bernoulli had wrapped the mathematical
challenge up in the rapidly souring dispute over the discovery of the calculus,
Newton had solved the problem overnight [40, p. 583].

Problems could be set to baffle rivals, but ultimately more credit resides
with those who posed questions out of ignorance, guided by a shrewd sense of
their importance. It is the lasting quality of the solution, a depth that brings
out what was latent in the question, that is then recognised when the solver

2For some of the documents involved in this story, see [18, pp. 253–265]. Cubics were
taken to be of different types because they were always taken with positive coefficients, so
x3 + x = 6 and x3 + 6 = x are of different types.
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is remembered. Problems that point the way to significant achievements
were systematically generated in the 18th century. This tradition was less
successful in the 19th century, but was famously revived in a modified form
by Hilbert in 1900. His choices of problems were often so inspired that those
who solved one were said, by Hermann Weyl, to have entered the Honours
Class of mathematicians [41]. It is this tradition of stimulating problems
that the Clay Mathematics Institute has also sought to promote.

2. The Academic Prize Tradition in the 18th Century

The 18th century was the century of the learned academy, most notably
those in Berlin, Paris, and St. Petersburg. To be called to one of these
academies was the closest thing to a full-time research position available
at the time, a chance to associate with other eminent and expert scholars,
and the opportunity to pursue one’s own interests. It was also a chance
to influence the direction of research in a new and public way, by drawing
attention to key problems and offering substantial rewards for solving them.

The academies ran their prize competitions along these lines. Problems
would be set on specific topics. A fixed period of time, usually 18 months to
two years, was allowed for their solution, a prize of either a medal or money
was offered for their solution, and the solutions would usually be published
in the academy’s own journal. There was often a system of envelopes and
mottos to assist anonymity, and success was liable to make one famous
within the small world of the savants of the day. This was a group of some
modest size, however, and was by no means confined to the very small group
of mathematicians of the time. The historian Adolf Harnack (twin brother
of the mathematician Axel) described the situation vividly in his history of
the Berlin Academy of Sciences3:

In a time when the energies and the organization for large sci-
entific undertakings — with the exception of those in astron-
omy — were still lacking, the prize competitions announced
annually by the academies in Europe became objects for sci-
entific rivalries and the criterion for the standing and acu-
men of scientific societies.. . . This was so because speciali-
ties were most often disregarded and the themes chosen for
competitions were either those that required perfect insight
into the state of an entire discipline and its furtherance with
respect to critical points, or those that posed a fundamen-
tal problem. The prize competitions constituted the lever
by which the different sciences were raised one step higher

3This translation from [13, p. 12], original in [24, vol.1, pp. 396–397]. Reprinted with
the permission of Cambridge University Press.
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from one year to another; in addition, they were important
for universalizing and unifying science. The questions were
addressed to learned men all over Europe and were com-
municated throughout the scientific world. The suspense
surrounding the announcement of the question was, in fact,
larger than that of the answer, for it was in the formulation of
the question that mastery was revealed. The invitation was
not addressed to young recruits of science but to the lead-
ers who eagerly answered the call to contest. The foremost
thinkers and learned men — Euler, Lagrange, d’Alembert,
Condorcet, Kant, Rousseau and Herder — all entered the
arena. This circumstance which may seem quite strange to-
day requires special explanation. This latter . . . resides in
the fact that the learned man of the 18th century was still a
Universalphilosoph. His mind could discern an abundance of
problems in different scientific areas which all seemed equally
attractive and enticing. Which one should he attack? At that
moment, the Academy came to the rescue with its prize com-
petitions. It presented him with a given theme and assured
him a universally interested audience.

The first prize fund to be established was endowed by Count Jean Rouillé
de Meslay, a wealthy lawyer, who left the Académie des Sciences in Paris
125,000 livres in his will in 1714 [13, p. 11].4 The Académie took this up,

and from 1719 on, prizes were to be awar-

Daniel Bernoulli

ded every two years. The first two topics
concerned the movement of planets and
celestial bodies and, a related issue at the
time, the determination of longitude.
These were substantial issues. Newton’s
novel theory of gravity, proclaimed in his
Principia, was not widely accepted in Con-
tinental Europe. It sought to replace a
clear physical process, vortices, with the
much more problematic notion of action
at a considerable distance, and it had a
conspicuous flaw amid many striking suc-
cesses: the motion of the moon. This par-

ticular failing was most unfortunate because the motion of the moon, if
properly understood, could be a key to the longitude problem.

4The standard source of information is [32]. It should be pointed out that 125,000
livres was a very large sum of money; a skilled artisan of the period might hope to earn
300 livres a year.
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Among the more famous winners of the Paris academy prizes was Daniel
Bernoulli, who won no less than ten prizes, and most of his contributions
show how important the topic of navigation was. His first success came in
1725, for an essay on the best shape of hour-glasses filled with sand or water,
such as might serve as nautical clocks. In 1734 he shared the prize with his
father Johann, who begrudged him his success, for an essay exploring the
effect of a solar atmosphere on planetary orbits. Later successes included
a paper on the theory of magnetism (joint with his brother Johann II) and
on the determination of position at sea when the horizon is not visible. He
also wrote on such matters as how to improve pendulum clocks.

The Academy of Sciences in St. Petersburg was established on the orders
of the Emperor Peter the Great on January 28 (February 8), 1724, and was
officially opened in December 1725, shortly after his death. To ensure that
it worked to the highest standards of the time, Peter hired several leading
mathematicians and scientists, Euler, Nicholas and Daniel Bernoulli, and
Christian Goldbach among them. Euler was only 20 when he arrived, and
he remained associated with the Academy for most of his life, publishing in
its journal prolifically even when he was not an Academician.

In Berlin, the rival Academy of Sci-

Frederick the Great

ences, the Académie Royale des Sciences
et de Belles Lettres de Berlin, was founded
in 1700, but it did not become influen-
tial until it was reorganised along Parisian
lines in 1743 by Frederick the Great, who
had come to power in 1740 and reigned
until his death in 1786. He wished the
academy to be useful to the state, and
he paid the new staff he brought in high
salaries, more than they would get in Pa-
ris but less than St. Petersburg. He in-
stalled Maupertuis as director of the acad-
emy, and Euler as director of the mathe-
matical class. Maupertuis supported
Voltaire’s turn toward the English: Newtonian mechanics and Lockean
metaphysics as opposed to Cartesianism. The first prize topic, for 1745,
was ‘On electricity’ and was won by Waitz, the Finance Minister in Kassel.
The prize amounted to some 50 ducats, and from 1747 took the form of a
gold medallion. In 1746 d’Alembert won the prize for his essay ‘Réflexions
sur la cause générale des vents’, which was his response to the challenge:
‘Determine the order and the law which the wind must follow if the Earth
was entirely surrounded on all sides by ocean, in such a way that the di-
rection and speed of the wind is determined at all times and for all places.’
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Eleven entries had been submitted; d’Alembert’s is the first in which par-
tial differential equations were put to general use in physics [39, p. 96].
The famous wave equation appeared in a paper d’Alembert published in the
Memoirs of the Berlin Academy the next year, 1747.

As further evidence of the interest generated by the Berlin prize compe-
tition, Harnack noted that there were often a dozen entries for a given prob-
lem, although it was generally impossible to know who entered because only
the names of the winner (and sometimes a runner-up) were ever announced.
Young and old could enter, and could enter successive competitions; there
was an explicit rule that in the event of a tie the foreign competitor was to
be preferred. In the course of the 18th century, twenty-six different winners
were German, ten French, two Swiss, and one each came from Italy and
Transylvania.

There was naturally some overlap between the academies [24, p. 398].
Some of the same names occur in the lists of the other academies, and some
more than once, the most notable case being that of Euler, who won no less
than twelve prizes from various academies.

All of this work entailed continual in-

Leonhard Euler

volvement behind the scenes judging the
essays. Decisions were final, but were not
always accepted gracefully: d’Alembert in
the early 1750s complained that he was
the victim of a cabal in Berlin that had
denied him a prize for an essay on fluid
mechanics (in fact, no one won the prize
that year). He thereupon published his
own essay, in 1752, in which he raised the
paradox that the flow round an elliptical
object should be the same fore and aft,
which implied that there would be no re-
sistance to the flow. It was left to others

to find the flaw in d’Alembert’s argument, and meanwhile his relations with
Euler worsened. The basic problem may have been one of temperament.
D’Alembert, although a charming conversationalist, was a slow writer who
did not express his ideas with clarity. Euler was unfailingly lucid and wrote
with ease. D’Alembert may have come to resent the way in which his ideas,
once published, were so readily taken up and well developed by the other
man. It was only in 1764, when d’Alembert tried actively to intervene with
Frederick the Great on Euler’s behalf, that relations between Euler and
d’Alembert were put on a more amicable footing. D’Alembert’s interven-
tions were unsuccessful, however, and Euler left Berlin permanently for St.
Petersburg in 1766.
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Over the years a few problems recurred, mostly to do with astronomy and
navigation. Euler won the Paris Academy prize of 1748 for an investigation
of the three-body problem (in this case Jupiter, Saturn, and the sun). Then,
knowing that Clairaut was wrestling with the inverse square law and was
prepared to modify it, Euler proposed the motion of the moon as a prize
topic for the St. Petersburg Academy in 1751.

Clairaut rose to the challenge, and

Alexis Claude Clairaut

suddenly found that he need not abandon
Newton’s law, as he had at first thought,
but that a different analysis of the prob-
lem showed that the law could indeed give
the right results. His successful solution
to this problem was one of the reasons
that the inverse square law of gravity be-
came established and other theories died
out. Other reasons included Clairaut’s
successful prediction of the return of Hal-
ley’s comet in 1759. Comets are, of course,
particularly sensitive to the perturbative
effect of the larger planets, so the chal-
lenge of determining their orbits high-
lighted the importance of the many-body problem in celestial mechanics,
which the Berlin Academy returned to again, for example in 1774.

The Paris Academy in 1764 asked for essays on the libration of the moon:
Why does it always present more or less the same face to us, and what is
the nature of its small oscillations? In 1765 they asked about the motion
of the satellites of Jupiter, and the competition was won by Lagrange (who
was then 29).

Both these topics reflect the hope that celestial motions could somehow
be interpreted as clocks and so solve the longitude problem. In 1770 the prize
went jointly to Euler and his son Albrecht for an essay on the three-body
problem, and in 1772 the same topic again led to the prize being shared, this
time between Euler and Lagrange. In 1774, Lagrange won again, for an essay
on the secular motion of the moon, but he had begun to tire of the subject
and needed an extension to the closing date, which d’Alembert requested
Condorcet to offer as an inducement to continue. Lagrange refused to enter
the next competition, on the motion of comets — the prize went to Nicholas
Fuss — but he entered the competition on the same topic in 1780 and won
the double prize of 4,000 livres. Thereafter he never entered a competition
of the Paris Academy [26].

Prizes could be set to address embarrassing deficiencies in the state of
the art. Lagrange, a member of the Berlin Academy since 1766, persuaded
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it to ask for a rigorous foundation of the calculus in 1784. The prize was
to be awarded for ‘a clear and precise theory of what is called Infinity in

mathematics’. The continual use of infin-

Joseph Louis Lagrange

itely large and infinitely small quantities
in higher mathematics, noted the pream-
ble, was successful despite seeming to in-
volve contradictions. What was needed
was a new principle that would not be
too difficult or tedious and should be pre-
sented ‘with all possible rigour, clarity,
and simplicity’ [20, pp. 41–42]. The te-
dious approach the academy wished to
head off was the defence of the Newto-
nian calculus that MacLaurin had moun-
ted, which replaced Newton’s intuitive
limiting arguments with the cumbersome

apparatus of double reduction ad absurdum.

The competition was won by Simon L’Huillier, and two essays written for
it made their way into books (L’Huillier’s [27] and Lazare Carnot’s [8]). The
judges were satisfied with neither, however, and, when the newly founded
École Polytechnique required Lagrange to publish his lectures he produced,
his own account, the Fonctions analytiques of 1797. This entirely algebraic
account lasted until Cauchy’s analysis began to sweep it away in the 1820s.5

3. The Academic Prize Tradition in the 19th Century

After the French Revolution, the revised Académie in Paris had two
new prizes, starting in 1803, of 3,000 FFr: the grand prix des sciences
mathématiques or the Grand Prix des sciences physiques. The two were
intended to alternate, and a professor’s salary at the time was some 4,000
FFr, so the prize was indeed generous. There were also some irregular prizes,
such as the competition proposed by Napoleon in 1809 on the vibrational
modes of elastic plates. This was in response to Chladni, who had come to
Paris and demonstrated many new experiments on this unstudied phenom-
enon. Laplace was in charge of the commission that was to judge the prize,
and he hoped that it would provide an occasion to advance his protégé,
Poisson. The prize competition was officially announced for 1811 and drew
only one entry, not, however, from Poisson, but one written by the unknown
Sophie Germain.6 The judges found it inadequate, and the competition was
extended to October 1813. Germain worked to deepen her analysis, and hers
was again the only entry. She was by now in correspondence with Legendre,

5See [9]. The facsimile re-edition edited by U. Bottazzini has a very useful introduction.
6This account follows that in [6].
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who was one of the judges, and he seems to have been disappointed with
her work, although it now obtained an honourable mention. The competi-
tion was extended again, to October 1815. Only now did Poisson submit a
memoir, but since he had been a judge of this very competition in 1813 his
actions were irregular to say the least, and Legendre protested. The memoir
was nonetheless read to the Institut de France and a note about it inserted
in the Correspondance de l’École Polytechnique, where it was said that it
might prove helpful to potential competitors. Poisson seems to have hoped

that by acting in this way the question

Sophie Germain

would be permanently withdrawn while
he nonetheless earned the approval of
Laplace. However, his actions were so
scandalous that a deal seems to have been
struck to keep the question open, and pos-
sibly even to give a prize to Sophie Ger-
main if she could improve her work suf-
ficiently. This in the end, she did, not
mathematically, but experimentally, and
she was awarded the prize in 1815.

As Germain’s story shows, the admin-
istration of prizes in the small hot-house
environment of Paris was not without
problems. It may have discouraged Germain from entering the competi-
tion on Fermat’s Last Theorem, which was the topic set in 1815 for 1817.
In fact, no one entered, and after four years the question was withdrawn,
but in that time Germain had made one of the few notable inroads on the
topic in the century between Euler and Kummer [17, p. 62]. These results
made her famous when Legendre published them as hers in his Théorie des
Nombres in 1830.

Further evidence of the way the prize competition worked at the start
of the 19th century is provided by the mathematics prize for 1815. This
was won by Cauchy who, in answer to a question about the propagation
of waves, wrote a memoir chiefly remarkable for his discovery of the way a
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function and its Fourier transform are inter-related, made in ignorance of
Fourier’s own work. His memoir was not published, however, until 1827,
by which time it had long been eclipsed by Poisson’s independent discovery
and prompt publication of many of the same results [4, p. 90].

A notable success of these prizes came in 1819, when the mathematics
prize was won by Fresnel in a decisive moment for the wave theory of light.
But hints of what was to come are visible in another celebrated award of
the prize, which went jointly to Abel (posthumously) and Jacobi in 1830 for
the independent discovery of elliptic functions, not because the topic had
been identified in advance but because their work was rapidly recognised
after the event to be a momentous discovery (and because Legendre was
in a position to see that the Académie could offer such a prize). During
the 19th century, the original tradition of what might be called prospective
prizes (titles announced in advance and a specific deadline to be met) came
under pressure, and the alternative of retrospective prizes or general subject
area prizes for work in some area of mathematics or science were proposed.
This was more and more the case as new prizes were established, but even
when the title was precise the judges began to allow previous work to be
submitted, rather than rolling the topic over for two more years (which was
also done).

The difficulties that arose when a question attracted no good entries were
considerable. It was embarrassing, and there were financial implications.
The first hint of an alternative solution that preserved outward appearances
had come in 1810, when Lagrange and Laplace jointly proposed the double
refraction of light as the Grand Prix topic for 1810, knowing very well that
the 35-year-old Etienne Malus was at that moment doing brilliant work
in optics. He did indeed win, and happily the challenge inspired him to
extend his earlier work considerably; during the process he discovered the
polarisation of light [14, pp. 271–272]. This same thing happened in 1812,
when heat diffusion was the topic, upon which Fourier was known to be at
work, and this time the result was that great rarity, a work as important in
the history of physics as it is in the history of mathematics.

As the 19th century wore on, the Grand Prix in mathematics had mixed
results. A question on the perturbations of elliptic orbits was first set in 1840
but only answered successfully (by Hansen) in 1846, but other questions, on
the maxima and minima of multiple integrals and on Abelian functions,
were answered successfully within the initial two-year period, by Sarrus and
Rosenhain respectively. Then the commissions ran out of luck for a while.
Fermat’s Last Theorem was proposed in 1850, with Cauchy as the chairman
of the judges, but no satisfactory answers were received, and the problem
was rolled over to 1853 before being abandoned. The spur for this was
Lamé’s argument using cyclotomic numbers, in 1847, in which he mistakenly
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supposed that such integers have a unique factorisation law. His error was
pointed out by Liouville, but this only inspired Cauchy to claim that he
could solve the problem, and order was not restored until Liouville brought
Kummer’s much more profound ideas to France [17, 30]. The distribution of
heat in an infinite body was the topic proposed in 1858 and finally withdrawn
in 1868. This competition is remembered only because Riemann’s entry was
passed over — the jury found that the way in which the results had been
discovered was insufficiently clear.

In 1865 Bertrand was in charge of a

Bernhard Riemann

question asking for an improvement to the
theory of second-order partial differential
equations, but there were no answers, and
the question was repeated; it was
answered to the satisfaction of the panel
by Bour in 1867. There were no answers
to the question Bonnet set in 1867 on al-
gebraic surfaces, and none to Puiseux’s
question (the three-body problem) in
1872. Singular moduli and complex mul-
tiplication in the theory of elliptic func-
tions drew no response in 1874, nor did
the suggestion that elliptic and Abelian
functions might be profitably applied to the theory of algebraic curves in
1878. However, in between those years Darboux did win the prize for an
essay on singular solutions of first-order partial differential equations.

In 1880 the Grand Prix was again awarded, for an essay ‘significantly im-
proving the theory of linear ordinary differential equations’. The prize went
to G.H. Halphen, for an essay on the invariants associated to a differential
equation, but the competition is best remembered for the second-place entry
from Poincaré on the theory of automorphic functions and the relationship
between non-Euclidean geometry and the nascent theory of Riemann sur-
faces (see [35] or [22] for fuller accounts).

In 1882 embarrassment came to the Paris academy. With Camille Jordan
in charge, they proposed an investigation of the number of ways a number
can be written as the sum of five squares. The young German mathematician
Hermann Minkowski, then only 18, and the English mathematician H.J.S.
Smith submitted entries that shared the prize. Unfortunately, Smith’s con-
tribution was confined to showing that he had already solved the problem
some years before. To make matters worse, by the time the result was an-
nounced, Smith had died. Hostile critics pounced on this to suggest that
Minkowski must have known of Smith’s work because he was surely too
young to have done the work on his own, and the ensuing row carried ugly
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hints of anti-semitism before the academy rightly pronounced itself satisfied
that Minkowski had been entirely independent of Smith [15].

They had better luck in 1886, when Halphen proposed a question gen-
eralising the regular solids that Goursat answered; in 1888 when Poincaré
asked about algebraic equations in two independent variables, and Picard
was awarded the prize; and in 1894 when Darboux asked for an improvement
in the theory of the deformation of surfaces, and the commission was able
to award the prize to Weingarten. A more famous award came in 1892 when
Hermite persuaded the academy to ask for the determination of the number
of prime numbers less than a given number (the prime number theorem),
the aim being to draw mathematicians to fill some of the gaps in Riemann’s
famous paper of 1857. He hoped in this way to get his friend Stieltjes to
write up the details in support of his 1885 claim to have solved the Rie-
mann hypothesis. As the closing date drew near, and even though Hermite
wrote to Stieltjes to encourage him, no essay was forthcoming. Instead, the
young Hadamard presented his doctoral thesis on entire functions in 1890,
and Hermite, who was one of the examiners, suggested that Hadamard find
applications for his ideas. Hadamard confessed that he had none, but he
soon realised that his new theory was just what was needed to resolve the
prime number theorem, and he submitted a long essay to that effect, which
was awarded the prize on 19 December 1892 [33, pp. 55–57]. Stieltjes never
found the proof he had incautiously claimed.

These competitions continued after World War I, when Julia, Lattès, and
Pincherle wrote essays on iteration theory [1, pp. 108–116]. The prize went
to Julia, with an honourable mention and 2,000 FFr to Lattès. Fatou, who
had decided not to enter the competition, was also awarded 2,000 FFr. His
work and Julia’s were strikingly similar, and at Julia’s request the question of
independence and priority was addressed directly. It was found that Julia’s
results, presented in a sealed letter to the academy as the competition rules
required, did indeed predate Fatou’s publications, but that the men had
worked independently.

Regardless of the problems administering the prizes, donors found them
attractive, until by 1850 there were thirteen different French prizes across
the sciences, all controlled from Paris. The number rose again after the
defeat of France in the Franco-Prussian War (1870–71), when there was a
widespread feeling that science had been allowed to decline too far and thus
contributed to the national defeat. The new prizes, like the more established
ones, were overwhelmingly retrospective, but to make them more attractive
it was argued that the reward should be financial rather than in the form of a
medal. The impact of these prizes was considerable, amounting to one third
to half of the winner’s annual salary, depending on whether or not he or she
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lived in Paris, and was often a huge boost to scientists when equipment was
needed.

The strictly mathematical prizes participated in this general shift. The
prix Poncelet was endowed by the wife of General Jean-Victor Poncelet after
his death in 1868 in order to carry out his dying wish that the sciences be
advanced. Poncelet himself had been one of the chief creators of projective
geometry in the 1820s, before turning to the theory of machines. His widow’s
generosity was augmented by a further sum of money, and the prize of 2,000
francs was inaugurated in 1876. It operated invariably as a retrospective
prize.

The prix Bordin was created by the

Sofia Kovalevskaya

will of Charles-Lauren Bordin, who died
in 1835 leaving the Institut de France
12,000 francs. The institute eventually
created an annual prize of 3,000 francs af-
ter the Company of Notaries had declined
a similar bequest, and the first prize was
awarded in 1854. Topics moved from the-
oretical physics to pure mathematics. In
1888, for example, the prize was offered
for an essay improving in some important
way the theory of motion of a solid body.
There is good evidence [11] that the topic
was set with Sonya Kovalevskaya’s work
in mind.

Kovalevskaya wrote to Mittag-Leffler over the summer of 1888 to say that
“Bertrand gave a large dinner in my honor, attended by Hermite, Picard,
Halphen, and Darboux. Three toasts were proposed in my honor, and Her-
mite and Darboux said openly that they have no doubt that I shall have
the prize” [11, p. 114]. Since Bertrand was the perpetual secretary of the
academy, Hermite was the most influential French mathematician behind
the scenes, and Darboux was on the panel of judges, they presumably knew
whereof they spoke. They had already extended the closing date so that her
essay could be received — it arrived late in the summer — and the prize was
awarded to her in December. That said, she won the essay for a fine piece
of analysis applying the theory of Abelian functions to rigid body motion,
thus showing how the new functions had their uses in physical problems.

