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Abstract—While performing Feature Subset Selection (FSS) 
to identify important features, a weight is assigned to each 
feature that is not necessarily meaningful or interpretable w.r.t. 
final task and in turn leads to non-actionable information. To 
provide a solution to this problem of interpretable FSS, we 
introduce a novel notion of classification game with features as 
players and hinge loss based characteristic function. We use the 
Shapley value of this game to apportion the total training error 
to explicitly compute the contribution of each feature (Shapley 
Value based Error Apportioning, SVEA) to the total training 
error. We formalize the notion of interpretability in FSS by 
identifying 3 final task related conditions. We empirically 
demonstrate that features with SVEA values less than zero are 
the dominant ones; this set is unique for a dataset as Shapley 
value is unique for a game instance. For the datasets that had 
negative apportioning, we observe a high value of the power   
of classification, PSV . It compares the performance of a set of 
linear and non-linear classifiers learned on Shapley value-based 
important features and the full feature set, in most of the cases. 
We customize a known Monte Carlo based approximation 
algorithm to avoid expensive Shapley value computations. We 
demonstrate the sample bias robustness of SVEA scheme by 
providing interval estimates. We illustrate all the above aspects 
on both synthetic and real datasets and showed that our scheme 
out-performs many existing approaches like recursive feature 
elimination and ReliefF in most of the cases. 

 
1. Introduction 

“What is the guarantee that a given model uses impor- 
tant and relevant features among the given features?” This 
question has been the topic of research for decades in many 
learning areas, including supervised learning. To address 
this question  in  a  binary  classification  task,  we  present  
a cooperative game-theoretic framework for feature subset 
selection. We introduce a classification game with features 
as players and hinge loss based characteristic function (in 
terms of Linear Programs, LPs). Since the classifier that 
doesn’t involve any features has non-zero  training  error,  
the challenge in defining a cost game is to deal with the 

 
. Detailed version of paper available at https://arxiv.org/abs/2001.03956 

requirement that characteristic function’s value should be 
zero for the empty coalition. 

We overcome this challenge by suitably defining a value 
game and apportioning the total training error of the hinge 
loss based linear classifiers using an affine transformation  
of the Shapley value of the value game. As Shapley value 
allocates the total training error to each feature based on its 
proportional contribution (‘paid as per your participation, no 
more, no less’), it is theoretically sound and has been famous 
as a cost allocation measure [1], [2], [3] and in other areas as 
well [4]. It also captures the interactions among features by 
the marginal contribution of each feature in a fixed group of 
features. Thus, it is a suitable choice for tasks like Feature 
Subset Selection (FSS). 

 

Figure 1: Flow chart describing interpretable FSS scheme 
SVEA with highlighted properties, P1, P2, and P3 defined  
in Def. 1. Here, Tr D and Te D denote train and test dataset. 

 
In the context of classification game, the additivity ax- 

iom of Shapley value [5], [6], [7] requires that the allocation 
of total training error by combining two data sets is equal to 
the sum of the allocations from the different datasets; this    
is not possible for two distinct data sets. To circumvent this 
problem, we have used Young’s strong monotonicity based 
axiomatic approach [8] that bypasses the requirement of 
additivity axiom. We also note that the use of Shapley value 
in other contexts, such as explaining a prediction is criticized 
by many researchers in different ways [9]; it was pointed 
out that additivity axiom need not hold in such applications 
of Shapley value. 
Our major contributions are: 
(1) Identification of features whose joint contribution to 
label prediction is substantial (Section 3.1). There is a 
universal threshold of 0 on Shapley value-based error ap- 
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portioning (SVEA) values in our scheme to select feature
subset for all datasets. Hence, our scheme doesn’t require
a user to choose a threshold either on feature importance
value or size of feature subset.
(2) Using a mix of linear and non-linear classifiers on
datasets ranging from low to moderately sized feature set
and examples, we measure the effectiveness of SVEA by
PSV (K), the power of classification of SVEA based subset
K. We observed that in most of the datasets, this value is
approximately 0.90 except for Thyroid dataset (Section 4).
In Section 3.2, we provide t-distribution based confidence
intervals to show unique SVEA’s sample bias robustness.
(3) We explicitly define the notion of an interpretable FSS
scheme (Definition 1) and evaluate a range of FSS scheme
w.r.t. the proposed definition. We observe that our scheme
satisfies all conditions required of an interpretable FSS
scheme.