In 1892 the advertised topic was in differential geometry, and Gabriel
Koenigs won with an essay on geodesics. In 1892 the topic was the appli-
cation of the theory of Abelian functions to geometry, then the domain of
a rising star, George Humbert, who duly won. In 1894 Paul Painlevé and
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Roger Liouville shared the prize for their essays on the use of algebraic in-
tegrals in problems in mechanics. In 1896 Hadamard won with an essay on
geodesics on surfaces, one of the few to respond to the work of Poincaré on
the same subject. The feeling that all these topics were set with a shrewd
eye to who was working actively on what subject deepens with what be-
came one of the more awkward incidents in the history of the prize [10, pp.
58–59]. The first draft of the paper Enriques and Severi submitted to the
committee of the Bordin prize was flawed. They became aware of these mis-
takes after a conversation with de Franchis, and withdrew their paper only
to make some corrections and to re-submit it, even though they knew that
Bagnera and de Franchis were also candidates for the same prize, and indeed
had better results. The prize went to Enriques and Severi, and de Franchis
complained through the intermediary of Guccia, the well-respected editor of
the Palermo Rendiconti (Bagnera and de Franchis were also Sicilian). As a
result, the same topic was advertised again as the prize for 1909, and this
time Bagnera and de Franchis won the prize.

The early years of the Steiner prize from the University of Berlin illus-
trates the problems of prize competitions only too well. It was endowed
in the will of the distinguished exponent of synthetic geometry, the Swiss
mathematician Jacob Steiner, who had taught most of his life at Berlin Uni-
versity and died in 1863. Steiner stipulated that the prize, of 8,000 Thaler,
be awarded once every two years for a geometric topic treated synthetically.7

The first time the prize was awarded, 1864, it was divided between Cremona
and Sturm for their answers to a question set by Weierstrass concerning cu-
bic surfaces, a currently active topic. In 1868 the prize was shared between
Kortum and H.J.S. Smith for works on cubic and quartic curves in the plane.
The competition ran easily enough as long as Steiner’s followers were still
alive, but soon successors proved hard to find. In 1870 Borchardt proposed
the topic of lines of curvature on surfaces, but no essays were forthcoming,
and in 1872 the prize went to Hesse for his work in geometry as a whole,
and in 1874 to Cremona, again in recognition of his work in general. In
1874 the judges called for entries on the theory of polyhedra, but none were
forthcoming and the topic was withdrawn in 1876. Instead, the prize was
awarded to H. Schröter for his work extending and deepening Steiner’s ge-
ometrical methods. The judges then announced a prize of 1,800 marks for
an essay on higher algebraic space curves, but there were no entries. The
closing date was extended to 1880, and the prize was awarded to Theodor
Reye ‘for his distinguished work on pure geometry’. In 1880 there was still
no satisfactory entry. The judges awarded the prize to L. Lindelöf for a
solution to Steiner’s problem about the maximum volume of polyhedra of

7In 1871 the Thaler was replaced by the German mark, at a rate of 1 Thaler =
3 German marks = 75 U.S. cents. The prize was worth well more than the average annual
income of a teacher.
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a given type and further extended the closing date for the essay originally
set in 1876. Finally, in 1882, they announced two significant essays that
were worthy of sharing the prize: Max Noether’s and Henri Halphen’s. A
third essay received an honourable mention, but the author’s name was not
revealed (most likely it was Rudolf Sturm, who promptly published on that
topic). And so it went on. In 1884 and 1888 Fiedler and Zeuthen were re-
warded for their distinguished contributions to geometry. Only in 1886 was
the prize awarded, to Ernst Kötter, for an essay on the question proposed
in 1882 and modified in 1884, which called for a theory of higher curves and
surfaces that invoked really existing objects to replace the imaginary points,
lines, and planes of contemporary algebraic geometry.

In 1888 Kronecker, with the support of Fuchs, asked that the terms of
reference of the prize be changed. This was difficult to achieve, but in late
1889 it was agreed that from 1890 the competition would be announced once
every five years, and in the event that no entry was judged satisfactory the
prize money could be allocated to significant work, primarily in the field
of geometry, written in the previous ten years — a marked relaxation of
the original rules. In this spirit, no entries having been received on the
set topic (lines of curvature on surfaces, again) Gundelfinger and Schottky
shared the prize in 1895. In 1900 Hilbert was awarded a one-third part of
the Steiner prize for his work on the foundations of geometry (Grundlagen
der Geometrie, 1899).

The other winners were Hauck and Lindemann. It was the same story in
1905, when the prize went to Darboux. One is forced to conclude that not
even a prize could rescue the methods of synthetic geometry from entering
into a prolonged eclipse.

Harnack noted that prize competitions were no longer favoured by the
Berlin Academy and declined in importance, and on a number of occasions
the prize had to be held back for want of a good enough entry [24, p. 397].
In fact, the prize competition organised by the Berlin Academy had terri-
ble results in the 19th century. It got off to an unfortunate start in 1836
when a question set by Dirichlet asking for numerical methods for solving
polynomial equations with real or complex roots drew no answers. In 1840
Dirichlet replaced this question with another, inspired by the recent work
of Abel, about integrals of algebraic functions. This question also drew no
response by the closing date in 1844, and he replaced it with a third, in
1852, where he asked for a proof that the differential equations of dynamics
cannot in general be reduced to integrals but require the introduction of
new analytic expressions. Dirichlet had his friend Jacobi’s work in mind,
as he had done in setting the earlier problem, in this case Jacobi’s analysis
of the spinning top. Yet again there were no answers. In 1858, by which
time Dirichlet had moved to Göttingen, Borchardt took up the challenge of
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setting an attractive question. He proposed the subject of lines of curvature
on surfaces, to no avail: Only one, unsatisfactory, essay was received. Fi-
nally, in 1864 Weierstrass proposed the topic of finding a significant problem
whose solution requires the new elliptic or Abelian functions, and the acad-
emy was able to award the prize for the first time, to Weierstrass’s former
student Schwarz for his work on minimal surfaces.

Repeated failure must have given the academicians pause, because the
prize was not offered again until 1894, when Lazarus Fuchs offered a topic
arising out of his own work on differential equations. This attracted no en-
tries, and was re-advertised, in a slightly altered form, in 1894, again without
success. In 1902 the prize was awarded to Mertens, a former graduate of
Berlin by then in Vienna, for his contributions to mathematics, and Fuchs’s
question was re-advertised as a question about functions of several variables
which are invariant under certain linear transformations. There were no
entries, and in 1910 the prize went to Koebe for his work on the uniformi-
sation theorem, and Frobenius asked a question about the class number of
the most general cyclotomic field. By 1914 there were no entries, and World
War I brought this dismal sequence to an end.

Other societies were more carefully managed. The Jablonowski Soci-
ety (more properly, the Fürstlich Jablonowshi’schen Gesellschaft der Wis-
senschaften) was founded in Leipzig by the Polish Prince Jablonowski in 1774
after some years as a private institution. He used it to propose prize prob-
lems and sponsored a journal. Problems were set in the domains of mathe-
matics and physics, economics, Polish history, and the history of the Slavs.
The society’s members were the professors of the University of Leipzig, and
they were responsible for running the competitions. In the early years of the
19th century the prizes became unattractive, but the society’s finances pros-
pered, and in 1846 it was influential in founding the Königlich Sächsischen
Gesellschaft der Wissenschaften zu Leipzig. They benefited from the affair
of the Göttingen Seven — seven professors, Gauss’s friend and colleague the
physicist Wilhelm Weber among them, who were expelled from the univer-
sity of Göttingen for refusing to accept the terms imposed by the Duke of
Cumberland. Weber moved to Leipzig and was one of a number of scientists
who built up the university’s reputation considerably in the 19th century.
The society remained active until 1948, when its leader moved to Jena, and
was refounded with help from the Polish government in 1978 with the aim
of improving German–Polish economic and cultural relations.

Guided by the Leipzig professors, the Jablonowski Society had more suc-
cess than many in proposing suitable topics. The first time the prize was
awarded after the mid-century reforms, in 1847, it went to H. Grassmann
for work connecting geometric analysis to Leibniz’s geometric characteris-
tic. In 1884 the society called for essays on the general surface of order 4,
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extending the work of Schläfli, Klein, Zeuthen and Rodenburg on cubic sur-
faces, and gave the prize two years later to Karl Rohn. In 1890 they asked
for essays extending the work of Sophus Lie on the invariant theory of arbi-
trary differential equations, and in 1893 they received an essay from M.A.
Tresse that he completed in 1895; he was awarded the prize in 1896. Tresse
was a student of Engel’s and Lie’s in Leipzig. In 1902 they asked for an
essay which would essentially complete the work of Poincaré on Neumann’s

method and the Dirichlet problem. This

Jules Henri Poincaré

was a propitious theme, and prizes went
to E.R. Neumann in 1905, Plemelj in 1911,
Neumann again in 1912, and Gustav Her-
glotz in 1914.

The Danish Academy of Sciences also
awarded prizes from time to time during
the 19th century. These seem to have
been managed in a traditional way, with
titles announced in advance, and in 1823
they had notable success when they awar-
ded Gauss the prize for his essay on the
conformal representation of one surface
on another. Other prizes were awarded in 1875, to Schubert for his work on
the enumerative geometry of cubic curves in space, and to Gram in 1884 for a
paper on the prime number theorem. Still, in these cases one notices that the
commission charged with conducting the prize had a shrewd eye to success.
In the 1820s Schumacher, a prominent geodesist and astronomer, who had
organised a survey of Denmark, knew very well that Gauss was conducting
a detailed survey of Hanover that was intended to extend the Danish survey,
because he was in extensive correspondence with him. What is more, the
prize question was formulated by Gauss himself, who then abstained from
entering the competition himself for two years before submitting his essay
[7, p. 102 n.]. In the 1870s the Danish geometer Zeuthen was particularly
attracted to enumerative geometry, a subject in which Schubert was emerg-
ing as the leading figure. Prizes otherwise seem to have been set almost
every year, more often on applied than on pure topics, and generally with
little success (only 14 times in the years 1800–1886 for which records are
easily accessible).8

A rare example of a successful prize competition is the one organised
by the Swedish mathematician Mittag-Leffler at the request of the Swedish

8I thank Jesper Lützen for this information and his guidance in my reading of the
standard source [29].
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king Oscar II, who wished in this way to mark his 60th birthday, but even
this illustrates the perils and pitfalls of such competitions [3]. Mittag-Leffler
enlisted Weierstrass and Hermite as judges, and together they proposed four
topics, while reserving the right to award the prize to any valuable entry on
the theory of functions if none of the questions were adequately answered.

Their choice of questions provoked Kro-

King Oscar II of Sweden

necker to claim that the fourth of these
had already been proposed, and indeed
that he had solved it, but this allegation
eventually petered out. By the closing
date twelve entries had been submitted
(there was also a late entry from an Eng-
lish angle-trisector). One entry stood out,
Henri Poincaré’s on the three-body prob-
lem. Poincaré had not only submitted a
memoir, but he had added to it as time
went by in answer to questions about his
work that Mittag-Leffler had sent to him.
This outraged Weierstrass, who insisted

that such irregular behaviour would never have been contemplated in Berlin.
In due course Poincaré was declared the winner, with Appell an honourable
second.

Poincaré was awarded the prize of 2,500 kroner and a gold medal, and
the printers of Acta Mathematica were instructed to start printing his re-
vised manuscript.9 Even at this stage Mittag-Leffler’s editorial assistant
Phragmén was raising points in the memoir that he did not understand,
and in answer to one of these Poincaré admitted that the memoir as it
stood was in serious error. Mittag-Leffler ordered the printing halted and
all copies of the printed version destroyed, doubtless to prevent his hostile
critics on the editorial board of Acta and beyond from finding ammunition
in the debacle. Then Poincaré found a way to profit from the mistake, and
in so doing created the theory of what are now called homoclinic tangles
thus opening the way to a mathematical theory of chaos. Mittag-Leffler
was happy to print the revised manuscript, but he also charged Poincaré
the full printing costs, which came to more than the original prize money.
So although the prize competition called forth several good entries and one
major paper in the history of mathematics, the stresses involved were too
great. No further royal competitions in mathematics were organised, and
the king, who had studied mathematics as a young man, found other ways
to support mathematicians. For example, he rewarded Kovalevskaya, who

9Barrow-Green [3, p. 58 n. 101] citing [16] observes that Mittag-Leffler’s annual salary
at the time was 7,000 kroner.
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was by then a professor in Stockholm, for a paper extending the work for
which she had won the prix Bordin.

Another well-known prize for the solution of a specific problem is the
recently awarded Wolfskehl prize, offered for a solution of Fermat’s Last
Theorem.10 This prize was first established by Paul Wolfskehl, who came
from a wealthy, charitable Jewish banking family. Paul Wolfskehl trained
as a doctor but took up the study of mathematics when multiple sclerosis
made it clear to him that he would soon be unable to practice. It is very
likely that the solace he found in mathematics during the long years of his
illness inspired him to create the prize. Wolfskehl died on 13 September
1906, and according to the terms of his will, 100,000 gold marks were set
aside for the correct solution of the problem. The Royal Society of Science
in Göttingen was charged with administering the fund and adjudicating the
solutions. Conditions for the prize were settled and published in 1908, and
there was a closing date of almost a century hence: 13 September 2007.
A proof of Fermat’s Last Theorem, or, if it is false, a characterisation of
the exponents for which it is true, would qualify for the prize, but a mere
counterexample would not.

From some perspectives, such as generating enthusiasm for mathematics,
the prize was a great success; from others, such as the advancement of
knowledge, it was a complete disaster. In the first year no fewer than 621
solutions were submitted, and over the years more than 5,000 came in. These
had to be read, the errors spotted, and the authors informed, who often
replied with attempts to fix their ‘proofs’. One can only assume that most, if
not all, of the authors knew very much less than Wolfskehl himself about the
depth of the problem, but one of them was Ferdinand Lindemann (famous for
his proof that π is transcendental) who failed twice, in 1901 and 1908. Much
work was also done in Berlin handling correspondence about the prize. Here
another doctor with a love for mathematics, Albert Fleck, dealt with so many
attempts on behalf of the Berlin Academy of Sciences, Lindemann’s among
them, that he was eventually awarded the Society’s silver Leibniz medal in
1915 for his work; mathematicians in Berlin referred to his operation as the
‘Fermat Clinic’. Estimates have varied over the years, too, about the cash
value of the prize. It turns out to have been prudently invested and to have
survived the strains of high inflation and the vicissitudes of German history
better than was often said. Had it been kept safely in gold, its present
value would be around $1,400,000. When finally it was awarded to Andrew
Wiles in 1997, it was worth DM 75,000 (approximately $37,000) but many
estimates had by then written it off and the best put it at around DM 10,000.

10This account follows [2].
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4. The Hilbert Problems

The most successful attempt to reverse the trend toward retrospective
prizes and to set problems on topics that would actually bring forth new
work is, of course, that of David Hilbert, who proposed 23 problems at the
International Congress of Mathematicians in Paris in 1900.11 His thrilling
opening words captured exactly the appeal of great problems: “Who among
us,” began Hilbert, “would not be glad to lift the veil behind which the
future lies hidden; to cast a glance at the next advances of our science and
at the secrets of its development during future centuries?” His close friend
Minkowski had encouraged him to seize the opportunity to shape the next
century in mathematics, writing to him that “Most alluring would be the
attempt to look into the future, in other words, a characterisation of the
problems to which the mathematicians should turn in the future. With this,
you might conceivably have people talking about your speech even decades
from now. Of course, prophecy is indeed a difficult thing”[36, p. 119].

The actual speech on the day was

David Hilbert

something of a disappointment, but in
their written, published form the prob-
lems gradually worked their charm on the
mathematical community. The text is in-
fused with Hilbert’s confidence that any
problem can be solved. He liked to pro-
claim on various occasions that there is
no ‘ignorabimus (we shall not know) in
mathematics’. He regarded great prob-
lems as crucial for the growth of math-
ematical knowledge, and he took two as
exemplary: Johann Bernoulli’s brachis-
tochrone problem, and Fermat’s Last The-

orem. The first is rooted in empirical sources, the second in the purely
mental thought processes of human beings, and creative mathematics, for
Hilbert, moves between the two. Thus problem solving and theory formation
go hand in hand. The brachistochrone problem had initiated the calculus
of variations, a branch of mathematics about to absorb some of Hilbert’s
own attention. Fermat’s Last Theorem had already led to Kummer’s work
on ideal numbers and thence to the theory of algebraic number fields, the
subject of Hilbert’s Zahlbericht of 1897.

Between these two sources, the applied one augmented by mention of
Poincaré’s recent solution of the three-body problem, Hilbert placed a num-

11See [23, 41] and numerous studies of the individual problems.
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ber of contemporary developments demonstrating the unity of mathematics
as he saw it. Whereas Poincaré on such occasions always sought to empha-
sise the importance of applications, Hilbert asserted that it was problems
rooted in purely mental thought processes that gave rise to practically ‘all
the finer problems of modern number and function theory.’ The result was
the miraculous pre-established harmony that the ‘mathematician encoun-
ters so often in the questions, methods, and ideas of various fields;’ Hilbert
gave the example of Felix Klein’s study of the Platonic solids, which wove a
complex theory that connected geometry, group theory, Riemann surfaces,
and Galois theory with the theory of linear differential equations.

The specific problems Hilbert raised, and there are more than 23 because
several problems come in families, are of various kinds, and cannot all be
considered here [23, 41]. Some are more like programmes, of which the sixth
is the most ambitious. It called for an axiomatisation of physics: Hilbert
had recently axiomatised geometry, which he saw as the best-understood
branch of science. He imagined that mechanics was ripe for similar treatment
and hoped that each branch of science could be dealt with in the same
way, because he felt that only an axiomatised theory could respond well to
the discoveries made by the experimenters. Indeed, the first six problems
form a coherent group focused on foundational questions. The first is the
continuum hypothesis, identified by Hilbert as the most interesting problem
of the day in set theory. The second calls for foundations for arithmetic,
necessary because Hilbert’s axiomatisation of geometry rested on otherwise
undefended assumptions about number. The first of these was already a
significant problem in mathematics, but the second was original with Hilbert
and proved difficult to sell, partly because the Italians, who were strong in
this area, bridled at Hilbert’s intervention, and partly because, at that time,
Hilbert had very little idea how it might be solved.

The next six problems belong to number theory and are largely alge-
braic: the transcendence of certain numbers, the Riemann hypothesis and
the distribution of prime numbers, and the solvability of any Diophantine
equation may be mentioned here. It is noteworthy that Hilbert’s hunches
were often wrong. The problem he thought might go first, the Riemann
hypothesis, is still with us, but the transcendence questions were solved rel-
atively soon, in the 1930s. The next six are largely geometric and of a more
specialist appeal, while the last five are in analysis, the direction in which
Hilbert’s own interests were going. To cite just three of these, he proposed
that a class of what he called ‘regular’ problems in the calculus of variations
should have analytic solutions, he asked for a study of boundary value prob-
lems and the Dirichlet problem, and he asked about the general theory of
calculus of variations.
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The selection of problems was remarkably well done. It is possible,
and interesting, to note that entire topics are missing that soon became
major areas of 20th century mathematics (topology, measure theory and
the Lebesgue integral, for example), but it is more important to note that,
in contrast to every learned society in the previous hundred years, Hilbert
picked topics that people wanted to work on. Hilbert’s problems did not
have a closing date of two years hence and a panel of judges appointed to
evaluate them; had that been the case there would indeed have been little to
show in the first few years. But Hilbert was aiming for longer-term success,
and this he achieved. The designated problems are an astute mixture of
those known to be important and those deriving from his own experience as
a mathematician, which was already broad and was rooted in the fertile soil
of the university of Göttingen. Very few seem unduly narrow, and several
have been profitably reformulated in light of later experience, a sure sign
that Hilbert was on to something deep.

Hilbert shrewdly allowed that a proof that something could not be done
counted as a solution, and not as an indication that there are things in math-
ematics we shall not know. He was also fortunate that many of his problems
retained interest even when it became clear that they were not going to have
the solution he expected. Solutions, as Hilbert astutely recognised, could
also be in the negative, as long as a genuine proof was given that the answer
could not be found by the stated means. His paradigm example was the
work of Abel and Galois that showed that the quintic equation could not be
solved by radicals.

Hilbert spoke of problems in mathematics in terms that can be echoed
today. Problems were a sure sign of life. The clarity and ease of compre-
hension often insisted upon for a mathematical theory, “I should still more
demand for a mathematical problem if it is to be perfect; for what is clear
and easily comprehended attracts, the complicated repels us. Moreover a
mathematical problem should be difficult in order to entice us, yet not com-
pletely inaccessible, lest it mock our efforts. It should be to us a signpost on
the tortuous paths to hidden truths, ultimately rewarding us by the pleasure
in the successful solution.” He argued in favour of rigour on the grounds
of simplicity, and extended this requirement as far as geometry, mechanics,
and even physics. He suggested that both generalisation and specialisation
had valuable roles to play in tackling problems.

5. Some Famous Retrospective Prizes

In 1895 the University of Kasan established a prize to recognise the
achievements of their distinguished rector in the early days of the univer-
sity, Nicolai Ivanovich Lobachevskii, one of the discoverers of non-Euclidean
geometry. The Lobachevskii prize was to be awarded for the best recent
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book on a geometrical subject, and particularly for books on non-Euclidean
geometry. It was awarded for the first time in 1897, when it went to Sophus
Lie for the third volume of his Theorie der Transformationsgruppen [1893].
Klein proposed Lie for the prize, a magnanimous gesture on his part since
Lie made what verged on a personal attack on Klein in the preface to that
book. The second time the prize was awarded was in 1900, when it went to
Wilhelm Killing for the second volume of his Einführung in der Grundlagen
der Geometrie. In 1904 the prize went to David Hilbert, for whom Poincaré
wrote a very strong recommendation adapted from his highly positive review
of Hilbert’s Grundlagen der Geometrie. In this connection it is amusing to
note that in 1905 the first award of the Wolfgang Bolyai prize of the Hungar-
ian Academy of Sciences went to Poincaré, while Hilbert received a special
citation, and in 1910 the second Bolyai award went to Hilbert with Poincaré
again the author of a glowing tribute. Sadly, this prize lapsed during World
War I12 but the Lobachevskii prize continues almost uninterrupted to this
day and numbers among its most distinguished recipients Hermann Weyl
(1927) and Kolmogorov (1986).

The Nobel prizes were established in the will of Alfred Nobel (1833–
1895), in which he created a fund: “the interest on which shall be annually
distributed in the form of prizes to those who, during the preceding year,
shall have conferred the greatest benefit on mankind.” These benefits were
to be found in work on physics, chemistry, physiology or medicine, literature,
and peace. There is no reason to suppose that Nobel seriously contemplated
a Nobel prize in mathematics, which was not and is not self-evidently benefi-
cial to mankind in the way the designated topics are.13 Nonetheless, Mittag-
Leffler does seem to have hoped that Nobel might have donated money to
the Swedish Hogskola (the precursor of the University of Stockholm) and
to have begun negotiations with him with that aim in mind. He was very
disappointed when Nobel did not do so. As Crawford writes: “although it
is not known how those in responsible positions at the Hogskola came to
believe that a large bequest was forthcoming, this indeed was the expec-
tation, and the disappointment was keen when it was announced early in
1897 that the Hogskola had been left out of Nobel’s final will in 1895. Re-
criminations followed, with both Pettersson and Arrhenius [academic rivals
of Mittag-Leffler in the administration of the Hogskola] letting it be known
that Nobel’s dislike for Mittag-Leffler had brought about what Pettersson
termed the ‘Nobel Flop’ ”[13, p. 53]. In any case, the Nobel prizes, in line
with 19th century experience, were entirely retrospective in nature.

12It was revived in 2000, when the prize went to S. Shelah for his Cardinal Arithmetic,
Oxford University Press, 1994.

13Economics was added in 1968, and one may wonder, once the dismal science has been
admitted, what else might one day qualify.
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During the second half of the 20th century the Fields Medals, awarded
every four years at the International Congress of Mathematicians (ICM),
established themselves as the most prestigious prize in mathematics. They
were established in the will of the Canadian mathematician John Charles
Fields (1863–1932). He had been involved in the organisation of the ICM in
Toronto in 1924, from which German mathematicians were excluded because
passions were still running intensely after World War I. This pained Fields,
who had been educated in Germany, so he endowed the medals, which were
awarded for the first time at the ICM in Oslo in 1936, four years after his
death. The original plan provided for two medals to be awarded at every
ICM. The number has since grown on occasion to three or four. Nor was
there an explicit statement that the prize be awarded only to people who
are under 40, although that has always been the case. These medals are
retrospective, as are almost all contemporary prizes.
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A polynomial relation f(x, y) = 0 in two variables defines a curve C0.
If the coefficients of the polynomial are rational numbers, then one can ask
for solutions of the equation f(x, y) = 0 with x, y ∈ Q, in other words
for rational points on the curve. If we consider a non-singular projective
model C of the curve, then topologically it is classified by its genus, and we
call this the genus of C0 also. Note that C0(Q) and C(Q) are either both
finite or both infinite. Mordell conjectured, and in 1983 Faltings proved, the
following deep result.

Theorem ([9]). If the genus of C0 is greater than or equal to 2, then
C0(Q) is finite.

As yet the proof is not effective so that one does not possess an algorithm
for finding the rational points. (There is an effective bound on the number
of solutions but that does not help much with finding them.)

The case of genus zero curves is much easier and was treated in detail by
Hilbert and Hurwitz [12]. They explicitly reduce to the cases of linear and
quadratic equations. The former case is easy and the latter is resolved by
the criterion of Legendre. In particular, for a non-singular projective model
C we find that C(Q) is non-empty if and only if C has p-adic points for all
primes p, and this in turn is determined by a finite number of congruences. If
C(Q) is non-empty, then C is parametrized by rational functions and there
are infinitely many rational points.

The most elusive case is that of genus 1. There may or may not be
rational solutions and no method is known for determining which is the case
for any given curve. Moreover when there are rational solutions there may
or may not be infinitely many. If a non-singular projective model C has a
rational point, then C(Q) has a natural structure as an abelian group with
this point as the identity element. In this case we call C an elliptic curve
over Q. (For a history of the development of this idea see [19].) In 1922
Mordell [15] proved that this group is finitely generated, thus fulfilling an
implicit assumption of Poincaré.

31
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Theorem. If C is an elliptic curve over Q, then

C(Q) ' Zr ⊕ C(Q)tors

for some integer r ≥ 0, where C(Q)tors is a finite abelian group.

The integer r is called the rank of C. It is zero if and only if C(Q) is
finite. We can find an affine model for the curve in Weierstrass form

C : y2 = x3 + ax+ b

with a, b ∈ Z. We let ∆ denote the discriminant of the cubic and set

Np := #{solutions of y2 ≡ x3 + ax+ b mod p},
ap := p−Np.

Then we can define the incomplete L-series of C (incomplete because we
omit the Euler factors for primes p|2∆) by

L(C, s) :=
∏
p-2∆

(1− app
−s + p1−2s)−1.

We view this as a function of the complex variable s and this Euler product
is then known to converge for Re(s) > 3/2. A conjecture going back to Hasse
(see the commentary on 1952(d) in [26]) predicted that L(C, s) should have
a holomorphic continuation as a function of s to the whole complex plane.
This has now been proved ([25], [24], [1]). We can now state the millenium
prize problem:

Conjecture (Birch and Swinnerton-Dyer). The Taylor expansion of
L(C, s) at s = 1 has the form

L(C, s) = c(s− 1)r + higher order terms

with c 6= 0 and r = rank(C(Q)).

In particular this conjecture asserts that L(C, 1) = 0 ⇔ C(Q) is infinite.

Remarks. 1. There is a refined version of this conjecture. In this version
one has to define Euler factors at primes p|2∆ to obtain the completed L-
series, L∗(C, s). The conjecture then predicts that L∗(C, s) ∼ c∗(s − 1)r

with
c∗ = |XC |R∞w∞

∏
p|2∆

wp/|C(Q)tors|2.

Here |XC | is the order of the Tate–Shafarevich group of the elliptic curve C,
a group which is not known in general to be finite although it is conjectured
to be so. It counts the number of equivalence classes of homogeneous spaces
of C which have points in all local fields. The termR∞ is an r×r determinant
whose matrix entries are given by a height pairing applied to a system of
generators of C(Q)/C(Q)tors. The wp’s are elementary local factors and w∞
is a simple multiple of the real period of C. For a precise definition of these
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factors see [20] or [22]. It is hoped that a proof of the conjecture would also
yield a proof of the finiteness of XC .

2. The conjecture can also be stated over any number field as well as
for abelian varieties, see [20]. Since the original conjecture was stated,
much more elaborate conjectures concerning special values of L-functions
have appeared, due to Tate, Lichtenbaum, Deligne, Bloch, Beilinson and
others, see [21], [3] and [2]. In particular, these relate the ranks of groups of
algebraic cycles to the order of vanishing (or the order of poles) of suitable
L-functions.

3. There is an analogous conjecture for elliptic curves over function fields.
It has been proved in this case by Artin and Tate [20] that the L-series has
a zero of order at least r, but the conjecture itself remains unproved. In the
function field case it is now known to be equivalent to the finiteness of the
Tate–Shafarevich group, [20], [17, Corollary 9.7].

4. A proof of the conjecture in the stronger form would give an effective
means of finding generators for the group of rational points. Actually, one
only needs the integrality of the term XC in the expression for L∗(C, s)
above, without any interpretation as the order of the Tate–Shafarevich
group. This was shown by Manin [16] subject to the condition that the
elliptic curves were modular, a property which is now known for all elliptic
curves by [25], [24], [1]. (A modular elliptic curve is one that occurs as a
factor of the Jacobian of a modular curve.)

1. Early History

Problems on curves of genus 1 feature prominently in Diophantus’ Arith-
metica. It is easy to see that a straight line meets an elliptic curve in three
points (counting multiplicity) so that if two of the points are rational then
so is the third.1 In particular, if a tangent is taken at a rational point, then
it meets the curve again in a rational point. Diophantus implicitly used this
method to obtain a second solution from a first. He did not iterate this
process, however, and it was Fermat who first realized that one can some-
times obtain infinitely many solutions in this way. Fermat also introduced
a method of ‘descent’ that sometimes permits one to show that the number
of solutions is finite or even zero.

One very old problem concerned with rational points on elliptic curves
is the congruent number problem. One way of stating it is to ask which ra-
tional integers can occur as the areas of right-angled triangles with rational
length sides. Such integers are called congruent numbers. For example, Fi-
bonacci was challenged in the court of Frederic II with the problem for n = 5,

1This was apparently first explicitly pointed out by Newton.
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and he succeeded in finding such a triangle. He claimed, moreover, that
there was no such triangle for n = 1, but the proof was fallacious and the
first correct proof was given by Fermat. The problem dates back to Arab
manuscripts of the 10th century (for the history see [27, Chapter 1, §VII]
and [7, Chapter XVI]). It is closely related to the problem of determining
the rational points on the curve Cn : y2 = x3 − n2x. Indeed,

Cn(Q) is infinite ⇐⇒ n is a congruent number.

Assuming the Birch and Swinnerton-Dyer conjecture (or even the weaker
statement that Cn(Q) is infinite ⇔ L(Cn, 1) = 0) one can show that any
n ≡ 5, 6, 7 mod 8 is a congruent number, and, moreover, Tunnell has shown,
again assuming the conjecture, that for n odd and square-free

n is a congruent number ⇐⇒
#{x, y, z ∈ Z : 2x2 + y2 + 8z2 = n}
= 2×#{x, y, z ∈ Z : 2x2 + y2 + 32z2 = n},

with a similar criterion if n is even [23]. Tunnell proved the implication left
to right unconditionally with the help of the main theorem of [5] described
below.

2. Recent History

It was the 1901 paper of Poincaré that started the modern theory of
rational points on curves and that first raised questions about the minimal
number of generators of C(Q). The conjecture itself was first stated in the
form we have given in the early 1960s (see [4]). It was found experimentally
using one of the early EDSAC computers at Cambridge. The first general
result proved was for elliptic curves with complex multiplication. The curves
with complex multiplication fall into a finite number of families including
{y2 = x3 − Dx} and {y2 = x3 − k} for varying D, k 6= 0. This theorem
was proved in 1976 and is due to Coates and Wiles [5]. It states that if
C is a curve with complex multiplication and L(C, 1) 6= 0, then C(Q) is
finite. In 1983 Gross and Zagier showed that if C is a modular elliptic curve
and L(C, 1) = 0 but L′(C, 1) 6= 0, then an earlier construction of Heegner
actually gives a rational point of infinite order. Using new ideas together
with this result, Kolyvagin showed in 1990 that for modular elliptic curves, if
L(C, 1) 6= 0 then r = 0 and if L(C, 1) = 0 but L′(C, 1) 6= 0 then r = 1. In the
former case Kolyvagin needed an analytic hypothesis which was confirmed
soon afterwards; see [6] for the history of this and for further references.
Finally as noted in remark 4 above it is now known that all elliptic curves
over Q are modular so that we now have the following result:

Theorem. If L(C, s) ∼ c(s− 1)m with c 6= 0 and m = 0 or 1, then the
conjecture holds.
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In the cases where m = 0 or 1 some more precise results on c (which of
course depends on the curve) are known by work of Rubin and Kolyvagin.

3. Rational Points on Higher-Dimensional Varieties

We began by discussing the diophantine properties of curves, and we
have seen that the problem of giving a criterion for whether C(Q) is finite
or not is only an issue for curves of genus 1. Moreover, according to the con-
jecture above, in the case of genus 1, C(Q) is finite if and only if L(C, 1) 6= 0.
In higher dimensions, if V is an algebraic variety, it is conjectured (see [14])
that if we remove from V (the closure of) all subvarieties that are images of
P1 or of abelian varieties, then the remaining open variety W should have
the property that W (Q) is finite. This has been proved by Faltings in the
case where V is itself a subvariety of an abelian variety [10].

This suggests that to find infinitely many points on V one should look
for rational curves or abelian varieties in V . In the latter case we can hope
to use methods related to the Birch and Swinnerton-Dyer conjecture to
find rational points on the abelian variety. As an example of this, consider
the conjecture of Euler from 1769 that x4 + y4 + z4 = t4 has no non-trivial
solutions. By finding a curve of genus 1 on the surface and a point of infinite
order on this curve, Elkies [8] found the solution

26824404 + 153656394 + 187967604 = 206156734.

His argument shows that there are infinitely many solutions to Euler’s equa-
tion.

In conclusion, although there has been some success in the last fifty years
in limiting the number of rational points on varieties, there are still almost
no methods for finding such points. It is to be hoped that a proof of the
Birch and Swinnerton-Dyer conjecture will give some insight concerning this
general problem.
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1. Statement

We recall that a pseudo complex structure on a C∞-manifold X of di-
mension 2N is a C-module structure on the tangent bundle TX . Such a
module structure induces an action of the group C∗ on TX , with λ ∈ C∗

acting by multiplication by λ. By transport of structures, the group C∗

acts also on each exterior power ∧nTX , as well as on the complexified dual
Ωn := Hom(∧nTX ,C). For p + q = n, a (p, q)-form is a section of Ωn on
which λ ∈ C∗ acts by multiplication by λ−pλ̄−q.

From now on, we assume X complex analytic. A (p, q)-form is then a
form which, in local holomorphic coordinates, can be written as∑

ai1,...,ip,j1...jqdzi1∧ · · · ∧dzip∧dz̄j1∧ · · · ∧dz̄jq ,

and the decomposition Ωn = ⊕Ωp,q induces a decomposition d = d′ + d′′ of
the exterior differential, with d′ (resp. d′′) of degree (1, 0) (resp. (0, 1)).

If X is compact and admits a Kähler metric, for instance if X is a
projective non-singular algebraic variety, this action of C∗ on forms induces
an action on cohomology. More precisely, Hn(X,C) is the space of closed
n-forms modulo exact forms, and if we define Hp,q to be the space of closed
(p, q)-forms modulo the d′d′′ of (p− 1, q − 1)-forms, the natural map

(1) ⊕
p+q=n

Hp,q → Hn(X,C)

is an isomorphism. If we choose a Kähler structure on X, one can give the
following interpretation to the decomposition (1) of Hn(X,C): the action of
C∗ on forms commutes with the Laplace operator, hence induces an action
of C∗ on the space Hn of harmonic n-forms. We have Hn ∼−→ Hn(X,C)
and Hp,q identifies with the space of harmonic (p, q)-forms.

When X moves in a holomorphic family, the Hodge filtration F p :=
⊕

a≥p
Ha,n−a of Hn(X,C) is better behaved than the Hodge decomposition.

Locally on the parameter space T , Hn(Xt,C) is independent of t ∈ T and the
Hodge filtration can be viewed as a variable filtration F (t) on a fixed vector
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space. It varies holomorphically with t, and obeys Griffiths transversality:
at first order around t0 ∈ T , F p(t) remains in F p−1(t0).

So far, we have computed cohomology using C∞ forms. We could as well
have used forms with generalized functions coefficients, that is, currents.
The resulting groups Hn(X,C) and Hp,q are the same. If Z is a closed
analytic subspace of X, of complex codimension p, Z is an integral cycle
and, by Poincaré duality, defines a class cl(Z) in H2p(X,Z). The integration
current on Z is a closed (p, p)-form with generalized function coefficients,
representing the image of cl(Z) in H2p(X,C). The class cl(Z) in H2p(X,Z)
is hence of type (p, p), in the sense that its image in H2p(X,C) is. Rational
(p, p)-classes are called Hodge classes. They form the group

H2p(X,Q) ∩Hp,p(X) = H2p(X,Q) ∩ F p ⊂ H2p(X,C).

In [6], Hodge posed the

Hodge Conjecture. On a projective non-singular algebraic variety
over C, any Hodge class is a rational linear combination of classes cl(Z) of
algebraic cycles.

2. Remarks

(i) By Chow’s theorem, on a complex projective variety, algebraic cycles are
the same as closed analytic subspaces.

(ii) On a projective non-singular variety X over C, the group of integral
linear combinations of classes cl(Z) of algebraic cycles coincides with the
group of integral linear combinations of products of Chern classes of alge-
braic (equivalently by GAGA: analytic) vector bundles. To express cl(Z)
in terms of Chern classes, one resolves the structural sheaf OZ by a finite
complex of vector bundles. That Chern classes are algebraic cycles holds,
basically, because vector bundles have plenty of meromorphic sections.

(iii) A particular case of (ii) is that the integral linear combinations of classes
of divisors (= codimension 1 cycles) are simply the first Chern classes of line
bundles. If Z+ − Z− is the divisor of a meromorphic section of L, c1(L) =
cl(Z+) − cl(Z−). This is the starting point of the proof given by Kodaira
and Spencer [7] of the Hodge conjecture for H2: a class c ∈ H2(X,Z) of
type (1, 1) has image 0 in the quotient H0,2 = H2(X,O) of H2(X,C), and
the long exact sequence of cohomology defined by the exponential exact
sequence

0 −−−−→ Z −−−−→ O
exp(2πi )−−−−−−−→ O∗ −−−−→ 0

shows that c is the first Chern class of a line bundle.
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(iv) The relation between algebraic cycles and algebraic vector bundles is
also the basis of the Atiyah and Hirzebruch theorem [2] that the Hodge con-
jecture cannot hold integrally. In the Atiyah–Hirzebruch spectral sequence
from cohomology to topological K-theory,

Epq
2 = Hp(X,Kq(P t)) =⇒ Kp+q(X);

the resulting filtration of Kn(X) is by the

F pKn(X) = Ker(Kn(X) → Kn((p− 1)-skeleton, in any triangulation)).

Equivalently, a class c is in F p if for some topological subspace Y of codi-
mension p, c is the image of a class c̃ with support in Y . If Z is an algebraic
cycle of codimension p, a resolution of OZ defines a K-theory class with
support in Z: cZ ∈ K0(X,X − Z). Its image in F pK0(X) agrees with the
class of Z in H2p(X,Z). The latter hence is in the kernel of the successive
differentials dr of the spectral sequence.

No counterexample is known to the statement that integral (p, p) classes
killed by all dr are integral linear combinations of classes cl(Z). One has no
idea of which classes should be effective, that is, of the form cl(Z), rather
than a difference of such.

On a Stein manifold X, any topological complex vector bundle can be
given a holomorphic structure and, at least for X of the homotopy type of
a finite CW complex, it follows that any class in H2p(X,Z) in the kernel of
all dr is a Z-linear combination of classes of analytic cycles.

(v) The assumption in the Hodge conjecture that X be algebraic cannot
be weakened to X being merely Kähler. See Zucker’s appendix to [11] for
counterexamples where X is a complex torus.

(vi) When Hodge formulated his conjecture, he had not realized it could
hold only rationally (i.e. after tensoring with Q). He also proposed a further
conjecture, characterizing the subspace of Hn(X,Z) spanned by the images
of cohomology classes with support in a suitable closed analytic subspace of
complex codimension k. Grothendieck observed that this further conjecture
is trivially false, and gave a corrected version of it in [5].

3. The Intermediate Jacobian

The cohomology class of an algebraic cycle Z of codimension p has a
natural lift to a group Jp(X), extension of the group of classes of type (p, p)
in H2p(X,Z) by the intermediate jacobian

Jp(X)0 := H2p−1(X,Z) \H2p−1(X,C)/F p.

This expresses that the class can be given an integral description (in singular
cohomology), as well as an analytic one, as a closed (p, p) current, giving a
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hypercohomology class in H2p of the subcomplex F pΩ∗
hol := (0 → · · · → 0 →

Ωp
hol → · · · ) of the holomorphic de Rham complex, with an understanding

at the cocycle level of why the two agree in H2p(X,C). ‘Understanding’
means a cochain in a complex computing H∗(X,C), whose coboundary is
the difference between cocycles coming from the integral, resp. analytic,
constructions. Indeed, Jp(X) is the hypercohomology H2p of the homotopy
kernel of the difference map Z⊕ F pΩ∗

hol → Ω∗.

In general, using that all algebraic cycles on X fit in a denumerable
number of algebraic families, one checks that the subgroup Ap(X) of Jp(X)
generated by algebraic cycles is the extension of a denumerable group by
its connected component A0

p(X), and that for some sub-Hodge structure
Halg of type {(p− 1, p), (p, p− 1)} of H2p−1(X), A0

p(X) is HalgZ \HalgC/F
p.

‘Sub-Hodge structure’ means the subgroup of the integral lattice whose
complexification is the sum of its intersections with the Ha,b. The Hodge
conjecture (applied to the product of X and a suitable abelian variety)
predicts that Halg is the largest sub-Hodge structure of H2p−1(X) of type
{(p− 1, p)(p, p− 1)}.

No conjecture is available to predict what subgroup of Jp(X) the group
Ap(X) is. Cases are known where Ap(X)/A0

p(X) is of infinite rank. See,
for instance, the paper [9] and the references it contains. This has made
generally inapplicable the methods introduced by Griffiths (see, for instance,
Zucker [11]) to prove the Hodge conjecture by induction on the dimension of
X, using a Lefschetz pencil of hyperplane sections of X. Indeed, the method
requires not just the Hodge conjecture for the hyperplane sections H, but
that all of Jp(H) comes from algebraic cycles.

4. Detecting Hodge Classes

Let (Xs)s∈S be an algebraic family of projective non-singular algebraic
varieties: the fibers of a projective and smooth map f : X → S. We assume
it is defined over the algebraic closure Q̄ of Q in C. No algorithm is known
to decide whether a given integral cohomology class of a typical fiber X0 is
somewhere on S of type (p, p). The Hodge conjecture implies that the locus
where this happens is a denumerable union of algebraic subvarieties of S
(known: see [4]), and is defined over Q̄ (unknown).

The Hodge conjecture is not known even in the following nice examples.

Example 1. For X of complex dimension N , the diagonal ∆ of X ×X
is an algebraic cycle of codimension N . The Hodge decomposition being
compatible with Künneth, the Künneth components cl(∆)a,b ∈ Ha(X) ⊗
Hb(X) ⊂ H2N (X ×X) (a+ b = 2N) of cl(∆) are Hodge classes.

Example 2. If η ∈ H2(X,Z) is the cohomology class of a hyperplane
section of X, the iterated cup product ηp : HN−p(X,C) → HN+p(X,C) is
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an isomorphism (hard Lefschetz theorem, proved by Hodge. See [10, IV.6]).
Let z ∈ HN−p(X,C) ⊗ HN−p(X,C) ⊂ H2N−2p(X × X) be the class such
that the inverse isomorphism (ηp)−1 is c 7→ pr1!(z ∪ pr∗2 c). The class z is
Hodge.

5. Motives

Algebraic varieties admit a panoply of cohomology theories, related over
C by comparison isomorphisms. Resulting structures on H∗(X,Z) should
be viewed as analogous to the Hodge structure. Examples: If X is defined
over a subfield K of C, with algebraic closure K̄ in C, Gal(K̄/K) acts on
H∗(X,Z) ⊗ Z` and H∗(X,C) = H∗(X,Z) ⊗ C has a natural K-structure
HDR(X over K), compatible with the Hodge filtration. Those cohomology
theories give rise to conjectures parallel to the Hodge conjecture, deter-
mining the linear span of classes of algebraic cycles. Example: the Tate
conjecture [8]. Those conjectures are open even for H2.

Grothendieck’s theory of motives aims at understanding the parallelism
between those cohomology theories. Progress is blocked by a lack of meth-
ods to construct interesting algebraic cycles. If the cycles of Examples 1
and 2 of §4 were algebraic, Grothendieck’s motives over C would form a
semi-simple abelian category with a tensor product, and be the category of
representations of some pro-reductive group-scheme. If the algebraicity of
those cycles is assumed, the full Hodge conjecture is equivalent to a natural
functor from the category of motives to the category of Hodge structures
being fully faithful.

6. Substitutes and Weakened Forms

In despair, efforts have been made to find substitutes for the Hodge con-
jecture. On abelian varieties, Hodge classes at least share many properties
of cohomology classes of algebraic cycles: they are “absolutely Hodge” [3],
even “motivated” [1]. This suffices for some applications — for instance,
the proof of algebraic relations among periods and quasi periods of abelian
varieties predicted by the Hodge conjecture [3], but does not allow for re-
duction modulo p. The following corollaries of the Hodge conjecture would
be particularly interesting. Let A be an abelian variety over the algebraic
closure F of a finite field Fq. Lift A in two different ways to characteristic 0,
to complex abelian varieties A1 and A2 defined over Q̄. Pick Hodge classes
z1 and z2 on A1 and A2, of complementary dimension. Interpreting z1 and
z2 as `-adic cohomology classes, one can define the intersection number κ
of the reduction of z1 and z2 over F. Is κ a rational number? If z1 and z2
were cl(Z1) and cl(Z2), Z1 and Z2 could be chosen to be defined over Q̄ and
κ would be the intersection number of the reductions of Z1 and Z2. Same
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question for the intersection number of the reduction of z1 over F with the
class of an algebraic cycle on A.
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The Euler and Navier–Stokes equations describe the motion of a fluid in
Rn(n = 2 or 3). These equations are to be solved for an unknown velocity
vector u(x, t) = (ui(x, t))1≤i≤n ∈ Rn and pressure p(x, t) ∈ R, defined for
position x ∈ Rn and time t ≥ 0. We restrict attention here to incompressible
fluids filling all of Rn. The Navier–Stokes equations are then given by

∂

∂t
ui +

n∑
j=1

uj
∂ui

∂xj
= ν∆ui −

∂p

∂xi
+ fi(x, t) (x ∈ Rn, t ≥ 0),(1)

div u =
n∑

i=1

∂ui

∂xi
= 0 (x ∈ Rn, t ≥ 0)(2)

with initial conditions

(3) u(x, 0) = u◦(x) (x ∈ Rn).