Note that, if one needs the top l features out of n (l  n),
then based on this requirement, one can rank the features
by their SVEA values and identify the l-sized subset. Also,
if there is a user-given threshold say �, that is other than
0, the SVEA scheme can also identify the feature subset
corresponding to this threshold. Feature subset based on
SVEA is unique as Shapley value is unique for a dataset.

In addition to the above-listed contributions, we present
a sampling-based approximation algorithm built on [10] that
does not require computing characteristic function (LP) for
the 2n subset of features all at once; instead, compute
it only when a particular subset of features is sampled
(Appendix B). We also considered another variant where
the linear classifier based training error is regularized and
computationally observed that the feature subset selected is
the same as that of the unregularized model (Section 3.3).

Our idea that thresholding the modified Shapley value
of classification game at 0 identifies the features with sub-
stantial joint contribution to the prediction has following
motivation. Suppose among a group of players (features),
one player has sufficient resources so that it has the power
to work (classify) alone. Let us call it a dominant player.
Now, if the other players (features) ask this dominant player
to join their coalition (to form a classifier), then it asks them
for a payoff. Since, the quantity to be divided is an error
(cost), for such dominant players, the payoff is in the form
of modified Shapley value being negative. We demonstrate
this phenomenon in Pima Diabetes dataset where, knowing
the blood sugar level (feature) is sufficient to decide whether
the patient has diabetes or not.

An innate understanding of how our SVEA scheme
possesses explainability and interpretability (formally in
Definition 1) is as follows. Explainability in our scheme
refers to its ability to provide a reason for selecting a
feature as important using its SVEA value; a feature with
negative SVEA lowers the total training error. An impor-
tant feature subset constituting such features makes FSS
(using the SVEA scheme) explainable. Interpretability in
the context of the SVEA scheme includes accounting for
possible interactions among features using Shapley value,
using the training error similar to the one used in final

classification task and mapping SVEA (importance) value
of a particular feature to an apportioning of training error
by the Shapley value of the well defined classification game.
The SVEA values can either be negative or positive; features
with negative value can be interpreted as the dominant ones
(more details in Section 3.1).
Organization Section 1.1 provides details about where our
work stands w.r.t. existing literature. The binary classifica-
tion game model is formulated in Section 2. Next, in Section
3, we present the main insights about interpretable FSS. In
Section 4, we demonstrate empirical evidence in support of
the proposed scheme. We conclude the paper in Section 5.

1.1. Related work

In this section, we review some existing work on feature
subset selection problem. We will describe the use of Coop-
erative Game Theory (CGT) in FSS and the interpretability
aspects of the FSS methods.

Based on the search strategy used, [11] classifies the
feature subset selection techniques into three categories,
viz., filter techniques, wrapper techniques, and embedded
methods. Recursive feature elimination by [12] and ReliefF
by [13] are the most popular wrapper and filter methods
respectively. Another approach by [14] proposes a graph-
theoretic clustering-based FSS scheme that first clusters the
features and then choose a representative from each cluster
to get the final important feature set. An interesting idea of
instance dependent FSS for a general task (classification or
regression) is presented in [15], where the authors compute
saliency for each feature by identifying a task and loss
dependent gain function.

CGT in feature selection: In [16] authors have pro-
posed a contribution selection algorithm that uses Shapley
value to improve upon wrapper techniques like backward
elimination and forward selection. The solution concepts
such as Shapley value and Banzhaf index are used by
[17] and [18] respectively to compute the importance of
features which is further used with the filter methods based
on information-theoretic ranking criteria. A good amount
of work by [19], [20], [21], [22] also uses Shapley value
for feature importance while dealing with medical data.
However, the definition of payoff function is not explicit
and the algorithms depend on user given parameters. All
the methods mentioned above use CGT mainly to give
additional information to either a wrapper or filter method.
However, CGT is central to our scheme as it uses an affine
transformation of Shapley value of the classification game
which further provides interpretability and explainability
to the selected feature subset. Also, the existing methods
require a user given threshold on the contribution value,
whereas, for us, the threshold of 0 (a universal threshold) is
used to select the feature subset.