Here, u◦(x) is a given, C∞ divergence-free vector field on Rn, fi(x, t) are the
components of a given, externally applied force (e.g. gravity), ν is a positive

coefficient (the viscosity), and ∆ =
n∑

i=1

∂2

∂x2
i

is the Laplacian in the space

variables. The Euler equations are equations (1), (2), (3) with ν set equal
to zero.

Equation (1) is just Newton’s law f = ma for a fluid element subject to
the external force f = (fi(x, t))1≤i≤n and to the forces arising from pressure
and friction. Equation (2) just says that the fluid is incompressible. For
physically reasonable solutions, we want to make sure u(x, t) does not grow
large as |x| → ∞. Hence, we will restrict attention to forces f and initial
conditions u◦ that satisfy

(4) |∂α
xu

◦(x)| ≤ CαK(1 + |x|)−K on Rn, for any α and K

and

(5) |∂α
x ∂

m
t f(x, t)| ≤ CαmK(1+|x|+t)−K on Rn×[0,∞), for any α,m,K.
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We accept a solution of (1), (2), (3) as physically reasonable only if it satisfies

(6) p, u ∈ C∞(Rn × [0,∞))

and

(7)
∫

Rn

|u(x, t)|2dx < C for all t ≥ 0 (bounded energy).

Alternatively, to rule out problems at infinity, we may look for spatially
periodic solutions of (1), (2), (3). Thus, we assume that u◦(x), f(x, t) satisfy

(8) u◦(x+ ej) = u◦(x), f(x+ ej , t) = f(x, t) for 1 ≤ j ≤ n

(ej = jth unit vector in Rn).

In place of (4) and (5), we assume that u◦ is smooth and that

(9) |∂α
x ∂

m
t f(x, t)| ≤ CαmK(1 + |t|)−K on R3 × [0,∞), for any α,m,K.

We then accept a solution of (1), (2), (3) as physically reasonable if it satisfies

(10) u(x, t) = u(x+ ej , t) on R3 × [0,∞) for 1 ≤ j ≤ n

and

(11) p, u ∈ C∞(Rn × [0,∞)).

A fundamental problem in analysis is to decide whether such smooth,
physically reasonable solutions exist for the Navier–Stokes equations. To
give reasonable leeway to solvers while retaining the heart of the problem,
we ask for a proof of one of the following four statements.

(A) Existence and smoothness of Navier–Stokes solutions on R3.
Take ν > 0 and n = 3. Let u◦(x) be any smooth, divergence-free vector field
satisfying (4). Take f(x, t) to be identically zero. Then there exist smooth
functions p(x, t), ui(x, t) on R3 × [0,∞) that satisfy (1), (2), (3), (6), (7).

(B) Existence and smoothness of Navier–Stokes solutions in R3/Z3.
Take ν > 0 and n = 3. Let u◦(x) be any smooth, divergence-free vector field
satisfying (8); we take f(x, t) to be identically zero. Then there exist smooth
functions p(x, t), ui(x, t) on R3 × [0,∞) that satisfy (1), (2), (3), (10), (11).

(C) Breakdown of Navier–Stokes solutions on R3. Take ν > 0 and
n = 3. Then there exist a smooth, divergence-free vector field u◦(x) on R3

and a smooth f(x, t) on R3× [0,∞), satisfying (4), (5), for which there exist
no solutions (p, u) of (1), (2), (3), (6), (7) on R3 × [0,∞).

(D) Breakdown of Navier–Stokes Solutions on R3/Z3. Take ν > 0
and n = 3. Then there exist a smooth, divergence-free vector field u◦(x) on
R3 and a smooth f(x, t) on R3 × [0,∞), satisfying (8), (9), for which there
exist no solutions (p, u) of (1), (2), (3), (10), (11) on R3 × [0,∞).
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These problems are also open and very important for the Euler equations
(ν = 0), although the Euler equation is not on the Clay Institute’s list of
prize problems.

Let me sketch the main partial results known regarding the Euler and
Navier–Stokes equations, and conclude with a few remarks on the impor-
tance of the question.

In two dimensions, the analogues of assertions (A) and (B) have been
known for a long time (Ladyzhenskaya [4]), also for the more difficult case
of the Euler equations. This gives no hint about the three-dimensional case,
since the main difficulties are absent in two dimensions. In three dimensions,
it is known that (A) and (B) hold provided the initial velocity u◦ satisfies
a smallness condition. For initial data u◦(x) not assumed to be small, it is
known that (A) and (B) hold (also for ν = 0) if the time interval [0,∞) is
replaced by a small time interval [0, T ), with T depending on the initial data.
For a given initial u◦(x), the maximum allowable T is called the “blowup
time.” Either (A) and (B) hold, or else there is a smooth, divergence-free
u◦(x) for which (1), (2), (3) have a solution with a finite blowup time. For
the Navier–Stokes equations (ν > 0), if there is a solution with a finite
blowup time T , then the velocity (ui(x, t))1≤i≤3 becomes unbounded near
the blowup time.

Other unpleasant things are known to happen at the blowup time T , if
T <∞. For the Euler equations (ν = 0), if there is a solution (with f ≡ 0,
say) with finite blowup time T , then the vorticity ω(x, t) = curlx u(x, t)
satisfies

∫ T

0

{
sup
x∈R3

|ω(x, t)|
}
dt = ∞ (Beale–Kato–Majda),

so that the vorticity blows up rapidly.

Many numerical computations appear to exhibit blowup for solutions of
the Euler equations, but the extreme numerical instability of the equations
makes it very hard to draw reliable conclusions.

The above results are covered very well in the book of Bertozzi and
Majda [1].

Starting with Leray [5], important progress has been made in under-
standing weak solutions of the Navier–Stokes equations. To arrive at the
idea of a weak solution of a PDE, one integrates the equation against a test
function, and then integrates by parts (formally) to make the derivatives fall
on the test function. For instance, if (1) and (2) hold, then, for any smooth
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vector field θ(x, t) = (θi(x, t))1≤i≤n compactly supported in R3 × (0,∞), a
formal integration by parts yields

(12)
∫∫

R3×R

u · ∂θ
∂t
dxdt−

∑
ij

∫∫
R3×R

uiuj
∂θi

∂xj
dxdt

= ν

∫∫
R3×R

u ·∆θdxdt+
∫∫

R3×R

f · θdxdt−
∫∫

R3×R

p · (div θ)dxdt.

Note that (12) makes sense for u ∈ L2, f ∈ L1, p ∈ L1, whereas (1) makes
sense only if u(x, t) is twice differentiable in x. Similarly, if ϕ(x, t) is a smooth
function, compactly supported in R3 × (0,∞), then a formal integration by
parts and (2) imply

(13)
∫∫

R3×R

u · 5xϕdxdt = 0.

A solution of (12), (13) is called a weak solution of the Navier–Stokes
equations.

A long-established idea in analysis is to prove existence and regularity
of solutions of a PDE by first constructing a weak solution, then showing
that any weak solution is smooth. This program has been tried for Navier–
Stokes with partial success. Leray in [5] showed that the Navier–Stokes
equations (1), (2), (3) in three space dimensions always have a weak solution
(p, u) with suitable growth properties. Uniqueness of weak solutions of the
Navier–Stokes equation is not known. For the Euler equation, uniqueness
of weak solutions is strikingly false. Scheffer [8], and, later, Schnirelman [9]
exhibited weak solutions of the Euler equations on R2 × R with compact
support in spacetime. This corresponds to a fluid that starts from rest at
time t = 0, begins to move at time t = 1 with no outside stimulus, and
returns to rest at time t = 2, with its motion always confined to a ball
B ⊂ R3.

Scheffer [7] applied ideas from geometric measure theory to prove a par-
tial regularity theorem for suitable weak solutions of the Navier–Stokes equa-
tions. Caffarelli–Kohn–Nirenberg [2] improved Scheffer’s results, and F.-H.
Lin [6] simplified the proofs of the results in Caffarelli–Kohn–Nirenberg [2].
The partial regularity theorem of [2], [6] concerns a parabolic analogue of
the Hausdorff dimension of the singular set of a suitable weak solution of
Navier–Stokes. Here, the singular set of a weak solution u consists of all
points (x◦, t◦) ∈ R3 × R such that u is unbounded in every neighborhood
of (x◦, t◦). (If the force f is smooth, and if (x◦, t◦) doesn’t belong to the
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singular set, then it’s not hard to show that u can be corrected on a set of
measure zero to become smooth in a neighborhood of (x◦, t◦).)

To define the parabolic analogue of Hausdorff dimension, we use parabolic
cylinders Qr = Br × Ir ⊂ R3 × R, where Br ⊂ R3 is a ball of radius r, and
Ir ⊂ R is an interval of length r2. Given E ⊂ R3 × R and δ > 0, we set

PK,δ(E) = inf

{ ∞∑
i=1

rK
i : Qr1 , Qr2 , · · · cover E, and each ri < δ

}
and then define

PK(E) = lim
δ→0+

PK, δ(E).

The main results of [2], [6] may be stated roughly as follows.

Theorem. (A) Let u be a weak solution of the Navier–Stokes equations,
satisfying suitable growth conditions. Let E be the singular set of u. Then
P1(E) = 0.

(B) Given a divergence-free vector field u◦(x) and a force f(x, t) satisfy-
ing (4) and (5), there exists a weak solution of Navier–Stokes (1), (2), (3)
satisfying the growth conditions in (A).

In particular, the singular set of u cannot contain a spacetime curve of
the form {(x, t) ∈ R3 × R : x = φ(t)}. This is the best partial regularity
theorem known so far for the Navier–Stokes equation. It appears to be very
hard to go further.

Let me end with a few words about the significance of the problems
posed here. Fluids are important and hard to understand. There are many
fascinating problems and conjectures about the behavior of solutions of the
Euler and Navier–Stokes equations. (See, for instance, Bertozzi–Majda [1]
or Constantin [3].) Since we don’t even know whether these solutions exist,
our understanding is at a very primitive level. Standard methods from PDE
appear inadequate to settle the problem. Instead, we probably need some
deep, new ideas.
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1. Introduction

The topology of two-dimensional manifolds or surfaces was well under-
stood in the 19th century. In fact there is a simple list of all possible smooth
compact orientable surfaces. Any such surface has a well-defined genus
g ≥ 0, which can be described intuitively as the number of holes; and two
such surfaces can be put into a smooth one-to-one correspondence with each
other if and only if they have the same genus.1 The corresponding question

Figure 1. Sketches of smooth surfaces of genus 0, 1, and 2.

in higher dimensions is much more difficult. Henri Poincaré was perhaps
the first to try to make a similar study of three-dimensional manifolds. The
most basic example of such a manifold is the three-dimensional unit sphere,
that is, the locus of all points (x, y, z, w) in four-dimensional Euclidean space
which have distance exactly 1 from the origin: x2 + y2 + z2 + w2 = 1. He
noted that a distinguishing feature of the two-dimensional sphere is that
every simple closed curve in the sphere can be deformed continuously to a
point without leaving the sphere. In 1904, he asked a corresponding question
in dimension 3. In more modern language, it can be phrased as follows:2

1For definitions and other background material, see, for example, [21] or [29], as well
as [48].

2See [36, pages 498 and 370]. To Poincaré, manifolds were always smooth or polyhe-
dral, so that his term “homeomorphism” referred to a smooth or piecewise linear homeo-
morphism.
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Question. If a compact three-dimensional manifold M3 has the prop-
erty that every simple closed curve within the manifold can be deformed con-
tinuously to a point, does it follow that M3 is homeomorphic to the sphere
S3?

He commented, with considerable foresight, “Mais cette question nous
entrâınerait trop loin”. Since then, the hypothesis that every simply con-
nected closed 3-manifold is homeomorphic to the 3-sphere has been known as
the Poincaré Conjecture. It has inspired topologists ever since, and attempts
to prove it have led to many advances in our understanding of the topology
of manifolds.

2. Early Missteps

From the first, the apparently simple nature of this statement has led
mathematicians to overreach. Four years earlier, in 1900, Poincaré himself
had been the first to err, stating a false theorem that can be phrased as
follows.

False Theorem. Every compact polyhedral manifold with the homology
of an n-dimensional sphere is actually homeomorphic to the n-dimensional
sphere.

But his 1904 paper provided a beautiful counterexample to this claim,
based on the concept of fundamental group, which he had introduced earlier
(see [36, pp. 189–192 and 193–288]). This example can be described geo-
metrically as follows. Consider all possible regular icosahedra inscribed in
the two-dimensional unit sphere. In order to specify one particular icosa-
hedron in this family, we must provide three parameters. For example, two
parameters are needed to specify a single vertex on the sphere, and then
another parameter to specify the direction to a neighboring vertex. Thus
each such icosahedron can be considered as a single “point” in the three-
dimensional manifold M3 consisting of all such icosahedra.3 This manifold
meets Poincaré’s preliminary criterion: By the methods of homology theory,
it cannot be distinguished from the three-dimensional sphere. However, he
could prove that it is not a sphere by constructing a simple closed curve
that cannot be deformed to a point within M3. The construction is not
difficult: Choose some representative icosahedron and consider its images
under rotation about one vertex through angles 0 ≤ θ ≤ 2π/5. This defines
a simple closed curve in M3 that cannot be deformed to a point.

3In more technical language, this M3 can be defined as the coset space SO(3)/I60
where SO(3) is the group of all rotations of Euclidean 3-space and where I60 is the subgroup
consisting of the 60 rotations that carry a standard icosahedron to itself. The fundamental
group π1(M

3), consisting of all homotopy classes of loops from a point to itself within M3,
is a perfect group of order 120.
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Figure 2. The Whitehead link

The next important false theorem was by Henry Whitehead in 1934
[52]. As part of a purported proof of the Poincaré Conjecture, he claimed
the sharper statement that every open three-dimensional manifold that is
contractible (that can be continuously deformed to a point) is homeomorphic
to Euclidean space. Following in Poincaré’s footsteps, he then substantially
increased our understanding of the topology of manifolds by discovering
a counterexample to his own theorem. His counterexample can be briefly
described as follows. Start with two disjoint solid tori T0 and T̂1 in the 3-
sphere that are embedded as shown in Figure 2, so that each one individually
is unknotted, but so that the two are linked together with linking number
zero. Since T̂1 is unknotted, its complement T1 = S3rinterior(T̂1) is another
unknotted solid torus that contains T0. Choose a homeomorphism h of the 3-
sphere that maps T0 onto this larger solid torus T1. Then we can inductively
construct solid tori

T0 ⊂ T1 ⊂ T2 ⊂ · · ·
in S3 by setting Tj+1 = h(Tj). The union M3 =

⋃
Tj of this increasing

sequence is the required Whitehead counterexample, a contractible manifold
that is not homeomorphic to Euclidean space. To see that π1(M3) = 0, note
that every closed loop in T0 can be shrunk to a point (after perhaps crossing
through itself) within the larger solid torus T1. But every closed loop in M3

must be contained in some Tj , and hence can be shrunk to a point within
Tj+1 ⊂ M3. On the other hand, M3 is not homeomorphic to Euclidean
3-space since, if K ⊂M3 is any compact subset large enough to contain T0,
one can prove that the difference set M3 rK is not simply connected.

Since this time, many false proofs of the Poincaré Conjecture have been
proposed, some of them relying on errors that are rather subtle and difficult
to detect. For a delightful presentation of some of the pitfalls of three-
dimensional topology, see [4].

3. Higher Dimensions

The late 1950s and early 1960s saw an avalanche of progress with the
discovery that higher-dimensional manifolds are actually easier to work with
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than three-dimensional ones. One reason for this is the following: The fun-
damental group plays an important role in all dimensions even when it is
trivial, and relations between generators of the fundamental group corre-
spond to two-dimensional disks, mapped into the manifold. In dimension
5 or greater, such disks can be put into general position so that they are
disjoint from each other, with no self-intersections, but in dimension 3 or 4
it may not be possible to avoid intersections, leading to serious difficulties.

Stephen Smale announced a proof of the Poincaré Conjecture in high
dimensions in 1960 [41]. He was quickly followed by John Stallings, who
used a completely different method [43], and by Andrew Wallace, who had
been working along lines quite similar to those of Smale [51].

Let me first describe the Stallings result, which has a weaker hypothesis
and easier proof, but also a weaker conclusion. He assumed that the dimen-
sion is seven or more, but Christopher Zeeman later extended his argument
to dimensions 5 and 6 [54].

Stallings–Zeeman Theorem. If Mn is a finite simplicial complex
of dimension n ≥ 5 that has the homotopy type4 of the sphere Sn and is
locally piecewise linearly homeomorphic to the Euclidean space Rn, then Mn

is homeomorphic to Sn under a homeomorphism that is piecewise linear
except at a single point. In other words, the complement Mn r (point) is
piecewise linearly homeomorphic to Rn.

The method of proof consists of pushing all of the difficulties off toward
a single point; hence there can be no control near that point.

The Smale proof, and the closely related proof given shortly afterward
by Wallace, depended rather on differentiable methods, building a manifold
up inductively, starting with an n-dimensional ball, by successively adding
handles. Here a k-handle can be added to a manifold Mn with boundary
by first attaching a k-dimensional cell, using an attaching homeomorphism
from the (k − 1)-dimensional boundary sphere into the boundary of Mn,
and then thickening and smoothing corners so as to obtain a larger manifold
with boundary. The proof is carried out by rearranging and canceling such
handles. (Compare the presentation in [24].)

Smale Theorem. If Mn is a differentiable homotopy sphere of dimen-
sion n ≥ 5, then Mn is homeomorphic to Sn. In fact, Mn is diffeomorphic
to a manifold obtained by gluing together the boundaries of two closed n-balls
under a suitable diffeomorphism.

4In order to check that a manifold Mn has the same homotopy type as the sphere Sn,
we must check not only that it is simply connected, π1(M

n) = 0, but also that it has the
same homology as the sphere. The example of the product S2 × S2 shows that it is not
enough to assume that π1(M

n) = 0 when n > 3.
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Figure 3. A three-dimensional ball with a 1-handle attached

This was also proved by Wallace, at least for n ≥ 6. (It should be noted
that the five-dimensional case is particularly difficult.)

The much more difficult four-dimensional case had to wait twenty years,
for the work of Michael Freedman [8]. Here the differentiable methods used
by Smale and Wallace and the piecewise linear methods used by Stallings
and Zeeman do not work at all. Freedman used wildly non-differentiable
methods, not only to prove the four-dimensional Poincaré Conjecture for
topological manifolds, but also to give a complete classification of all closed
simply connected topological 4-manifolds. The integral cohomology group
H2 of such a manifold is free abelian. Freedman needed just two invariants:
The cup product β : H2 ⊗ H2 → H4 ∼= Z is a symmetric bilinear form
with determinant ±1, while the Kirby–Siebenmann invariant κ is an integer
mod 2 that vanishes if and only if the product manifold M4×R can be given
a differentiable structure.

Freedman Theorem. Two closed simply connected 4-manifolds are
homeomorphic if and only if they have the same bilinear form β and the same
Kirby–Siebenmann invariant κ. Any β can be realized by such a manifold.
If β(x ⊗ x) is odd for some x ∈ H2, then either value of κ can be realized
also. However, if β(x⊗ x) is always even, then κ is determined by β, being
congruent to one eighth of the signature of β.

In particular, if M4 is a homotopy sphere, then H2 = 0 and κ = 0, so
M4 is homeomorphic to S4. It should be noted that the piecewise linear
or differentiable theories in dimension 4 are much more difficult. It is not
known whether every smooth homotopy 4-sphere is diffeomorphic to S4; it
is not known which 4-manifolds with κ = 0 actually possess differentiable
structures; and it is not known when this structure is essentially unique.
The major results on these questions are due to Simon Donaldson [7]. As
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one indication of the complications, Freedman showed, using Donaldson’s
work, that R4 admits uncountably many inequivalent differentiable struc-
tures. (Compare [12].)

In dimension 3, the discrepancies between topological, piecewise linear,
and differentiable theories disappear (see [18], [28], and [26]). However,
difficulties with the fundamental group become severe.

4. The Thurston Geometrization Conjecture

In the two-dimensional case, each smooth compact surface can be given a
beautiful geometrical structure, as a round sphere in the genus zero case, as a
flat torus in the genus 1 case, and as a surface of constant negative curvature
when the genus is 2 or more. A far-reaching conjecture by William Thurston
in 1983 claims that something similar is true in dimension 3 [46]. This con-
jecture asserts that every compact orientable three-dimensional manifold
can be cut up along 2-spheres and tori so as to decompose into essentially
unique pieces, each of which has a simple geometrical structure. There are
eight possible three-dimensional geometries in Thurston’s program. Six of
these are now well understood,5 and there has been a great deal of progress
with the geometry of constant negative curvature.6 The eighth geometry,
however, corresponding to constant positive curvature, remains largely un-
touched. For this geometry, we have the following extension of the Poincaré
Conjecture.

Thurston Elliptization Conjecture. Every closed 3-manifold with
finite fundamental group has a metric of constant positive curvature and
hence is homeomorphic to a quotient S3/Γ, where Γ ⊂ SO(4) is a finite
group of rotations that acts freely on S3.

The Poincaré Conjecture corresponds to the special case where the group
Γ ∼= π1(M

3) is trivial. The possible subgroups Γ ⊂ SO(4) were classified
long ago by [19] (compare [23]), but this conjecture remains wide open.

5. Approaches through Differential Geometry
and Differential Equations7

In recent years there have been several attacks on the geometrization
problem (and hence on the Poincaré Conjecture) based on a study of the ge-
ometry of the infinite dimensional space consisting of all Riemannian metrics
on a given smooth three-dimensional manifold.

5See, for example, [13], [3], [38, 39, 40], [49], [9], and [6].
6See [44], [27], [47], [22], and [30]. The pioneering papers by [14] and [50] provided

the basis for much of this work.
7Added in 2004
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By definition, the length of a path γ on a Riemannian manifold is com-
puted, in terms of the metric tensor gij , as the integral

∫

γ
ds =

∫

γ

√∑
gijdxidxj .

From the first and second derivatives of this metric tensor, one can compute
the Ricci curvature tensor Rij, and the scalar curvature R. (As an example,
for the flat Euclidean space one gets Rij = R = 0, while for a round three-
dimensional sphere of radius r, one gets Ricci curvature Rij = 2gij/r

2 and
scalar curvature R = 6/r2.)

One approach by Michael Anderson, based on ideas of Hidehiko Yam-
abe [53], studies the total scalar curvature

∫∫∫
M3 RdV as a functional on

the space of all smooth unit volume Riemannian metrics. The critical points
of this functional are the metrics of constant curvature (see [1]).

A different approach, initiated by Richard Hamilton studies the Ricci
flow [15, 16, 17], that is, the solutions to the differential equation

dgij

dt
= −2Rij .

In other words, the metric is required to change with time so that distances
decrease in directions of positive curvature. This is essentially a parabolic
differential equationa and behaves much like the heat equation studied by
physicists: If we heat one end of a cold rod, then the heat will gradually
flow throughout the rod until it attains an even temperature. Similarly, a
naive hope for 3-manifolds with finite fundamental group might have been
that, under the Ricci flow, positive curvature would tend to spread out un-
til, in the limit (after rescaling to constant size), the manifold would attain
constant curvature. If we start with a 3-manifold of positive Ricci curva-
ture, Hamilton was able to carry out this program and construct a metric
of constant curvature, thus solving a very special case of the Elliptization
Conjecture. However, in the general case, there are very serious difficulties,
since this flow may tend toward singularities.8

I want to thank many mathematicians who helped me with this report.

May 2000, revised June 2004

8Grisha Perelman, in St. Petersburg, has posted three preprints on arXiv.org
which go a long way toward resolving these difficulties, and in fact claim to
prove the full geometrization conjecture [32, 33, 34]. These preprints have gen-
erated a great deal of interest. (Compare [2] and [25], as well as the web-
site http://www.math.lsa.umich.edu/research/ricciflow/perelman.html organized by B.
Kleiner and J. Lott.) However, full details have not appeared.
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to the Poincaré conjecture, Topology 22 (1983), 315–323.

[12] R. Gompf, An exotic menagerie, J. Differential Geom. 37 (1993) 199–223.
[13] C. Gordon and W. Heil, Cyclic normal subgroups of fundamental groups of 3-

manifolds, Topology 14 (1975), 305–309.
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see [31], [5], [20], [45], [11], [10], [37], and [35].)





The P versus NP Problem

Stephen Cook



The P versus NP Problem

Stephen Cook

1. Statement of the Problem

The P versus NP problem is to determine whether every language ac-
cepted by some nondeterministic algorithm in polynomial time is also ac-
cepted by some (deterministic) algorithm in polynomial time. To define
the problem precisely it is necessary to give a formal model of a computer.
The standard computer model in computability theory is the Turing ma-
chine, introduced by Alan Turing in 1936 [37]. Although the model was
introduced before physical computers were built, it nevertheless continues
to be accepted as the proper computer model for the purpose of defining the
notion of computable function.

Informally the class P is the class of decision problems solvable by some
algorithm within a number of steps bounded by some fixed polynomial in
the length of the input. Turing was not concerned with the efficiency of
his machines, rather his concern was whether they can simulate arbitrary
algorithms given sufficient time. It turns out, however, Turing machines can
generally simulate more efficient computer models (for example, machines
equipped with many tapes or an unbounded random access memory) by at
most squaring or cubing the computation time. Thus P is a robust class and
has equivalent definitions over a large class of computer models. Here we
follow standard practice and define the class P in terms of Turing machines.

Formally the elements of the class P are languages. Let Σ be a finite
alphabet (that is, a finite nonempty set) with at least two elements, and let
Σ∗ be the set of finite strings over Σ. Then a language over Σ is a subset
L of Σ∗. Each Turing machine M has an associated input alphabet Σ. For
each string w in Σ∗ there is a computation associated with M with input w.
(The notions of Turing machine and computation are defined formally in the
appendix.) We say that M accepts w if this computation terminates in the
accepting state. Note that M fails to accept w either if this computation
ends in the rejecting state, or if the computation fails to terminate. The
language accepted by M , denoted L(M), has associated alphabet Σ and is
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defined by
L(M) = {w ∈ Σ∗ |M accepts w}.

We denote by tM (w) the number of steps in the computation of M on input
w (see the appendix). If this computation never halts, then tM (w) = ∞.
For n ∈ N we denote by TM (n) the worst case run time of M ; that is,

TM (n) = max{tM (w) | w ∈ Σn},

where Σn is the set of all strings over Σ of length n. We say that M runs in
polynomial time if there exists k such that for all n, TM (n) ≤ nk + k. Now
we define the class P of languages by

P = {L | L = L(M) for some Turing machine M that runs

in polynomial time}.

The notation NP stands for “nondeterministic polynomial time”, since orig-
inally NP was defined in terms of nondeterministic machines (that is, ma-
chines that have more than one possible move from a given configuration).
However, now it is customary to give an equivalent definition using the no-
tion of a checking relation, which is simply a binary relation R ⊆ Σ∗ × Σ∗

1

for some finite alphabets Σ and Σ1. We associate with each such relation R
a language LR over Σ ∪ Σ1 ∪ {#} defined by

LR = {w#y | R(w, y)}

where the symbol # is not in Σ. We say that R is polynomial-time iff
LR ∈ P.

Now we define the class NP of languages by the condition that a lan-
guage L over Σ is in NP iff there is k ∈ N and a polynomial-time checking
relation R such that for all w ∈ Σ∗,

w ∈ L⇐⇒ ∃y(|y| ≤ |w|k and R(w, y)),

where |w| and |y| denote the lengths of w and y, respectively.

Problem Statement. Does P = NP?

It is easy to see that the answer is independent of the size of the alphabet
Σ (we assume |Σ| ≥ 2), since strings over an alphabet of any fixed size can
be efficiently coded by strings over a binary alphabet. (For |Σ| = 1 the
problem is still open, although it is possible that P = NP in this case but
not in the general case.)

It is trivial to show that P ⊆ NP, since for each language L over Σ, if
L ∈ P then we can define the polynomial-time checking relation R ⊆ Σ∗∪Σ∗

by
R(w, y) ⇐⇒ w ∈ L

for all w, y ∈ Σ∗.
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Here are two simple examples, using decimal notation to code natural
numbers: The set of perfect squares is in P, since Newton’s method can be
used to efficiently approximate square roots. The set of composite numbers
is in NP, where (denoting the decimal notation for a natural number c by
c) the associated polynomial time checking relation R is given by

(1) R(a, b) ⇐⇒ 1 < b < a and b|a.

(Recently it was shown that in fact the set of composite numbers is also in
P [1], answering a longstanding open question.)

2. History and Importance

The importance of the P vs NP question stems from the successful
theories of NP-completeness and complexity-based cryptography, as well as
the potentially stunning practical consequences of a constructive proof of
P = NP.

The theory of NP-completeness has its roots in computability theory,
which originated in the work of Turing, Church, Gödel, and others in the
1930s. The computability precursors of the classes P and NP are the classes
of decidable and c.e. (computably enumerable) languages, respectively. We
say that a language L is c.e. (or semi-decidable) iff L = L(M) for some
Turing machine M . We say that L is decidable iff L = L(M) for some Turing
machine M that satisfies the condition that M halts on all input strings w.
There is an equivalent definition of c.e. that brings out its analogy with
NP, namely L is c.e. iff there is a computable “checking relation” R(x, y)
such that L = {x | ∃yR(x, y)}.

Using the notation 〈M〉 to denote a string describing a Turing machine
M , we define the Halting Problem HP as follows:

HP = {〈M〉 |M is a Turing machine that halts on input 〈M〉}.

Turing used a simple diagonal argument to show that HP is not decidable.
On the other hand, it is not hard to show that HP is c.e.

Of central importance in computability theory is the notion of reducibil-
ity, which Turing defined roughly as follows: A language L1 is Turing re-
ducible to a language L2 iff there is an oracle Turing machine M that accepts
L1, where M is allowed to make membership queries of the form x ∈ L2,
which are correctly answered by an “oracle” for L2. Later, the more re-
stricted notion of many-one reducibility (≤m) was introduced and defined
as follows.

Definition 1. Suppose that Li is a language over Σi, i = 1, 2. Then
L1 ≤m L2 iff there is a (total) computable function f : Σ∗

1 → Σ∗
2 such that

x ∈ L1 ⇐⇒ f(x) ∈ L2, for all x ∈ Σ∗
1.
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It is easy to see that if L1 ≤m L2 and L2 is decidable, then L1 is
decidable. This fact provides an important tool for showing undecidability;
for example, if HP ≤m L, then L is undecidable.

The notion of NP-complete is based on the following notion from com-
putability theory:

Definition 2. A language L is c.e.-complete iff L is c.e., and L′ ≤m L
for every c.e. language L′.

It is easy to show that HP is c.e.-complete. It turns out that most
“natural” undecidable c.e. languages are, in fact, c.e.-complete. Since ≤m

is transitive, to show that a c.e. language L is c.e.-complete it suffices to
show that HP ≤m L.

The notion of polynomial-time computation was introduced in the 1960s
by Cobham [8] and Edmonds [13] as part of the early development of com-
putational complexity theory (although earlier von Neumann [38], in 1953,
distinguished between polynomial-time and exponential-time algorithms).
Edmonds called polynomial-time algorithms “good algorithms” and linked
them to tractable algorithms.

It has now become standard in complexity theory to identify polynomial-
time with feasible, and here we digress to discuss this point. It is of course
not literally true that every polynomial-time algorithm can be feasibly exe-
cuted on small inputs; for example, a computer program requiring n100 steps
could never be executed on an input even as small as n = 10. Here is a more
defensible statement (see [10]):

Feasibility Thesis. A natural problem has a feasible algorithm iff it
has a polynomial-time algorithm.

Examples of natural problems that have both feasible and polynomial-
time algorithms abound: Integer arithmetic, linear algebra, network flow,
linear programming, many graph problems (connectivity, shortest path,
minimum spanning tree, bipartite matching), etc. On the other hand, the
deep results of Robertson and Seymour [29] provide a potential source of
counterexamples to the thesis: They prove that every minor-closed family
of graphs can be recognized in polynomial time (in fact, in time O(n3)), but
the algorithms supplied by their method have such huge constants that they
are not feasible. However, each potential counterexample can be removed
by finding a feasible algorithm for it. For example, a feasible recognition
algorithm is known for the class of planar graphs, but none is currently
known for the class of graphs embeddable in R3 with no two cycles linked.
(Both examples are minor-closed families.) Of course the words “natural”
and “feasible”in the thesis above should be explained; generally we do not
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consider a class with a parameter as natural, such as the set of graphs em-
beddable on a surface of genus k, k > 1.

We mention two concerns related to the “only if” direction of the thesis.
The first comes from randomized algorithms. We discuss at the end of
Section 3 the possibility that a source of random bits might be used to greatly
reduce the recognition time required for some language. Note, however, that
it is not clear whether a truly random source exists in nature. The second
concern comes from quantum computers. This computer model incorporates
the idea of superposition of states from quantum mechanics and allows a
potential exponential speed-up of some computations over Turing machines.
For example, Shor [32] has shown that some quantum computer algorithm is
able to factor integers in polynomial time, but no polynomial-time integer-
factoring algorithm is known for Turing machines. Physicists have so far
been unable to build a quantum computer that can handle more than a
half-dozen bits, so this threat to the feasibility thesis is hypothetical at
present.

Returning to the historical treatment of complexity theory, in 1971 the
present author [9] introduced a notion of NP-completeness as a polynomial-
time analog of c.e.-completeness, except that the reduction used was a
polynomial-time analog of Turing reducibility rather than of many-one re-
ducibility. The main results in [9] are that several natural problems, in-
cluding Satisfiability and 3-SAT (defined below) and subgraph isomorphism
are NP-complete. A year later Karp [21] used these completeness results
to show that 20 other natural problems are NP-complete, thus forcefully
demonstrating the importance of the subject. Karp also introduced the now
standard notation P and NP and redefined NP-completeness using the
polynomial-time analog of many-one reducibility, a definition that has be-
come standard. Meanwhile Levin [23], independently of Cook and Karp, de-
fined the notion of “universal search problem”, similar to the NP-complete
problem, and gave six examples, including Satisfiability.

The standard definitions concerning NP-completeness are close analogs
of Definitions 1 and 2 above.

Definition 3. Suppose that Li is a language over Σi, i = 1, 2. Then
L1 ≤p L2 (L1 is p-reducible to L2) iff there is a polynomial-time computable
function f : Σ∗

1 → Σ∗
2 such that x ∈ L1 ⇐⇒ f(x) ∈ L2, for all x ∈ Σ∗

1.

Definition 4. A language L is NP-complete iff L is in NP, and L′ ≤p L
for every language L′ in NP.

The following proposition is easy to prove: Part (b) uses the transitivity
of ≤p, and part (c) follows from part (a).

Proposition 1. (a) If L1 ≤p L2 and L2 ∈ P, then L1 ∈ P.
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(b) If L1 is NP-complete, L2 ∈ NP, and L1 ≤p L2, then L2 is NP-
complete.

(c) If L is NP-complete and L ∈ P, then P=NP.

Notice that parts (a) and (b) have close analogs in computability the-
ory. The analog of part (c) is simply that if L is c.e.-complete then L is
undecidable. Part (b) is the basic method for showing new problems are
NP-complete, and part (c) explains why it is probably a waste of time
looking for a polynomial-time algorithm for an NP-complete problem.

In practice, a member of NP is expressed as a decision problem, and
the corresponding language is understood to mean the set of strings cod-
ing YES instances to the decision problem using standard coding methods.
Thus the problem Satisfiability is: Given a propositional formula F , deter-
mine whether F is satisfiable. To show that this is in NP, we define the
polynomial-time checking relation R(x, y), which holds iff x codes a propo-
sitional formula F and y codes a truth assignment to the variables of F
that makes F true. This problem was shown in [9] to be NP-complete
essentially by showing that, for each polynomial-time Turing machine M
that recognizes a checking relation R(x, y) for an NP language L, there is
a polynomial-time algorithm that takes as input a string x and produces a
propositional formula Fx (describing the computation of M on input (x, y),
with variables representing the unknown string y) such that Fx is satisfiable
iff M accepts the input (x, y) for some y with |y| ≤ |x|O(1).

An important special case of Satisfiability is 3-SAT, which was also
shown to be NP-complete in [9]. Instances of 3-SAT are restricted to formu-
las in conjunctive normal form with three literals per clause. For example,
the formula

(2) (P ∨Q ∨R) ∧ (P̄ ∨Q ∨ R̄) ∧ (P ∨ Q̄ ∨ S) ∧ (P̄ ∨ R̄ ∨ S̄)

is a YES instance to 3-SAT since the truth assignment τ satisfies the formula,
where τ(P ) = τ(Q) = True and τ(R) = τ(S) = False.

Many hundreds of NP-complete problems have been identified, including
SubsetSum (given a set of positive integers presented in decimal notation,
and a target T, is there a subset summing to T?), many graph problems
(given a graph G, does G have a Hamiltonian cycle? Does G have a clique
consisting of half of the vertices? Can the vertices of G be colored with
three colors with distinct colors for adjacent vertices?). These problems give
rise to many scheduling and routing problems with industrial importance.
The book [15] provides an excellent reference to the subject, with 300 NP-
complete problems listed in the appendix.

Associated with each decision problem in NP there is a search problem,
which is, given a string x, find a string y satisfying the checking relation
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R(x, y) for the problem (or determine that x is a NO instance to the prob-
lem). Such a y is said to be a certificate for x. In the case of an NP-complete
problem it is easy to see that the search problem can be efficiently reduced to
the corresponding decision problem. In fact, if P = NP, then the associated
search problem for every NP problem has a polynomial-time algorithm. For
example, an algorithm for the decision problem Satisfiability can be used to
find a truth assignment τ satisfying a given satisfiable formula F by, for each
variable P in F in turn, setting P to True in F or False in F , whichever
case keeps F satisfiable.

The set of complements of NP languages is denoted coNP. The com-
plement of an NP-complete language is thought not to be in NP; otherwise
NP = coNP. The set TAUT of tautologies (propositional formulas true
under all assignments) is the standard example of a coNP-complete lan-
guage. The conjecture NP 6= coNP is equivalent to the assertion that no
formal proof system (suitably defined) for tautologies has short (polynomial-
bounded) proofs for all tautologies [12]. This fact has motivated the devel-
opment of a rich theory of propositional proof complexity [22], one of whose
goals is to prove superpolynomial lower bounds on the lengths of proofs for
standard propositional proof systems.

There are interesting examples of NP problems not known to be either
in P or NP-complete. One example is the graph isomorphism problem:
Given two undirected graphs, determine whether they are isomorphic.

Another example, until recently, was the set of composite numbers. As
mentioned in the first section, this set is in NP, with checking relation (1),
but it is now known also to be in P [1]. However, the search problem asso-
ciated with the checking relation (1) is equivalent to the problem of integer
factoring and is thought unlikely to be solvable in polynomial time. In fact,
an efficient factoring algorithm would break the RSA public key encryption
scheme [28] commonly used to allow (presumably) secure financial transac-
tions over the Internet.

There is an NP decision problem with complexity equivalent to that of
integer factoring, namely

Lfact = {〈a, b〉 | ∃d(1 < d < a and d|b)}.

Given an integer b > 1, the smallest prime divisor of b can be found with
about log2 b queries to Lfact, using binary search. It is easy to see that
the complement of Lfact is also in NP: a certificate showing 〈a, b〉 is not
in Lfact could be the complete prime decomposition of b. Thus Lfact is a
good example of a problem in NP that seems unlikely to be either in P or
NP-complete.

Computational complexity theory plays an important role in modern
cryptography [16]. The security of the Internet, including most financial
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transactions, depends on complexity-theoretic assumptions such as the dif-
ficulty of integer factoring or of breaking DES (the Data Encryption Stan-
dard). If P = NP, these assumptions are all false. Specifically, an algorithm
solving 3-SAT in n2 steps could be used to factor 200-digit numbers in a few
minutes.

Although a practical algorithm for solving an NP-complete problem
(showing P = NP) would have devastating consequences for cryptography,
it would also have stunning practical consequences of a more positive na-
ture, and not just because of the efficient solutions to the many NP-hard
problems important to industry. For example, it would transform mathe-
matics by allowing a computer to find a formal proof of any theorem that
has a proof of reasonable length, since formal proofs can easily be recognized
in polynomial time. Such theorems may well include all of the CMI prize
problems. Although the formal proofs may not be initially intelligible to
humans, the problem of finding intelligible proofs would be reduced to that
of finding a recognition algorithm for intelligible proofs. Similar remarks ap-
ply to diverse creative human endeavors, such as designing airplane wings,
creating physical theories, or even composing music. The question in each
case is to what extent an efficient algorithm for recognizing a good result
can be found. This is a fundamental problem in artificial intelligence, and
one whose solution itself would be aided by the NP-solver by allowing easy
testing of recognition theories.

Even if P 6= NP it may still happen that every NP problem is sus-
ceptible to a polynomial-time algorithm that works on “most” inputs. This
could render cryptography impossible and bring about most of the benefits
of a world in which P = NP. This also motivates Levin’s theory [24], [18]
of average case completeness, in which the P = NP question is replaced by
the question of whether every NP problem with any reasonable probability
distribution on its inputs can be solved in polynomial time on average.

In [34] Smale lists the P vs NP question as problem 3 of mathematical
problems for the next century. However, Smale is interested not only in the
classical version of the question, but also in a version expressed in terms
of the field of complex numbers. Here Turing machines must be replaced
by a machine model that is capable of doing exact arithmetic and zero
tests on arbitrary complex numbers. The P vs NP question is replaced by
a question related to Hilbert’s Nullstellensatz: Is there a polynomial-time
algorithm that, given a set of k multivariate polynomials over C, determines
whether they have a common zero? See [4] for a development of complexity
theory in this setting.

The books by Papadimitriou [25] and Sipser [33] provide good intro-
ductions to mainstream complexity theory.
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3. The Conjecture and Attempts to Prove It

Most complexity theorists believe that P 6= NP. Perhaps this can be
partly explained by the potentially stunning consequences of P = NP men-
tioned above, but there are better reasons. We explain these by considering
the two possibilities in turn: P = NP and P 6= NP.

Suppose first that P = NP and consider how one might prove it. The
obvious way is to exhibit a polynomial-time algorithm for 3-SAT or one of the
other thousand or so known NP-complete problems, and, indeed, many false
proofs have been presented in this form. There is a standard toolkit available
[7] for devising polynomial-time algorithms, including the greedy method,
dynamic programming, reduction to linear programming, etc. These are
the subjects of a course on algorithms, typical in undergraduate computer
science curriculums. Because of their importance in industry, a vast number
of programmers and engineers have attempted to find efficient algorithms
for NP-complete problems over the past 30 years, without success. There
is a similar strong motivation for breaking the cryptographic schemes that
assume P 6= NP for their security.

Of course, it is possible that some nonconstructive argument, such as
the Robertson–Seymour proofs mentioned earlier in conjunction with the
Feasibility Thesis, could show that P = NP without yielding any feasible
algorithm for the standard NP-complete problems. At present, however, the
best proven upper bound on an algorithm for solving 3-SAT is approximately
1.5n, where n is the number of variables in the input formula.

Suppose, on the other hand, that P 6= NP, and consider how one might
prove it. There are two general methods that have been tried: diagonaliza-
tion with reduction and Boolean circuit lower bounds.

The method of diagonalization with reduction has been used very suc-
cessfully in computability theory to prove a host of problems undecidable,
beginning with the Halting Problem. It has also been used successfully in
complexity theory to prove super-exponential lower bounds for very hard de-
cidable problems. For example, Presburger arithmetic, the first-order theory
of integers under addition, is a decidable theory for which Fischer and Rabin
[14] proved that any Turing machine deciding the theory must use at least
22cn

steps in the worst case, for some c > 0. In general, lower bounds using
diagonalization and reduction relativize; that is, they continue to apply in a
setting in which both the problem instance and the solving Turing machine
can make membership queries to an arbitrary oracle set A. However, in
[3] it was shown that there is an oracle set A relative to which P = NP,
suggesting that diagonalization with reduction cannot be used to separate
these two classes. (There are nonrelativizing results in complexity theory, as
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will be mentioned below.) It is interesting to note that relative to a generic
oracle, P 6= NP [5, 11].

A Boolean circuit is a finite acyclic graph in which each non-input node,
or gate, is labelled with a Boolean connective; typically from {AND, OR,
NOT}. The input nodes are labeled with variables x1, ..., xn, and for each
assignment of 0 or 1 to each variable, the circuit computes a bit value at each
gate, including the output gate, in the obvious way. It is not hard to see that
if L is a language over {0, 1} that is in P, then there is a polynomial-size
family of Boolean circuits 〈Bn〉 such that Bn has n inputs, and for each bit
string w of length n, when w is applied to the n input nodes of Bn, then the
output bit of Bn is 1 iff w ∈ L. In this case we say that 〈Bn〉 computes L.

Thus to prove P 6= NP it suffices to prove a super-polynomial lower
bound on the size of any family of Boolean circuits solving some specific
NP-complete problem, such as 3-SAT. Back in 1949 Shannon [31] proved
that for almost all Boolean functions f : {0, 1}n → {0, 1}, any Boolean cir-
cuit computing f requires at least 2n/n gates. Unfortunately, his counting
argument gives no clue as to how to prove lower bounds for problems in NP.
Exponential lower bounds for NP problems have been proved for restricted
circuit models, including monotone circuits [26], [2] and bounded depth cir-
cuits with unbounded fan-in gates [17], [35] (see [6]). However, all attempts
to find even super-linear lower bounds for unrestricted Boolean circuits for
“explicitly given” Boolean functions have met with total failure; the best
such lower bound proved so far is about 4n. Razborov and Rudich [27]
explain this failure by pointing out that all methods used so far can be clas-
sified as “natural proofs”, and natural proofs for general circuit lower bounds
are doomed to failure, assuming a certain complexity-theoretic conjecture
asserting that strong pseudo-random number generators exist. Since such
generators have been constructed assuming the hardness of integer factor-
ization, we can infer the surprising result that a natural proof for a general
circuit lower bound would give rise to a more efficient factoring algorithm
than is currently known.