Interpretability in feature subset selection: Feature
subset selection being an integral part of any learning
model needs interpretable and explainable methods too. A
visual explanation and interpretation approach for dimension
reduction is presented by [23]. Mutual information based
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feature selection method that uses the unique relevant in-
formation and show its importance in health data is given
in [24]. Local information based interpretable feature sub-
set selection is also studied by [25]. Another more recent
approach called Informative Variable Identifier (IVI) in FSS
by ensemble category is proposed by [26] where they also
provide levels of interpretability in FSS. However, their
scheme relies on statistical properties of feature distribution
to incorporate feature interactions. We provide a single defi-
nition for an FSS algorithm to be interpretable in Definition
1. FSS methods that mitigate the bias amplification in linear
models have been proposed by [27] wherein the authors
have presented two new feature selection algorithms for
mitigating bias amplification in linear models, and show
how they can be adapted to convolutional neural networks
efficiently. The influence function is used to remove the
features which have bias towards the prediction. However,
our focus is on the feature subset selection. We have also
addressed the issue of sample biasedness, but that is different
from the biasness of the features towards the prediction.

Shapley value for explaining a prediction and data
valuation: CGT has been used in literature either for ex-
plaining a model’s prediction [28], [29], [30] or for data val-
uation by using the Shapley value [31], [32]. The difference
between our work of using CGT for FSS (before training)
and existing work using it for explaining predictions (after
training), has been also clarified and highlighted by [33],
where they treat feature importance across all the training
data and attribution (explaining model prediction) as two
separate problems. CGT based data valuation work focuses
on selection of the most relevant data points to apportion
the overall profit among various contributors by considering
data points as players, unlike our work, where we model
features as players. We would like to emphasize that our
scheme is not just a global version of Shap [30] as the
later scheme averages over the Shap values for every feature
across data points to get a summary importance. Instead,
we have an explicit game formulation (whose relevance
has been already pointed out by [34] in a different setup
of explaining predictions) whose Shapley values are used
as feature contribution to the training error. Hence, our
definition is novel and takes natural approach of Empirical
Risk Minimization (ERM).

2. Training error based classification game

In this section, we will describe definitions and notations
to be used throughout the paper. The training error incurred
by a subset of feature is then introduced, which is used to
define the classification game – a cooperative game which
is a central and novel contribution of our work.

2.1. Notations and Preliminaries

In this section, we introduce some cooperative game [7],
[35] and classification [36], [37] terminology and concepts
to provide a better understanding of the connection which
we will be studying in rest of the paper.

Cooperative game theory [7], [35]: The Transferable
Utility (TU) cooperative game is a pair (N, v) where
N = {1, . . . , n} is a set of players and v : 2N 7! R
is the characteristic function, with v(;) = 0. Any subset
S ✓ N of player set is called the coalition of players in
set S. Set of all players is referred to as grand coalition.
One of the major problem in CGT is the allocation of the
payoff of grand coalition among all the players. There are
various axiomatic approaches, but we are using Young’s
axiomatic approach [8]. According to Young’s axiomatic ap-
proach, Shapley value [7], [35] is a unique, symmetric, and
strongly monotonic solution concept defined as a mapping
� : R2n�1

7! Rn where 8j 2 N, 8 v 2 R2n�1 we have:

�j(v) =
X

S✓N\{j}

|S|!(n� |S|� 1)!
n!

[v(S [ {j})� v(S)].

Classification setup [36], [37]: Let X be the feature
space and Y be the label set. Let D be the joint distribution
over X ⇥ Y with X 2 X ✓ Rn and Y 2 Y = {�1, 1}. X
can include categorical features after suitably prepossessing
them either by using dummy encoding for nominal ones
or by using ordered numbers for ordinal variables. Let the
decision function be f : X 7! R and hypothesis class of
all measurable functions be H. Let the linear hypothesis
class be Hlin = {(w, b),w 2 Rn, b 2 R}. In the game
construction, we restrict the hypothesis class to be Hlin

because Shapley value’s underlying assumption that requires
the formation of grand coalition is violated by use of non-
linear classifiers while defining the characteristic function.
However, for the final classification task, we use both linear
and non-linear classifiers (Section 4). We have an i.i.d. sam-
ple of size m from distribution D, viz., D = {(xi, yi)}mi=1
where xi = (xi1, xi2, . . . , xin) is the value of the feature
and yi 2 {�1, 1} is the label for ith data point. We use
hinge loss based ERM setup because in addition to many
desirable properties such as classification calibration and the
large margin it imparts to classifiers, it leads to an LP which
can be solved in polynomial time.

2.2. Training error function

Given the dataset/sample D = {(xi, yi)}mi=1 with fea-
tures N = {1, . . . , n}, we consider a training error function,
tr er(S,m) associated with all possible subsets S ✓ N
when sample size is m. We define tr er(;,m) as hinge
loss based training error of an intercept only classifier and
denote it by c̃(m) := tr er(;,m).

tr er(;,m) = min
b,{⇠i}m

i=1

1

m

mX

i=1

⇠i

s.t. yib � 1� ⇠i, 8i = 1, . . . ,m

⇠i � 0, 8i = 1, . . . ,m.

(1)

Similarly, we define the training error, tr er(S,m) for any
nonempty subset S = {j1, j2, . . . , jr} of size r with r
distinct elements/features. This would be minimal hinge loss
of the classifier (w⇤

j1 , . . . , w
⇤
jr , b

⇤
r) obtained from the dataset
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projected to r-dimensional subspace, i.e., dataset having
feature values {xij1 , . . . , xijr}

m
i=1 and label {yi}mi=1.

tr er(S,m) = min
wj1 ,...,wjr ,br,{⇠i}m

i=1

1

m

mX

i=1

⇠i

s.t. yi

0

@
X

j2S

wjxij + br

1

A � 1� ⇠i, 8i 2 [m]

⇠i � 0, 8i = 1, . . . ,m.

(2)

When S = N , we have tr er(N,m), i.e., the minimal
hinge loss based empirical risk of the classifier (w⇤

N , b⇤N )
when the given dataset is n dimensional (all n feature values
from the sample D are used). Note that the variables used
in each ERM are local to that optimization problem only.

As conventional cooperative games assume v(;) = 0,
training error function tr er(·,m) with tr er(;,m) 6= 0
cannot be a valid characteristic function. To circumvent this
problem, we define a payoff/value game with characteristic
function v(S,m)1 given below:

v(S,m) = tr er(;,m)� tr er(S,m), 8 S ✓ N. (3)

v(S,m) represents the marginal improvement in the training
error obtained due to the presence of the features in S.
As, v(;,m) = 0, it is a valid characteristic function also.
This characteristic function along with the feature set N
defines a TU classification game (N, v(·,m)). Further, the
characteristic function v(S,m) is monotonic w.r.t. the coali-
tions, which is an important property from the perspective
of allocation. This property is formalized in Proposition 1
with the proof being available in Appendix A.1.
Proposition 1. If (N, v(·,m)) is a classification game, then

the characteristic function v(·,m) is monotonic, i.e.,
8 S ✓ T ✓ N, v(S,m)  v(T,m).

2.3. Training error allocation using Shapley value

As the Shapley value solution concept has the idea of
allocation based on a feature’s marginal contribution (no
more, no less), it emerges as a suitable candidate for appor-
tioning of v(N,m) among the features in a classification
game and its Shapley values for a feature j 2 N , is:

�j(N, v(·,m)) =
X

S✓N\{j}

|S|!(n� |S|� 1)!

n!
[v(S[{j},m)�v(S,m)].

(4)
Using this Shapley value, Theorem 1 provides an equitable

training error allocation among features. We refer to it as
Shapley value based error apportioning (SVEA) denoted
by ej(tr er(N,m)), 8 j 2 N ; as we see below, it is an
affine transformation of Shapley value for feature j 2 N .
A proof of Theorem 1 is available in Appendix A.2. As
Shapley value is unique for an instance of a game which
in our case is a sample, SVEA is also unique for a sample
from a dataset.

1. Characteristic function as defined here depends on sample size m, so
we use m as an argument in v(·,m). We later use sub-samples to avoid
sample bias.