The failure of complexity theory to prove interesting lower bounds on
a general model of computation is much more pervasive than the failure
to prove P 6= NP. It is consistent with present knowledge that not only
could Satisfiability have a polynomial-time algorithm, it could have a linear
time algorithm on a multitape Turing machine. The same applies for all
21 problems mentioned in Karp’s original paper [21]. There are complexity
class separations that we know exist but cannot prove. For example, consider
the sequence of complexity class inclusions

LOGSPACE ⊆ P⊆ NP⊆ PSPACE .

A simple diagonal argument shows that the first is a proper subset of the
last, but we cannot prove any particular adjacent inclusion is proper.
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As another example, let LINEAR-SIZE be the class of languages over
{0, 1} that can be computed by a family 〈Bn〉 of Boolean circuits of sizeO(n).
It is not known whether either P or NP is a subset of LINEAR-SIZE,
although Kannan [20] proved that there are languages in the polynomial
hierarchy (a generalization of NP) not in LINEAR-SIZE. Since if P =
NP, the polynomial hierarchy collapses to P, we have

Proposition 2. If P ⊆ LINEAR-SIZE, then P 6= NP.

This proposition could be interpreted as a method of proving P 6= NP,
but a more usual belief is that the hypothesis is false.

A fundamental question in complexity theory is whether a source of
random bits can be used to speed up substantially the recognition of some
languages, provided one is willing to accept a small probability of error.
The class BPP consists of all languages L that can be recognized by a
randomized polynomial-time algorithm, with at most an exponentially small
error probability on every input. Of course P ⊆ BPP, but it is not known
whether the inclusion is proper. The set of prime numbers is in BPP [36],
but it is not known to be in P. A reason for thinking that BPP = P is that
randomized algorithms are often successfully executed using a deterministic
pseudo-random number generator as a source of “random” bits.

There is an indirect but intriguing connection between the two questions
P = BPP and P = NP. Let E be the class of languages recognizable in
exponential time; that is the class of languages L such that L = L(M) for
some Turing machine M with TM (n) = O(2cn) for some c > 0. Let A be the
assertion that some language in E requires exponential circuit complexity.
That is,

Assertion A. There is L ∈ E and ε > 0 such that, for every circuit
family 〈Bn〉 computing L and for all sufficiently large n, Bn has at least 2εn

gates.

Proposition 3. If A then BPP = P. If not A then P 6= NP.

The first implication is a lovely theorem by Impagliazzo and Wigder-
son [19] and the second is an intriguing observation by V. Kabanets that
strengthens Proposition 2. In fact, Kabanets concludes P 6= NP from a
weaker assumption than not A; namely that every language in E can be
computed by a Boolean circuit family 〈Bn〉 such that for at least one n, Bn

has fewer gates than the maximum needed to compute any Boolean function
f : {0, 1}n → {0, 1}. But there is no consensus on whether this hypothesis
is true.

We should point out that Proposition 3 relativizes, and, in particular,
relative to any PSPACE-complete oracle Assertion A holds and BPP =
P = NP. Thus a nonrelativizing construction will be needed if one is to
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prove P 6= NP by giving small circuits for languages in E. Nonrelativizing
constructions have been used successfully before, for example in showing IP
(Interactive Polynomial time) contains all of PSPSACE [30]. In this and
other such constructions a key technique is to represent Boolean functions
by multivariate polynomials over finite fields.

Appendix: Definition of Turing Machine

A Turing machine M consists of a finite state control (i.e., a finite pro-
gram) attached to a read/write head moving on an infinite tape. The tape
is divided into squares, each capable of storing one symbol from a finite al-
phabet Γ that includes the blank symbol b. Each machine M has a specified
input alphabet Σ, which is a subset of Γ, not including the blank symbol
b. At each step in a computation, M is in some state q in a specified finite
set Q of possible states. Initially, a finite input string over Σ is written on
adjacent squares of the tape, all other squares are blank (contain b), the
head scans the left-most symbol of the input string, and M is in the initial
state q0. At each step M is in some state q and the head is scanning a tape
square containing some tape symbol s, and the action performed depends
on the pair (q, s) and is specified by the machine’s transition function (or
program) δ. The action consists of printing a symbol on the scanned square,
moving the head left or right one square, and assuming a new state.

Formally, a Turing machine M is a tuple 〈Σ,Γ, Q, δ〉, where Σ,Γ, Q are
finite nonempty sets with Σ ⊆ Γ and b ∈ Γ − Σ. The state set Q contains
three special states q0, qaccept, qreject. The transition function δ satisfies

δ : (Q− {qaccept, qreject})× Γ → Q× Γ× {−1, 1}.

If δ(q, s) = (q′, s′, h), the interpretation is that, if M is in state q scanning
the symbol s, then q′ is the new state, s′ is the symbol printed, and the tape
head moves left or right one square depending on whether h is −1 or 1.

We assume that the sets Q and Γ are disjoint.

A configuration of M is a string xqy with x, y ∈ Γ∗, y not the empty
string, and q ∈ Q.

The interpretation of the configuration xqy is that M is in state q with
xy on its tape, with its head scanning the left-most symbol of y.

If C and C ′ are configurations, then C
M→ C ′ if C = xqsy and δ(q, s) =

(q′, s′, h) and one of the following holds:

C ′ = xs′q′y and h = 1 and y is nonempty.

C ′ = xs′q′b and h = 1 and y is empty.

C ′ = x′q′as′y and h = −1 and x = x′a for some a ∈ Γ.

C ′ = q′bs′y and h = −1 and x is empty.
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A configuration xqy is halting if q ∈ {qaccept, qreject}. Note that for each
non-halting configuration C there is a unique configuration C ′ such that
C

M→ C ′.

The computation of M on input w ∈ Σ∗ is the unique sequence C0, C1, ...
of configurations such that C0 = q0w (or C0 = q0b if w is empty) and
Ci

M→ Ci+1 for each i with Ci+1 in the computation, and either the sequence
is infinite or it ends in a halting configuration. If the computation is finite,
then the number of steps is one less than the number of configurations;
otherwise the number of steps is infinite. We say that M accepts w iff the
computation is finite and the final configuration contains the state qaccept.
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1. The Problem

The Riemann zeta function is the function of the complex variable s,
defined in the half-plane1 <(s) > 1 by the absolutely convergent series

ζ(s) :=
∞∑

n=1

1
ns
,

and in the whole complex plane C by analytic continuation. As shown by
Riemann, ζ(s) extends to C as a meromorphic function with only a simple
pole at s = 1, with residue 1, and satisfies the functional equation

(1) π−s/2Γ
(s

2

)
ζ(s) = π−(1−s)/2Γ

(
1− s

2

)
ζ(1− s).

In an epoch-making memoir published in 1859, Riemann [18] obtained
an analytic formula for the number of primes up to a preassigned limit. This
formula is expressed in terms of the zeros of the zeta function, namely the
solutions ρ ∈ C of the equation ζ(ρ) = 0.

In this paper, Riemann introduces the function of the complex variable
t defined by

ξ(t) =
1
2
s(s− 1)π−s/2Γ

(s
2

)
ζ(s),

with s = 1
2 + it, and shows that ξ(t) is an even entire function of t whose zeros

have imaginary part between −i/2 and i/2. He further states, sketching
a proof, that in the range between 0 and T the function ξ(t) has about
(T/2π) log(T/2π) − T/2π zeros. Riemann then continues “Man findet nun
in der That etwa so viel reelle Wurzeln innerhalb dieser Grenzen, und es ist
sehr wahrscheinlich, dass alle Wurzeln reell sind,” which can be translated
as “Indeed, one finds between those limits about that many real zeros, and
it is very likely that all zeros are real.”

1We denote by <(s) and =(s) the real and imaginary part of the complex variable
s. The use of the variable s is already in Dirichlet’s famous work of 1837 on primes in
arithmetic progression.

107
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The statement that all zeros of the function ξ(t) are real is the Riemann
hypothesis.

The function ζ(s) has zeros at the negative even integers −2,−4, . . . and
one refers to them as the trivial zeros. The other zeros are the complex
numbers 1

2 + iα, where α is a zero of ξ(t). Thus, in terms of the function
ζ(s), we can state the

Riemann Hypothesis. The nontrivial zeros of ζ(s) have real part equal
to 1

2 .

In the opinion of many mathematicians, the Riemann hypothesis, and its
extension to general classes of L-functions, is probably the most important
open problem in pure mathematics today.

2. History and Significance of the Riemann Hypothesis

For references pertaining to the early history of zeta functions and the
theory of prime numbers, we refer to Landau [13] and Edwards [6].

The connection between prime numbers and the zeta function, by means
of the celebrated Euler product

ζ(s) =
∏
p

(1− p−s)−1

valid for <(s) > 1, appears for the first time in Euler’s book Introductio in
Analysin Infinitorum, published in 1748. Euler also studied the values of
ζ(s) at the even positive and negative integers, and he divined a functional
equation, equivalent to Riemann’s functional equation, for the closely re-
lated function

∑
(−1)n−1/ns (see the interesting account of Euler’s work in

Hardy’s book [8]).

The problem of the distribution of prime numbers received attention
for the first time with Gauss and Legendre, at the end of the eighteenth
century. Gauss, in a letter to the astronomer Hencke in 1849, stated that
he had found in his early years that the number π(x) of primes up to x is
well approximated by the function2

Li(x) =
∫ x

0

dt

log t
.

In 1837, Dirichlet proved his famous theorem of the existence of infinitely
many primes in any arithmetic progression qn + a with q and a positive
coprime integers.

On May 24, 1848, Tchebychev read at the Academy of St. Petersburg
his first memoir on the distribution of prime numbers, later published in

2The integral is a principal value in the sense of Cauchy.
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1850. It contains the first study of the function π(x) by analytic methods.
Tchebychev begins by taking the logarithm of the Euler product, obtaining3

(2) −
∑

p

log
(

1− 1
ps

)
+ log(s− 1) = log ((s− 1)ζ(s)) ,

which is his starting point.

Next, he proves the integral formula

(3) ζ(s)− 1− 1
s− 1

=
1

Γ(s)

∫ ∞

0

(
1

ex − 1
− 1
x

)
e−xxs−1dx,

out of which he deduces that (s − 1)ζ(s) has limit 1, and also has finite
derivatives of any order, as s tends to 1 from the right. He then observes
that the derivatives of any order of the left-hand side of (2) can be written
as a fraction in which the numerator is a polynomial in the derivatives
of (s − 1)ζ(s), and the denominator is an integral power of (s − 1)ζ(s),
from which it follows that the right-hand side of (2) has finite derivatives
of any order, as s tends to 1 from the right. From this, he is able to prove
that if there is an asymptotic formula for π(x) by means of a finite sum∑
akx/(log x)k, up to an order O(x/(log x)N ), then ak = (k − 1)! for k =

1, . . . , N − 1. This is precisely the asymptotic expansion of the function
Li(x), thus vindicating Gauss’s intuition.

A second paper by Tchebychev gave rigorous proofs of explicit upper
and lower bounds for π(x), of the correct order of magnitude. Here, he
introduces the counting functions

ϑ(x) =
∑
p≤x

log p, ψ(x) = ϑ(x) + ϑ( 2
√
x) + ϑ( 3

√
x) + · · ·

and proves the identity4 ∑
n≤x

ψ
(x
n

)
= log[x]! .

From this identity, he finally obtains numerical upper and lower bounds for
ψ(x), ϑ(x) and π(x).

Popular variants of Tchebychev’s method, based on the integrality of
suitable ratios of factorials, originate much later and cannot be ascribed to
Tchebychev.

Riemann’s memoir on π(x) is really astonishing for the novelty of ideas
introduced. He first writes ζ(s) using the integral formula, valid for <(s) > 1:

(4) ζ(s) =
1

Γ(s)

∫ ∞

0

e−x

1− e−x
xs−1dx,

3Tchebychev uses 1 + ρ in place of our s. We write his formulas in modern notation.
4Here [x] denotes the integral part of x.
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and then deforms the contour of integration in the complex plane, so as to
obtain a representation valid for any s. This gives the analytic continuation
and the functional equation of ζ(s). Then he gives a second proof of the
functional equation in the symmetric form (1), introduces the function ξ(t)
and states some of its properties as a function of the complex variable t.

Riemann continues by writing the logarithm of the Euler product as an
integral transform, valid for <(s) > 1:

(5)
1
s

log ζ(s) =
∫ ∞

1
Π(x)x−s−1dx

where

Π(x) = π(x) +
1
2
π( 2
√
x) +

1
3
π( 3
√
x) + · · · .

By Fourier inversion, he is able to express Π(x) as a complex integral, and
compute it using the calculus of residues. The residues occur at the singu-
larities of log ζ(s) at s = 1 and at the zeros of ζ(s). Finally an inversion
formula expressing π(x) in terms of Π(x) yields Riemann’s formula.

This was a remarkable achievement that immediately attracted much
attention. Even if Riemann’s initial line of attack may have been influenced
by Tchebychev (we find several explicit references to Tchebychev in Rie-
mann’s unpublished Nachlass5), his great contribution was to see how the
distribution of prime numbers is determined by the complex zeros of the
zeta function.

At first sight, the Riemann hypothesis appears to be only a plausible
interesting property of the special function ζ(s), and Riemann himself seems
to take that view. He writes: “Hiervon wäre allerdings ein strenger Beweis zu
wünschen; ich habe indess die Aufsuchung desselben nach einigen flüchtigen
vergeblichen Versuchen vorläufig bei Seite gelassen, da er für den nächsten
Zweck meiner Untersuchung entbehrlich schien,” which can be translated
as “Without doubt it would be desirable to have a rigorous proof of this
proposition; however I have left this research aside for the time being after
some quick unsuccessful attempts, because it appears to be unnecessary for
the immediate goal of my study.”

On the other hand, one should not draw from this comment the conclu-
sion that the Riemann hypothesis was only a casual remark of minor interest
for him. The validity of the Riemann hypothesis is equivalent to saying that
the deviation of the number of primes from the mean Li(x) is

π(x) = Li(x) +O
(√
x log x

)
;

5The Nachlass consists of Riemann’s unpublished notes and is preserved in the math-
ematical library of the University of Göttingen. The part regarding the zeta function was
analyzed in depth by C.L. Siegel [22].
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the error term cannot be improved by much, since it is known to oscillate in
both directions to order at least Li(

√
x) log log log x (Littlewood). In view of

Riemann’s comments at the end of his memoir about the approximation of
π(x) by Li(x), it is quite likely that he saw how his hypothesis was central
to the question of how good an approximation to π(x) one may get from his
formula.

The failure of the Riemann hypothesis would create havoc in the distri-
bution of prime numbers. This fact alone singles out the Riemann hypothesis
as the main open question of prime number theory.

The Riemann hypothesis has become a central problem of pure math-
ematics, and not just because of its fundamental consequences for the law
of distribution of prime numbers. One reason is that the Riemann zeta
function is not an isolated object, rather it is the prototype of a general
class of functions, called L-functions, associated with algebraic (automor-
phic representations) or arithmetical objects (arithmetic varieties); we shall
refer to them as global L-functions. They are Dirichlet series with a suitable
Euler product and are expected to satisfy an appropriate functional equa-
tion and a Riemann hypothesis. The factors of the Euler product may also
be considered as some kind of zeta functions of a local nature, which also
should satisfy an appropriate Riemann hypothesis (the so-called Ramanujan
property). The most important properties of the algebraic or arithmetical
objects underlying an L-function can or should be described in terms of the
location of its zeros and poles, and values at special points.

The consequences of a Riemann hypothesis for global L-functions are im-
portant and varied. We mention here, to indicate the variety of situations to
which it can be applied, an extremely strong effective form of Tchebotarev’s
density theorem for number fields, the non-trivial representability of 0 by a
non-singular cubic form in seven or more variables (provided it satisfies the
appropriate necessary congruence conditions for solubility, (Hooley, [9])),
and Miller’s deterministic polynomial time primality test. On the other
hand, many deep results in number theory that are consequences of a gen-
eral Riemann hypothesis can be shown to hold independent of it, thus adding
considerable weight to the validity of the conjecture.

It is outside the scope of this article even to outline the definition of
global L-functions, referring instead to Iwaniec and Sarnak [10] for a survey
of the expected properties satisfied by them; it suffices here to say that the
study of the analytic properties of these functions presents extraordinary
difficulties.

Already the analytic continuation of L-functions as meromorphic or en-
tire functions is known only in special cases. For example, the functional
equation for the L-function of an elliptic curve over Q and for its twists by
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Dirichlet characters is an easy consequence of, and is equivalent to, the ex-
istence of a parametrization of the curve by means of modular functions for
a Hecke group Γ0(N); the real difficulty lies in establishing this modularity.
No one knows how to prove this functional equation by analytic methods,
but the modularity of elliptic curves over Q has been established directly,
first in the semistable case in the spectacular work of Wiles [28] and Taylor
and Wiles [24] leading to the solution of Fermat’s Last Theorem, and then
in the general case in a recent preprint by Breuil, Conrad, Diamond and
Taylor.

Not all L-functions are directly associated to arithmetic or geometric
objects. The simplest example of L-functions not of arithmetic or geometric
nature are those arising from Maass waveforms for a Riemann surface X
uniformized by an arithmetic subgroup Γ of PGL(2,R). They are pull-
backs f(z) to the universal covering space =(z) > 0 of X, of simultaneous
eigenfunctions for the action of the hyperbolic Laplacian and of the Hecke
operators on X.

The most important case is again the group Γ0(N). In this case one
can introduce a notion of primitive waveform, analogous to the notion of
primitive Dirichlet character, meaning that the waveform is not induced
from another waveform for a Γ0(N ′) with N ′ a proper divisor of N . For
a primitive waveform, the action of the Hecke operators Tn is defined for
every n, and the L-function can be defined as

∑
λf (n)n−s, where λf (n) is

the eigenvalue of Tn acting on the waveform f(z). Such an L-function has
an Euler product and satisfies a functional equation analogous to that for
ζ(s). It is also expected to satisfy a Riemann hypothesis.

Not a single example of validity or failure of a Riemann hypothesis for an
L-function is known up to this date. The Riemann hypothesis for ζ(s) does
not seem to be any easier than for Dirichlet L-functions (except possibly
for non-trivial real zeros), leading to the view that its solution may require
attacking much more general problems, by means of entirely new ideas.

3. Evidence for the Riemann Hypothesis

Notwithstanding some skepticism voiced in the past, based perhaps more
on the number of failed attempts to a proof rather than on solid heuristics,
it is fair to say that today there is quite a bit of evidence in its favor. We
have already emphasized that the general Riemann hypothesis is consistent
with our present knowledge of number theory. There is also specific evidence
of a more direct nature, which we shall now examine.

First, strong numerical evidence.

Interestingly enough, the first numerical computation of the first few ze-
ros of the zeta function already appears in Riemann’s Nachlass. A rigorous
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verification of the Riemann hypothesis in a given range can be done numer-
ically as follows. The number N(T ) of zeros of ζ(s) in the rectangle R with
vertices at −1− iT, 2− iT, 2 + iT,−1 + iT is given by Cauchy’s integral

N(T )− 1 =
1

2πi

∫
∂R
−ζ

′

ζ
(s)ds,

provided T is not the imaginary part of a zero (the −1 in the left-hand
side of this formula is due to the simple pole of ζ(s) at s = 1). The zeta
function and its derivative can be computed to arbitrary high precision using
the MacLaurin summation formula or the Riemann–Siegel formula [22]; the
quantity N(T )−1, which is an integer, is then computed exactly by dividing
by 2πi the numerical evaluation of the integral, and rounding off its real part
to the nearest integer (this is only of theoretical interest, and much better
methods are available in practice for computing N(T ) exactly). On the
other hand, since ξ(t) is continuous and real for real t, there will be a zero of
odd order between any two points at which ξ(t) changes sign. By judiciously
choosing sample points, one can detect sign changes of ξ(t) in the interval
[−T, T ]. If the number of sign changes equals N(T ), one concludes that all
zeros of ζ(s) in R are simple and satisfy the Riemann hypothesis. In this
way, it has been shown by van de Lune, te Riele and Winter [15] that the
first 1.5 billion zeros of ζ(s), arranged by increasing positive imaginary part,
are simple and satisfy the Riemann hypothesis.

The Riemann hypothesis is equivalent to the statement that all local
maxima of ξ(t) are positive and all local minima are negative, and it has
been suggested that if a counterexample exists, then it should be in the
neighborhood of unusually large peaks of |ζ(1

2 + it)|. The above range for
T is T ∼= 5 × 108 and is not large enough for |ζ(1

2 + it)| to exhibit these
peaks, which are known to occur eventually. Further calculations done by
Odlyzko [17] in selected intervals show that the Riemann hypothesis holds
for over 3 × 108 zeros at heights up to6 2 × 1020. These calculations also
strongly support independent conjectures by Dyson and Montgomery [16]
concerning the distribution of spacings between zeros.

Computing zeros of L-functions is more difficult, but this has been done
in several cases, including examples of Dirichlet L-functions, L-functions of
elliptic curves, Maass L-functions and nonabelian Artin L-functions arising
from number fields of small degree. No exception to a generalized Riemann
hypothesis has been found in this way.

Second, it is known that hypothetical exceptions to the Riemann hy-
pothesis must be rare if we move away from the line <(s) = 1

2 .

6The most recent calculations by Odlyzko, which are approaching completion, will
explore completely the interval [1022, 1022 + 1010].
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LetN(α, T ) be the number of zeros of ζ(s) in the rectangle α ≤ <(s) ≤ 2,
0 ≤ =(s) ≤ T . The prototype result goes back to Bohr and Landau in 1914,
namely N(α, T ) = O(T ) for any fixed α with 1

2 < α < 1. A significant
improvement of the result of Bohr and Landau was obtained by Carlson
in 1920, obtaining the density theorem N(α, T ) = O(T 4α(1−α)+ε) for any
fixed ε > 0. The fact that the exponent here is strictly less than 1 is
important for arithmetic applications, for example, in the study of primes
in short intervals. The exponent in Carlson’s theorem has gone through
several successive refinements for various ranges of α, in particular in the
range 3

4 < α < 1. Curiously enough, the best exponent known to date in
the range 1

2 < α ≤ 3
4 remains Ingham’s exponent 3(1−α)/(2−α), obtained

in 1940. For references to these results, the reader may consult the recent
revision by Heath-Brown of the classical monograph of Titchmarsh [23], and
the book by Ivič [11].

Third, it is known that more than 40% of nontrivial zeros of ζ(s) are
simple and satisfy the Riemann hypothesis (Selberg [20], Levinson [14],
Conrey [2]). Most of these results have been extended to other L-functions,
including all Dirichlet L-functions and L-functions associated to modular
forms or Maass waveforms.

4. Further Evidence: Varieties Over Finite Fields

It may be said that the best evidence in favor of the Riemann hypothesis
derives from the corresponding theory, which has been developed in the
context of algebraic varieties over finite fields. The simplest situation is as
follows.

Let C be a nonsingular projective curve over a finite field Fq of charac-
teristic p with q = pa elements. Let Div(C) be the additive group of divisors
on C defined over Fq, in other words, formal finite sums a =

∑
aiPi with

ai ∈ Z and Pi points of C defined over a finite extension of Fq, such that
φ(a) = a where φ is the Frobenius endomorphism on C raising coordinates
to the qth power. The quantity deg(a) =

∑
ai is the degree of the divisor a.

The divisor a is called effective if every ai is a positive integer; in this case,
we write a > 0. Finally, a prime divisor p is a positive divisor that cannot
be expressed as the sum of two positive divisors. By definition, the norm of
a divisor a is Na = qdeg(a).

The zeta function of the curve C, as defined by E. Artin, H. Hasse and
F.K. Schmidt, is

ζ(s, C) =
∑
a>0

1
Nas

.
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This function has an Euler product

ζ(s, C) =
∏
p

(1−Np−s)−1

and a functional equation

q(g−1)sζ(s, C) = q(g−1)(1−s)ζ(1− s, C),

where g is the genus of the curve C; it is a consequence of the Riemann–Roch
theorem. The function ζ(s, C) is a rational function of the variable t = q−s,
hence is periodic7 with period 2πi/ log q and has simple poles at the points
s = 2πim/ log q and s = 1 + 2πim/ log q for m ∈ Z. Expressed in terms of
the variable t, the zeta function becomes a rational function Z(t, C) of t,
with simple poles at t = 1 and t = q−1. The use of the variable t, rather than
q−s, is more natural in the geometric case and we refer to Zeta functions,
with a capital Z, to indicate the corresponding objects.

The Riemann hypothesis for ζ(s, C) is the statement that all its zeros
have real part equal to 1

2 ; in terms of the Zeta function Z(t, C), which has
a numerator of degree 2g, has zeros of absolute value q−1/2.

This is easy to verify if g = 0, because the numerator is 1. For g = 1, a
proof was obtained by Hasse in 1934. The general case of arbitrary genus g
was finally settled by Weil in the early 1940s (see his letter to E. Artin of
July 10, 1942, where he gives a complete sketch of the theory of correspon-
dences on a curve [25]); his results were eventually published in book form
in 1948 [26].

Through his researches, Weil was led to the formulation of sweeping
conjectures about Zeta functions of general algebraic varieties over finite
fields, relating their properties to the topological structure of the underly-
ing algebraic variety. Here the Riemann hypothesis, in a simplified form, is
the statement that the reciprocals of the zeros and poles of the Zeta func-
tion (the so-called characteristic roots) have absolute value qd/2 with d a
positive integer or 0, and are interpreted as eigenvalues of the Frobenius
automorphism acting on the cohomology of the variety. After M. Artin, A.
Grothendieck, and J.-L. Verdier developed the fundamental tool of étale co-
homology, the proof of the corresponding Riemann hypothesis for Zeta func-
tions of arbitrary varieties over finite fields was finally obtained by Deligne
[3], [4]. Deligne’s theorem surely ranks as one of the crowning achievements
of 20th century mathematics. Its numerous applications to the solution of
long-standing problems in number theory, algebraic geometry, and discrete
mathematics are witness to the significance of these general Riemann hy-
potheses.

7Similarly, ζ(s) is almost periodic in any half-plane <(s) ≥ 1 + δ, δ > 0.
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In our opinion, these results in the geometric setting cannot be ignored
as not relevant to the understanding of the classical Riemann hypothesis;
the analogies are too compelling to be dismissed outright.

5. Further Evidence: The Explicit Formula

A conceptually important generalization of Riemann’s explicit formula
for π(x), obtained by Weil [27] in 1952, offers a clue to what may still lie
undiscovered behind the problem.

Consider the class W of complex-valued functions f(x) on the positive
half-line R+, continuous and continuously differentiable except for finitely
many points at which both f(x) and f ′(x) have at most a discontinuity of
the first kind, and at which the value of f(x) and f ′(x) is defined as the
average of the right and left limits there. Suppose also that there is δ > 0
such that f(x) = O(xδ) as x→ 0+ and f(x) = O(x−1−δ) as x→ +∞.

Let f̃(s) be the Mellin transform

f̃(s) =
∫ ∞

0
f(x)xsdx

x
,

which is an analytic function of s for −δ < <(s) < 1 + δ.

For the Riemann zeta function, Weil’s formula can be stated as follows.
Let Λ(n) = log p if n = pa is a power of a prime p, and 0 otherwise. We
have

Explicit Formula. For f ∈ W we have

f̃(0)−
∑

ρ

f̃(ρ) + f̃(1) =
∞∑

n=1

Λ(n)
{
f(n) +

1
n
f

(
1
n

)}
+ (log 4π + γ)f(1)

+
∫ ∞

1

{
f(x) +

1
x
f

(
1
x

)
− 2
x
f(1)

}
dx

x− x−1
.

Here the first sum ranges over all nontrivial zeros of ζ(s) and is under-
stood as

lim
T→+∞

∑
|=(ρ)|<T

f̃(ρ).

In his paper, Weil showed that there is a corresponding formula for zeta
and L-functions of number fields as well as for Zeta functions of curves
over finite fields. The terms in the right-hand side of the equation can be
written as a sum of terms of local nature, associated to the absolute values
of the underlying number field, or function field in the case of curves over
a field of positive characteristic. Moreover, in the latter case the explicit
formula can be deduced from the Lefschetz fixed point formula, applied
to the Frobenius endomorphism on the curve C. The three terms in the
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left-hand side, namely f̃(0),
∑
f̃(ρ), f̃(1), now correspond to the trace of

the Frobenius automorphism on the l-adic cohomology of C (the interesting
term

∑
f̃(ρ) corresponds to the trace on H1), while the right-hand side

corresponds to the number of fixed points of the Frobenius endomorphism,
namely the prime divisors of degree 1 on C.

Weil also proved that the Riemann hypothesis is equivalent to the neg-
ativity of the right-hand side for all functions f(x) of type

f(x) =
∫ ∞

0
g(xy)g(y)dy,

whenever g ∈ W satisfies the additional conditions∫ ∞

0
g(x)

dx

x
=

∫ ∞

0
g(x)dx = 0.

In the geometric case of curves over a finite field, this negativity is a rather
easy consequence of the algebraic index theorem for surfaces, namely,

Algebraic Index Theorem. Let X be a projective nonsingular surface
defined over an algebraically closed field. Then the self-intersection quadratic
form (D ·D), restricted to the group of divisors D on X of degree 0 in the
projective embedding of X, is negative semidefinite.

The algebraic index theorem for surfaces is essentially due to Severi8 in
1906 [21, §2,Teo.I]. The proof uses the Riemann–Roch theorem on X and
the finiteness of families of curves on X of a given degree; no other proof by
algebraic methods is known up to now, although much later several authors
independently rediscovered Severi’s argument.

The algebraic index theorem for nonsingular projective varieties of even
dimension over the complex numbers was first formulated and proved by
Hodge, as a consequence of his theory of harmonic forms. No algebraic proof
of Hodge’s theorem is known, and it remains a fundamental open problem
to extend it to the case of varieties over fields of positive characteristic.

The work of Montgomery [16], Odlyzko [17], and Rudnick and Sarnak
[19] on correlations for spacings of zeros of ξ(t) suggests that L-functions
can be grouped into a few families, in each of which the spacing correla-
tion is universal; the conjectured spacing correlation is the same as for the
limiting distribution of eigenvalues of random orthogonal, unitary or sym-
plectic matrices in suitable universal families, as the dimension goes to ∞.
All this is compatible with the view expressed by Hilbert and Pólya that
the zeros of ξ(t) could be the eigenvalues of a self-adjoint linear operator on
an appropriate Hilbert space. It should also be noted that a corresponding

8Severi showed that a divisor D on X is algebraically equivalent to 0 up to torsion, if
it has degree 0 and (D ·D) = 0. His proof holds, without modifications, under the weaker
assumption (D ·D) ≥ 0, which yields the index theorem.
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unconditional theory for the spacing correlations of characteristic roots of
Zeta functions of families of algebraic varieties over a finite field has been
developed by Katz and Sarnak [12], using methods introduced by Deligne
in his proof of the Riemann hypothesis for varieties over finite fields. Thus
the problem of spacing correlations for zeros of L-functions appears to lie
very deep.

All this leads to several basic questions.

Is there a theory in the global case, playing the same role as cohomology
does for Zeta functions of varieties over a field of positive characteristic? Is
there an analogue of a Frobenius automorphism in the classical case? Is
there a general index theorem by which one can prove the classical Riemann
hypothesis? We are here in the realm of conjectures and speculation. In
the adelic setting propounded by Tate and Weil, the papers [1], [5], [7] offer
glimpses of a possible setup for these basic problems.

On the other hand, there are L-functions, such as those attached to
Maass waveforms, which do not seem to originate from geometry and for
which we still expect a Riemann hypothesis to be valid. For them, we do
not have algebraic and geometric models to guide our thinking, and entirely
new ideas may be needed to study these intriguing objects.
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1. The Physics of Gauge Theory

Since the early part of the 20th century, it has been understood that the
description of nature at the subatomic scale requires quantum mechanics.
In quantum mechanics, the position and velocity of a particle are noncom-
muting operators acting on a Hilbert space, and classical notions such as
“the trajectory of a particle” do not apply.

But quantum mechanics of particles is not the whole story. In 19th and
early 20th century physics, many aspects of nature were described in terms
of fields—the electric and magnetic fields that enter in Maxwell’s equations,
and the gravitational field governed by Einstein’s equations. Since fields
interact with particles, it became clear by the late 1920s that an internally
coherent account of nature must incorporate quantum concepts for fields as
well as for particles.

After doing this, quantities such as the components of the electric field
at different points in space-time become non-commuting operators. When
one attempts to construct a Hilbert space on which these operators act, one
finds many surprises. The distinction between fields and particles breaks
down, since the Hilbert space of a quantum field is constructed in terms
of particle-like excitations. Conventional particles, such as electrons, are
reinterpreted as states of the quantized field. In the process, one finds the
prediction of “antimatter”; for every particle, there must be a correspond-
ing antiparticle, with the same mass and opposite electric charge. Soon
after P.A.M. Dirac predicted this on the basis of quantum field theory, the
“positron” or oppositely charged antiparticle of the electron was discovered
in cosmic rays.

The most important Quantum Field Theories (QFTs) for describing ele-
mentary particle physics are gauge theories. The classical example of a gauge
theory is Maxwell’s theory of electromagnetism. For electromagnetism the
gauge symmetry group is the abelian group U(1). If A denotes the U(1)
gauge connection, locally a one-form on space-time, then the curvature or
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electromagnetic field tensor is the two-form F = dA, and Maxwell’s equa-
tions in the absence of charges and currents read 0 = dF = d ∗ F . Here ∗
denotes the Hodge duality operator; indeed, Hodge introduced his celebrated
theory of harmonic forms as a generalization of the solutions to Maxwell’s
equations. Maxwell’s equations describe large-scale electric and magnetic
fields and also—as Maxwell discovered—the propagation of light waves, at
a characteristic velocity, the speed of light.

The idea of a gauge theory evolved from the work of Hermann Weyl. One
can find in [34] an interesting discussion of the history of gauge symmetry
and the discovery of Yang–Mills theory [50], also known as “non-abelian
gauge theory.” At the classical level one replaces the gauge group U(1) of
electromagnetism by a compact gauge group G. The definition of the curva-
ture arising from the connection must be modified to F = dA+A ∧A, and
Maxwell’s equations are replaced by the Yang–Mills equations, 0 = dAF =
dA ∗F , where dA is the gauge-covariant extension of the exterior derivative.

These classical equations can be derived as variational equations from
the Yang–Mills Lagrangian

(1) L =
1

4g2

∫
Tr F ∧ ∗F,

where Tr denotes an invariant quadratic form on the Lie algebra of G. The
Yang–Mills equations are nonlinear—in contrast to the Maxwell equations.
Like the Einstein equations for the gravitational field, only a few exact
solutions of the classical equation are known. But the Yang–Mills equations
have certain properties in common with the Maxwell equations: In particular
they provide the classical description of massless waves that travel at the
speed of light.

By the 1950s, when Yang–Mills theory was discovered, it was already
known that the quantum version of Maxwell theory—known as Quantum
Electrodynamics or QED—gives an extremely accurate account of electro-
magnetic fields and forces. In fact, QED improved the accuracy for certain
earlier quantum theory predictions by several orders of magnitude, as well
as predicting new splittings of energy levels.

So it was natural to inquire whether non-abelian gauge theory described
other forces in nature, notably the weak force (responsible among other
things for certain forms of radioactivity) and the strong or nuclear force
(responsible among other things for the binding of protons and neutrons
into nuclei). The massless nature of classical Yang–Mills waves was a serious
obstacle to applying Yang–Mills theory to the other forces, for the weak and
nuclear forces are short range and many of the particles are massive. Hence
these phenomena did not appear to be associated with long-range fields
describing massless particles.
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In the 1960s and 1970s, physicists overcame these obstacles to the phys-
ical interpretation of non-abelian gauge theory. In the case of the weak
force, this was accomplished by the Glashow–Salam–Weinberg electroweak
theory [47, 40] with gauge group H = SU(2) × U(1). By elaborating the
theory with an additional “Higgs field,” one avoided the massless nature of
classical Yang–Mills waves. The Higgs field transforms in a two-dimensional
representation of H; its non-zero and approximately constant value in the
vacuum state reduces the structure group from H to a U(1) subgroup (di-
agonally embedded in SU(2)× U(1)). This theory describes both the elec-
tromagnetic and weak forces, in a more or less unified way; because of the
reduction of the structure group to U(1), the long-range fields are those of
electromagnetism only, in accord with what we see in nature.

The solution to the problem of massless Yang–Mills fields for the strong
interactions has a completely different nature. That solution did not come
from adding fields to Yang–Mills theory, but by discovering a remarkable
property of the quantum Yang–Mills theory itself, that is, of the quantum
theory whose classical Lagrangian has been given in (1). This property is
called “asymptotic freedom” [21, 38]. Roughly this means that at short
distances the field displays quantum behavior very similar to its classical
behavior; yet at long distances the classical theory is no longer a good guide
to the quantum behavior of the field.

Asymptotic freedom, together with other experimental and theoretical
discoveries made in the 1960s and 1970s, made it possible to describe the
nuclear force by a non-abelian gauge theory in which the gauge group is G =
SU(3). The additional fields describe, at the classical level, “quarks,” which
are spin 1/2 objects somewhat analogous to the electron, but transforming
in the fundamental representation of SU(3). The non-abelian gauge theory
of the strong force is called Quantum Chromodynamics (QCD).

The use of QCD to describe the strong force was motivated by a whole
series of experimental and theoretical discoveries made in the 1960s and
1970s, involving the symmetries and high-energy behavior of the strong in-
teractions. But classical non-abelian gauge theory is very different from the
observed world of strong interactions; for QCD to describe the strong force
successfully, it must have at the quantum level the following three proper-
ties, each of which is dramatically different from the behavior of the classical
theory:

(1) It must have a “mass gap;” namely there must be some constant
∆ > 0 such that every excitation of the vacuum has energy at
least ∆.

(2) It must have “quark confinement,” that is, even though the the-
ory is described in terms of elementary fields, such as the quark
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fields, that transform non-trivially under SU(3), the physical par-
ticle states—such as the proton, neutron, and pion—are SU(3)-
invariant.

(3) It must have “chiral symmetry breaking,” which means that the
vacuum is potentially invariant (in the limit, that the quark-bare
masses vanish) only under a certain subgroup of the full symmetry
group that acts on the quark fields.

The first point is necessary to explain why the nuclear force is strong but
short-ranged; the second is needed to explain why we never see individual
quarks; and the third is needed to account for the “current algebra” theory
of soft pions that was developed in the 1960s.

Both experiment—since QCD has numerous successes in confrontation
with experiment—and computer simulations, see for example [8], carried out
since the late 1970s, have given strong encouragement that QCD does have
the properties cited above. These properties can be seen, to some extent,
in theoretical calculations carried out in a variety of highly oversimplified
models (like strongly coupled lattice gauge theory, see, for example, [48]).
But they are not fully understood theoretically; there does not exist a con-
vincing, whether or not mathematically complete, theoretical computation
demonstrating any of the three properties in QCD, as opposed to a severely
simplified truncation of it.

2. Quest for Mathematical Understanding

In surveying the physics of gauge theories in the last section, we con-
sidered both classical properties—such as the Higgs mechanism for the
electroweak theory—and quantum properties that do not have classical
analogs—like the mass gap and confinement for QCD. Classical properties
of gauge theory are within the reach of established mathematical methods,
and indeed classical non-abelian gauge theory has played a very important
role in mathematics in the last twenty years, especially in the study of
three- and four-dimensional manifolds. On the other hand, one does not
yet have a mathematically complete example of a quantum gauge theory in
four-dimensional space-time, nor even a precise definition of quantum gauge
theory in four dimensions. Will this change in the 21st century? We hope so!

At times, mathematical structures of importance have first appeared in
physics before their mathematical importance was fully recognized. This
happened with the discovery of calculus, which was needed to develop New-
tonian mechanics, with functional analysis and group representation theory,
topics whose importance became clearer with quantum mechanics, and even
with the study of Riemannian geometry, whose development was greatly
intensified once it became clear, through Einstein’s invention of General
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Relativity to describe gravity, that this subject plays a role in the descrip-
tion of nature. These areas of mathematics became generally accessible only
after a considerable time, over which the ideas were digested, simplified, and
integrated into the general mathematical culture.

Quantum Field Theory (QFT) became increasingly central in physics
throughout the 20th century. There are reasons to believe that it may
be important in 21st century mathematics. Indeed, many mathematical
subjects that have been actively studied in the last few decades appear to
have natural formulations—at least at a heuristic level—in terms of QFT.
New structures spanning probability, analysis, algebra, and geometry have
emerged, for which a general mathematical framework is still in its infancy.

On the analytic side, a byproduct of the existence proofs and mathe-
matical construction of certain quantum field theories was the construction
of new sorts of measures, in particular non-Gaussian, Euclidean-invariant
measures on spaces of generalized functionals. Dirac fields and gauge fields
require measures on spaces of functions taking values in a Grassmann alge-
bra and on spaces of functions into other target geometries.

Renormalization theory arises from the physics of quantum field theory
and provides a basis for the mathematical investigation of local singularities
(ultra-violet regularity) and of global decay (infra-red regularity) in quan-
tum field theories. Asymptotic freedom ensures a decisive regularity in the
case when classical Sobolev inequalities are borderline. Surprisingly, the
ideas from renormalization theory also apply in other areas of mathemat-
ics, including classic work on the convergence of Fourier series and recent
progress on classical dynamical systems.

On the algebraic side, investigations of soluble models of quantum field
theory and statistical mechanics have led to many new discoveries involving
topics such as Yang–Baxter equations, quantum groups, Bose–Fermi equiv-
alence in two dimensions, and rational conformal field theory.

Geometry abounds with new mathematical structures rooted in quan-
tum field theory, many of them actively studied in the last twenty years.
Examples include Donaldson theory of 4-manifolds, the Jones polynomial of
knots and its generalizations, mirror symmetry of complex manifolds, ellip-
tic cohomology, and SL(2,Z) symmetry in the theory of affine Kac–Moody
algebras.

QFT has in certain cases suggested new perspectives on mathematical
problems, while in other cases its mathematical value up to the present
time is motivational. In the case of the geometric examples cited above, a
mathematical definition of the relevant QFTs (or one in which the relevant
physical techniques can be justified) is not yet at hand. Existence theorems
that put QFTs on a solid mathematical footing are needed to make the
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geometrical applications of QFT into a full-fledged part of mathematics.
Regardless of the future role of QFT in pure mathematics, it is a great
challenge for mathematicians to understand the physical principles that have
been so important and productive throughout the twentieth century.

Finally, QFT is the jumping-off point for a quest that may prove central
in 21st century physics—the effort to unify gravity and quantum mechanics,
perhaps in string theory. For mathematicians to participate in this quest, or
even to understand the possible results, QFT must be developed further as a
branch of mathematics. It is important not only to understand the solution
of specific problems arising from physics, but also to set such results within
a new mathematical framework. One hopes that this framework will provide
a unified development of several fields of mathematics and physics, and that
it will also provide an arena for the development of new mathematics and
physics.

For these reasons the Scientific Advisory Board of CMI has chosen a
Millennium problem about quantum gauge theories. Solution of the problem
requires both understanding one of the deep unsolved physics mysteries, the
existence of a mass gap, and also producing a mathematically complete
example of quantum gauge field theory in four-dimensional space-time.

3. Quantum Fields

A quantum field, or local quantum field operator, is an operator-valued
generalized function on space-time obeying certain axioms. The properties
required of the quantum fields are described at a physical level of preci-
sion in many textbooks, see, for example, [27]. G̊arding and Wightman
gave mathematically precise axioms for quantum field theories on R4 with
a Minkowski signature, see [45], and Haag and Kastler introduced a related
scheme for local functions of the field, see [24].

Basically, one requires that the Hilbert space H of the quantum field
carry a representation of the Poincaré group (or inhomogeneous Lorentz
group). The Hamiltonian H and momentum ~P are the self-adjoint elements
of the Lie algebra of the group that generate translations in time and space.
A vacuum vector is an element of H that is invariant under the (represen-
tation of the) Poincaré group. One assumes that the representation has
positive energy, 0 ≤ H, and a vacuum vector Ω ∈ H that is unique up to
a phase. Gauge-invariant functions of the quantum fields also act as linear
transformations on H and transform covariantly under the Poincaré group.
Quantum fields in space-time regions that cannot be connected by a light sig-
nal should be independent; G̊arding and Wightman formulate independence
as the commuting of the field operators (anti-commuting for two fermionic
fields).
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One of the achievements of 20th century axiomatic quantum field the-
ory was the discovery of how to convert a Euclidean-invariant field theory
on a Euclidean space-time to a Lorentz-invariant field theory on Minkowski
space-time, and vice-versa. Wightman used positive energy to establish an-
alytic continuation of expectations of Minkowski field theories to Euclidean
space. Kurt Symanzik interpreted the Euclidean expectations as a statis-
tical mechanical ensemble of classical Markov fields [46], with a probabil-
ity density proportional to exp(−S), where S denotes the Euclidean action
functional. E. Nelson reformulated Symanzik’s picture and showed that one
can also construct a Hilbert space and a quantum-mechanical field from a
Markov field [33]. Osterwalder and Schrader then discovered the elemen-
tary “reflection-positivity” condition to replace the Markov property. This
gave rise to a general theory establishing equivalence between Lorentzian
and Euclidean axiom schemes [35]. See also [13].

One hopes that the continued mathematical exploration of quantum field
theory will lead to refinements of the axiom sets that have been in use up to
now, perhaps to incorporate properties considered important by physicists
such as the existence of an operator product expansion or of a local stress-
energy tensor.

4. The Problem

To establish existence of four-dimensional quantum gauge theory with
gauge group G, one should define a quantum field theory (in the above
sense) with local quantum field operators in correspondence with the gauge-
invariant local polynomials in the curvature F and its covariant derivatives,
such as TrFijFkl(x).1 Correlation functions of the quantum field operators
should agree at short distances with the predictions of asymptotic freedom
and perturbative renormalization theory, as described in textbooks. Those
predictions include among other things the existence of a stress tensor and an
operator product expansion, having prescribed local singularities predicted
by asymptotic freedom.

Since the vacuum vector Ω is Poincaré invariant, it is an eigenstate with
zero energy, namely HΩ = 0. The positive energy axiom asserts that in any
quantum field theory, the spectrum of H is supported in the region [0,∞).
A quantum field theory has a mass gap ∆ if H has no spectrum in the
interval (0,∆) for some ∆ > 0. The supremum of such ∆ is the mass m,
and we require m <∞.

1A natural 1–1 correspondence between such classical ‘differential polynomials’ and
quantized operators does not exist, since the correspondence has some standard subtleties
involving renormalization [27]. One expects that the space of classical differential poly-
nomials of dimension ≤ d does correspond to the space of local quantum operators of
dimension ≤ d.
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Yang–Mills Existence and Mass Gap. Prove that for any compact
simple gauge group G, a non-trivial quantum Yang–Mills theory exists on
R4 and has a mass gap ∆ > 0. Existence includes establishing axiomatic
properties at least as strong as those cited in [45, 35].

5. Comments

An important consequence of the existence of a mass gap is clustering:
Let ~x ∈ R3 denote a point in space. We let H and ~P denote the energy and
momentum, generators of time and space translation. For any positive con-
stant C < ∆ and for any local quantum field operator O(~x) = e−i ~P ·~xOei ~P ·~x

such that 〈Ω,OΩ〉 = 0, one has

(2) |〈Ω,O(~x)O(~y)Ω〉| ≤ exp(−C|~x− ~y|),

as long as |~x − ~y| is sufficiently large. Clustering is a locality property
that, roughly speaking, may make it possible to apply mathematical results
established on R4 to any 4-manifold, as argued at a heuristic level (for a
supersymmetric extension of four-dimensional gauge theory) in [49]. Thus
the mass gap not only has a physical significance (as explained in the intro-
duction), but it may also be important in mathematical applications of four-
dimensional quantum gauge theories to geometry. In addition the existence
of a uniform gap for finite-volume approximations may play a fundamental
role in the proof of existence of the infinite-volume limit.

There are many natural extensions of the Millennium problem. Among
other things, one would like to prove the existence of an isolated one-particle
state (an upper gap, in addition to the mass gap), to prove confinement, to
prove existence of other four-dimensional gauge theories (incorporating ad-
ditional fields that preserve asymptotic freedom), to understand dynamical
questions (such as the possible mass gap, confinement, and chiral symme-
try breaking) in these more general theories, and to extend the existence
theorems from R4 to an arbitrary 4-manifold.

But a solution of the existence and mass gap problem as stated above
would be a turning point in the mathematical understanding of quantum
field theory, with a chance of opening new horizons for its applications.

6. Mathematical Perspective

Wightman and others have questioned for approximately fifty years
whether mathematically well-defined examples of relativistic, nonlinear quan-
tum field theories exist. We now have a partial answer: Extensive results on
the existence and physical properties of nonlinear QFTs have been proved
through the emergence of the body of work known as “constructive quantum
field theory” (CQFT).
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The answers are partial, for in most of these field theories one replaces
the Minkowski space-time M4 by a lower-dimensional space-time M2 or M3,
or by a compact approximation such as a torus. (Equivalently in the Eu-
clidean formulation one replaces Euclidean space-time R4 by R2 or R3.)
Some results are known for Yang–Mills theory on a 4-torus T4 approximat-
ing R4, and, while the construction is not complete, there is ample indication
that known methods could be extended to construct Yang–Mills theory on
T4.

In fact, at present we do not know any non-trivial relativistic field the-
ory that satisfies the Wightman (or any other reasonable) axioms in four
dimensions. So even having a detailed mathematical construction of Yang–
Mills theory on a compact space would represent a major breakthrough.
Yet, even if this were accomplished, no present ideas point the direction to
establish the existence of a mass gap that is uniform in the volume. Nor do
present methods suggest how to obtain the existence of the infinite volume
limit T4 → R4.

6.1. Methods. Since the inception of quantum field theory, two cen-
tral methods have emerged to show the existence of quantum fields on non-
compact configuration space (such as Minkowski space). These known meth-
ods are

(i) Find an exact solution in closed form;
(ii) Solve a sequence of approximate problems, and establish conver-

gence of these solutions to the desired limit.

Exact solutions may be available for nonlinear fields for special values of the
coupling which yields extra symmetries or integrable models. They might
be achieved after clever changes of variables. In the case of four-dimensional
Yang–Mills theory, an exact solution appears unlikely, though there might
some day be an asymptotic solution in a large N limit.

The second method is to use mathematical approximations to show the
convergence of approximate solutions to exact solutions of the nonlinear
problems, known as constructive quantum field theory, or CQFT. Two prin-
ciple approaches—studying quantum theory on Hilbert space, and studying
classical functional integrals—are related by the Osterwalder–Schrader con-
struction. Establishing uniform a priori estimates is central to CQFT, and
three schemes for establishing estimates are

(a) correlation inequalities,
(b) symmetries of the interaction,
(c) convergent expansions.

The correlation inequality methods have an advantage; they are general.
But correlation inequalities rely on special properties of the interaction that
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often apply only for scalar bosons or abelian gauge theories. The use of
symmetry also applies only to special values of the couplings and is generally
combined with another method to obtain analytic control. In most known
examples, perturbation series, i.e., power series in the coupling constant,
are divergent expansions; even Borel and other resummation methods have
limited applicability.

This led to development of expansion methods, generally known as clus-
ter expansions. Each term in a cluster expansion sum depends on the cou-
pling constants in a complicated fashion; they often arise as functional in-
tegrals. One requires sufficient quantitative knowledge of the properties of
each term in an expansion to ensure the convergence of the sum and to
establish its qualitative properties. Refined estimates yield the rate of ex-
ponential decay of Green’s functions, magnitude of masses, the existence of
symmetry breaking (or its preservation), etc.

Over the past thirty years, a panoply of expansion methods have emerged
as a central tool for establishing mathematial results in CQFT. In their
various incarnations, these expansions encapsulate ideas of the asymptotic
nature of perturbation theory, of space-time localization, of phase-space lo-
calization, of renormalization theory, of semi-classical approximations (in-
cluding “non-perturbative” effects), and of symmetry breaking. One can
find an introduction to many of these methods and references in [18], and
a more recent review of results in [28]. These expansion methods can be
complicated and the literature is huge, so we can only hope to introduce the
reader to a few ideas; we apologize in advance for important omissions.

6.2. The First Examples: Scalar Fields. Since the 1940s the quan-
tum Klein–Gordon field ϕ provided an example of a linear, scalar, mass-m
field theory (arising from a quadratic potential). This field, and the related
free spinor Dirac field, served as models for formulating the first axiom
schemes in the 1950s [45].

Moments of a Euclidean-invariant, reflection-positive, ergodic, Borel
measure dµ on the space S ′

(
Rd

)
of tempered distributions may satisfy the

Osterwalder–Schrader axioms. The Gaussian measure dµ with mean zero
and covariance C = (−∆ + m2

0)
−1 yields the free, mass-m0 field; but one

requires non-Gaussian dµ to obtain nonlinear fields. (For the Gaussian mea-
sure, reflection positivity is equivalent to positivity of the transformation
ΘC, restricted to L2(Rd

+) ⊂ L2(Rd). Here Θ : t → −t denotes the time-
reflection operator, and Rd

+ = {(t, ~x) : t ≥ 0} is the positive-time subspace.)

The first proof that nonlinear fields satisfy the Wightman axioms and the
first construction of such non-Gaussian measures only emerged in the 1970s.
The initial examples comprised fields with small, polynomial nonlinearities
on R2: first in finite volume, and then in the infinite volume limit [15, 19,
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22]. These field theories obey the Wightman axioms (as well as all other
axiomatic formulations), the fields describe particles of a definite mass, and
the fields produce multi-particle states with non-trivial scattering [19]. The
scattering matrix can be expanded as an asymptotic series in the coupling
constants, and the results agree term-by-term with the standard description
of scattering in perturbation theory that one finds in physics texts [37].

A quartic Wightman QFT on R3 also exists, obtained by constructing
a remarkable non-Gaussian measure dµ on S ′(R3) [16, 10]. This merits
further study.

We now focus on some properties of the simplest perturbation to the
action-density of the free field, namely, the even quartic polynomial

(3) λϕ4 +
1
2
σϕ2 + c.

The coefficients 0 < λ and σ, c ∈ R are real parameters, all zero for the free
field. For 0 < λ� 1, one can choose σ(λ), c(λ) so the field theory described
by (3) exists, is unique, and has a mass equal to m such that |m −m0| is
small.

Because of the local singularity of the nonlinear field, one must first cut
off the interaction. The simplest method is to truncate the Fourier expansion
of the field ϕ in (3) to ϕκ(x) =

∫
|k|≤κ ϕ̃(k)e−ikxdk and to compactify the

spatial volume of the perturbation to V. One obtains the desired quantum
field theory as a limit of the truncated approximations. The constants σ, c
have the form σ = αλ + βλ2 and c = γλ + δλ2 + ελ3. One desires that
the expectations of products of fields have a limit as κ → ∞. One chooses
α, γ (in dimension 2), and one chooses all the coefficients α, β, γ, δ, ε (in
dimension 3), to depend on κ in the way that perturbation theory suggests.
One then proves that the expectations converge as κ → ∞, even though
the specified constants α, . . . diverge. These constants provide the required
renormalization of the interaction. In the three-dimensional case one also
needs to normalize vectors in the Fock space a constant that diverges with
κ; one calls this constant a wave-function renormalization constant.

The “mass” operator in natural units is M =
√
H2 − ~P 2 ≥ 0, and the

vacuum vector Ω is a null vector, MΩ = 0. Massive single particle states
are eigenvectors of an eigenvalue m > 0. If m is an isolated eigenvalue of
M , then one infers from the Wightman axioms and Haag–Ruelle scattering
theory that asymptotic scattering states of an arbitrary number of particles
exist, see [24, 18].

The fundamental problem of asymptotic completeness is the question
whether these asymptotic states (including possible bound states) span H.
Over the past thirty years, several new methods have emerged, yielding
proofs of asymptotic completeness in scattering theory for non-relativistic
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quantum mechanics. This gives some hope that one can now attack the open
problem of asymptotic completeness for any known example of nonlinear
quantum field theory.

In contrast to the existence of quantum fields with a ϕ4 nonlinearity in
dimensions 2 and 3, the question of extending these results to four dimen-
sions is problematic. It is known that self-interacting scalar fields with a
quartic nonlinearity do not exist in dimension 5 or greater [12, 1]. (The
proofs apply to field theories with a single, scalar field.) Analysis of the bor-
derline dimension 4 (between existence and non-existence) is more subtle; if
one makes some reasonable (but not entirely proved) assumptions, one also
can conclude triviality for the quartic coupling in four dimensions. Not only
is this persuasive evidence, but furthermore the quartic coupling does not
have the property of asymptotic freedom in four dimensions. Thus all in-
sights from random walks, perturbation theory, and renormalization analysis
point toward triviality of the quartic interaction in four dimensions.

Other polynomial interactions in four dimensions are even more trouble-
some: The classical energy of the cubic interaction is unbounded from below,
so it appears an unlikely candidate for a quantum theory where positivity
of the energy is an axiom. And polynomial interactions of degree greater
than quartic are more singular in perturbation theory than the quartic in-
teraction.

All these reasons complement the physical and geometric importance
of Yang–Mills theory and highlight it as the natural candidate for four-
dimensional CQFT.

6.3. Large Coupling Constant. In two dimensions, the field theory
with energy density (3) exists for all positive λ. For 0 ≤ λ� 1 the solution
is unique under a variety of conditions; but for λ� 1 two different solutions
exist, each characterized by its ground state or “phase.” The solution in
each phase satisfies the Osterwalder–Schrader and Wightman axioms with
a non-zero mass gap and a unique, Poincaré-invariant vacuum state. The
distinct solutions appear as a bifurcation of a unique approximating solution
with finite volume V as V → ∞.

One exhibits this behavior by reordering and scaling the λϕ4 interaction
(3) with λ� 1 to obtain an equivalent double-well potential of the form

(4) λ

(
ϕ2 − 1

λ

)2

+
1
2
σϕ2 + c.

Here λ � 1 is a new coupling constant and the renormalization constants
σ and c are somewhat different from those above. The two solutions for
a given λ are related by the broken ϕ → −ϕ symmetry of the interaction
(4). The proof of these facts relies upon developing a convergent cluster
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expansion about each minimum of the potential arising from (4) and proving
the probability of tunneling between the two solutions is small [20].

A critical value λc of λ in (3) provides a boundary between the unique-
ness of the solution (for λ < λc) and the existence of a phase transition
λ > λc. As λ increases to λc, the mass gap m = m(λ) decreases monotoni-
cally and continuously to zero [23, 17, 32].

The detailed behavior of the field theory (or the mass) in the neigh-
borhood of λ = λc is extraordinarily difficult to analyze; practically nothing
has been proved. Physicists have a qualitative picture based on the assumed
fractional power-law behavior m(λ) ∼ |λc − λ|ν above or below the critical
point, where the exponent ν depends on the dimension. One also expects
that the critical coupling λc corresponds to the greatest physical force be-
tween particles, and that these critical theories are close to scaling limits
of Ising-type modes in statistical physics. One expects that further under-
standing of these ideas will result in new computational tools for quantum
fields and for statistical physics.

There is some partial understanding of a more general multi-phase case.
One can find an arbitrary number n of phases by making a good choice of a
polynomial energy density Pn(ϕ) with n minima. It is interesting to study
the perturbation of a fixed such polynomial Pn by polynomials Q of lower
degree and with small coefficients. Among these perturbations one can find
families of polynomials Q(ϕ) that yield field theories with exactly n′ ≤ n
phases [26].

6.4. Yukawa Interactions and Abelian Gauge Theory. The ex-
istence of boson-fermion interactions is also known in two dimensions, and
partial results exist in three dimensions. In two dimensions Yukawa inter-
actions of the form ψψϕ exist with appropriate renormalization, as well as
their generalizations of the form P(ϕ) +ψψQ′′(ϕ), see [42, 18]. The super-
symmetric case P = |Q′|2 requires extra care in dealing with cancellations
of divergences, see [28] for references.

A continuum two-dimensional Higgs model describes an abelian gauge
field interacting with a charged scalar field. Brydges, Fröhlich, and Seiler
constructed this theory and showed that it satisfies the Osterwalder–Schrader
axioms [7], providing the only complete example of an interacting gauge the-
ory satisfying the axioms. A mass gap exists in this model [4]. Extending
all these conclusions to a non-abelian Higgs model, even in two dimensions,
would represent a qualitative advance.

Partial results on the three-dimensional ψψϕ interaction have been es-
tablished, see [30], as well as for other more singular interactions [14].
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6.5. Yang–Mills Theory. Much of the mathematical progress review-
ed above results from understanding functional integration and using those
methods to construct Euclidean field theories. Functional integration for
gauge theories raises new technical problems revolving around the rich group
of symmetries, especially gauge symmetry. Both the choice of gauge and the
transformation between different choices complicate the mathematical struc-
ture; yet gauge symmetry provides the possibility of asymptotic freedom.
Certain insights and proposals in the physics literature [9, 5] have led to an
extensive framework; yet the implications of these ideas for a mathematical
construction of Yang–Mills theory need further understanding.

Wilson suggested a different approach based on approximating contin-
uum space-time by a lattice, on which he defined a gauge-invariant action
[48]. With a compact gauge group and a compactified space-time, the lat-
tice approximation reduces the functional integration to a finite-dimensional
integral. One must then verify the existence of limits of appropriate expec-
tations of gauge-invariant observables as the lattice spacing tends to zero
and as the volume tends to infinity.

Reflection positivity holds for the Wilson approximation [36], a major
advantage; few methods exist to recover reflection positivity in case it is
lost through regularization—such as with dimensional regularization, Pauli–
Villiars regularization, and many other methods. Establishing a quantum
mechanical Hilbert space is part of the solution to this Millennium problem.

Balaban studied this program in a three-dimensional lattice with peri-
odic boundary conditions, approximating a space-time torus [2]. He studied
renormalization transformations (integration of large-momentum degrees of
freedom followed by rescaling) and established many interesting properties
of the effective action they produce. These estimates are uniform in the
lattice spacing, as the spacing tends to zero. The choices of gauges are cen-
tral to this work, as well as the use of Sobolev space norms to capture an
analysis of geometric effects.

One defines these gauges in phase cells: The choices vary locally in
space-time, as well as on different length scales. The choices evolve induc-
tively as the renormalization transformations proceed, from gauges suitable
for local regularity (ultraviolet gauges) to those suitable for macroscopic
distances (infrared gauges). This is an important step toward establishing
the existence of the continuum limit on a compactified space-time. These
results need to be extended to the study of expectations of gauge-invariant
functions of the fields.

While this work in three dimensions is important in its own right, a
qualitative breakthrough came with Balaban’s extension of this analysis to
four dimensions [3]. This includes an analysis of asymptotic freedom to
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control the renormalization group flow as well as obtaining quantitative
estimates on effects arising from large values of the gauge field.

Extensive work has also been done on a continuum regularization of
the Yang–Mills interaction, and it has the potential for further understand-
ing [39, 29].

These steps toward understanding quantum Yang–Mills theory lead to a
vision of extending the present methods to establish a complete construction
of the Yang–Mills quantum field theory on a compact, four-dimensional
space-time. One presumably needs to revisit known results at a deep level,
simplify the methods, and extend them.

New ideas are needed to prove the existence of a mass gap that is uniform
in the volume of space-time. Such a result presumably would enable the
study of the limit as T4 → R4.2

6.6. Further Remarks. Because four-dimensional gauge theory is a
theory in which the mass gap is not classically visible, to demonstrate it may
require a non-classical change of variables or “duality transformation.” For
example, duality has been used to establish a mass gap in the statistical me-
chanics problem of a Coulomb gas, where the phenomenon is known as Debye
screening: Macroscopic test charges in a neutral Coulomb gas experience a
mutual force that decays exponentially with the distance. The mathemati-
cal proof of this screening phenomenon proceeds through the identity of the
partition function of the Coulomb gas to that of a cos(λϕ) (sine-Gordon)
field theory, and the approximate parabolic potential near a minimum of
this potential, see [6].

One view of the mass gap in Yang–Mills theory suggests that it could
arise from the quartic potential (A ∧ A)2 in the action, where F = dA +
gA ∧A, see [11], and may be tied to curvature in the space of connections,
see [44]. Although the Yang–Mills action has flat directions, certain quan-
tum mechanics problems with potentials involving flat directions (directions
for which the potential remains bounded as |x| → ∞) do lead to bound
states [43].

A prominent speculation about a duality that might shed light on dy-
namical properties of four-dimensional gauge theory involves the 1/N ex-
pansion [25]. It is suspected that four-dimensional quantum gauge theory
with gauge group SU(N) (or SO(N), or Sp(N)) may be equivalent to a
string theory with 1/N as the string coupling constant. Such a description
might give a clear-cut explanation of the mass gap and confinement and
perhaps a good starting point for a rigorous proof (for sufficiently large N).

2We specifically exclude weak-existence (compactness) as the solution to the existence
part of the Millennium problem, unless one also uses other techniques to establish prop-
erties of the limit (such as the existence of a mass gap and the axioms).
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There has been surprising progress along these lines for certain strongly cou-
pled four-dimensional gauge systems with matter [31], but as of yet there is
no effective approach to the gauge theory without fermions. Investigations
of supersymmetric theories and string theories have uncovered a variety of
other approaches to understanding the mass gap in certain four-dimensional
gauge theories with matter fields; for example, see [41].
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Rules for the Millennium Prizes

The Clay Mathematics Institute (CMI) of Cambridge, Massachusetts,
has named seven “Millennium Prize Problems”. The Scientific Advisory
Board of CMI (SAB) selected these problems, focusing on important classic
questions that have resisted solution over the years. The Board of Directors
of CMI designated a US$7 million prize fund for the solution to these prob-
lems, with US$1 million allocated to each. The directors of CMI, and no
other persons or body, have the authority to authorize payment from this
fund or to modify or interpret these stipulations. The Board of Directors of
CMI makes all mathematical decisions for CMI, upon the recommendation
of its SAB.

The SAB of CMI will consider a proposed solution to a Millennium Prize
Problem if it is a complete mathematical solution to one of the problems.
(In the case that someone discovers a mathematical counterexample, rather
than a proof, the question will be considered separately as described below.)
A proposed solution to one of the Millennium Prize Problems may not be
submitted directly to CMI for consideration.

Before consideration, a proposed solution must be published in a refereed
mathematics publication of worldwide repute (or such other form as the SAB
shall determine qualifies), and it must also have general acceptance in the
mathematics community two years after. Following this two-year waiting
period, the SAB will decide whether a solution merits detailed consideration.
In the affirmative case, the SAB will constitute a special advisory committee,
which will include (a) at least one SAB member and (b) at least two non-SAB
members who are experts in the area of the problem. The SAB will seek
advice to determine potential non-SAB members who are internationally
recognized mathematical experts in the area of the problem. As part of this
procedure, each component of a proposed solution under consideration shall
be verified by one or more members of this special advisory committee.

The special advisory committee will report within a reasonable time to
the SAB. Based on this report and possible further investigation, the SAB
will make a recommendation to the Directors. The SAB may recommend the
award of a prize to one person. The SAB may recommend that a particular
prize be divided among multiple solvers of a problem or their heirs. The SAB
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will pay special attention to the question of whether a prize solution depends
crucially on insights published prior to the solution under consideration. The
SAB may (but need not) recommend recognition of such prior work in the
prize citation, and it may (but need not) recommend the inclusion of the
author of prior work in the award.

If the SAB cannot come to a clear decision about the correctness of a
solution to a problem, its attribution, or the appropriateness of an award,
the SAB may recommend that no prize be awarded for a particular problem.
If new information comes to light, the SAB may (but will not necessarily)
reconsider a negative decision to recommend a prize for a proposed solution,
but only after an additional two-year waiting period following the time that
the new information comes to light. The SAB has the sole authority to make
recommendations to the directors of the CMI concerning the appropriateness
of any award and the validity of any claim to the CMI Millennium Prize.

In the case of the P versus NP problem and the Navier–Stokes prob-
lem, the SAB will consider the award of the Millennium Prize for deciding
the question in either direction. In the case of the other problems, if a
counterexample is proposed, the SAB will consider the counterexample af-
ter publication, and the same two-year waiting period as for a proposed
solution will apply. If, in the opinion of the SAB, the counterexample ef-
fectively resolves the problem, then the SAB may recommend the award of
the Prize. If the counterexample shows that the original problem survives
after reformulation or elimination of some special case, then the SAB may
recommend that a small prize be awarded to the author. The money for
this prize will not be taken from the Millennium Prize Problem fund, but
from other CMI funds.

Any person who is not a disqualified person (as that term is defined in
section 4946 of the Internal Revenue Code) in connection with the institute
may receive the Millennium Prize. Any disqualified person other than a
substantial contributor to the institute (as defined in section 507 of the
Internal Revenue Code) may also receive the Millennium Prize provided
that the directors, upon application for the prize by a disqualified person,
shall modify the procedures outlined herein for selecting an awardee so as to
assure that the candidate is not present during and does not participate in
any deliberations of the Board, the SAB, or any special award committee in
connection with making the award and provided further that if an award is
made to a disqualified person, the Board shall make public the procedures
that are adopted to assure impartiality and to avoid conflict of interest.
For purposes of this paragraph, members of the SAB shall be considered
“disqualified persons”.

With the one exception in the prior paragraph, all decision-making pro-
cedures concerning the CMI Millennium Prize Problems are private. This
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includes the deliberations or recommendations of any person or persons CMI
has used to obtain advice on this question. No records of these deliberations
or related correspondence may be made public without the prior approval
of the directors, the SAB, and all other living persons involved, unless fifty
years of time have elapsed after the event in question.

Please send inquiries regarding the Millennium Prize Problems to
prize.problems@claymath.org.
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