Theorem 1. The unique Shapley value based error appor-
tioning, e : R2n�1

! Rn of the total training error,
tr er(N,m) among all the features is given by

ej(tr er(N,m)) =
c̃(m)

n
� �j(N, v(·,m)), 8j 2 N.

(5)
For notational convenience, hereafter, we will denote the
allocation of training error to feature j, by ej(m) and
Shapley value of feature j by �j(m)for sample size of m.

In general, the problem of computing Shapley value is
known to be NP-hard [38]. Also, it has high space complex-
ity due to the space requirement of storing n! permutations
or 2n � 1 characteristic functions. To bypass this issue,
we adapt the approximation algorithm given by [10] for
computing the Shapley value of features in the classification
game (N, v(·,m)). The advantage of using this algorithm is
that the characteristic function is calculated for a coalition
as and when required in the marginal contribution sum.
Note that the computation of tr er(S,m) for a coalition
S is scalable as it is by an LP. Algorithm and related
details are available in Appendix B. In Section 4, we use
this approximation for datasets with n � 10. To evaluate
the quality of Shapley value estimates, we computed their
difference from the true Shapley value for datasets with
n < 10 and observed that use of 100 Monte Carlo (MC)
samples lead to a min 0.5 % and max 10% error over ten
trials (different train and test partitioning) across all datasets.
If the MC samples are increased to 1000, this error comes
down to a max 4 percent. In our preliminary experiments,
as the sign of apportioning and ordering of features doesn’t
change with the use of 100 MC samples and 1000 MC
samples, we stick to using 100 MC samples only. Now we
will address some interpretability aspects of our method.

3. Interpretable feature subset selection

Based on the apportioning of the total training error,
tr er(N,m), among the features, we are deciding whether
the feature is important or not (details available in the
subsequent subsection). One of the key points to note is
that for some features j 2 N , ej(m) < 0. The intuition
is as follows: suppose a player (feature) is so dominant
that it can work (classify) alone. Now, if the other players
(features) ask this dominant player to join their coalition (to
form a classifier), then it asks them for a payoff. Since the
quantity to be divided is an error (cost), for such dominant
players, the payoff is in the form of SVEA being negative.
We formally present this idea in Proposition 2 for the two-
player case. The proof is available in Appendix A.3.
Proposition 2. Consider a 2-feature classification

game (N, v(·,m)) with training error function
tr er({1},m) = q > 0, tr er({2},m) = Q > 0,
tr er({1, 2},m) = q0  min{q,Q}. If Q

2 > q, then
SVEA of tr er({1, 2},m) is such that e1(m)  0 and
e2(m) � 0.

Generalizing the notion of Proposition 2 for n players,
the apportioning {ej(m)}j2N of tr er(N,m) can provide
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us with various insights. Based on the above arguments, in
this work, we study the role of those features for which
SVEA is negative in feature subset selection. In particular,
we show SVEA based decision of whether a feature is to
be selected or not is easily interpretable. We further show
that these SVEA values being less than zero is not an
artifact of the sample, but dataset property and hence are
robust to potential sample bias. To formalize the notion of
interpretabilty in FSS, we define it as follows:
Definition 1. A scheme for FSS is said to be interpretable

if it satisfies following conditions:
(P1) Transparency in the process: The process of find-

ing the feature importance should be transparent
and it should be clear how the feature interactions
are being accounted for.

(P2) Relation to final task: The feature importance
computation should be based on a criterion which
takes into account their role in final task (classifi-
cation).

(P3) Justifiable importance values: Feature importance
values should have a meaning/justification in the
context of the final task in addition to being just
called feature contributions.

SVEA is interpretable as it satisfies all above conditions.
It accounts for all possible interactions among features using
Shapley value (P1), uses the training error similar to the one
used in final classification task (P2) and SVEA (importance)
value of a particular feature correspond to an apportioning
of training error by the Shapley value of the well defined
classification game (P3). Figure 1 depicts the steps of SVEA
scheme in which the above properties are satisfied. Next,
we summarize which FSS methods satisfy the different
conditions from Definition 1 in Table 1.

Remark: The above definition of interpretablilty is fairly
generic, as it can be adopted for other schemes (other than
FSS) in a broader task (other than classifier design).

Methods/Conditions P1 P2 P3
ReliefF [13] X X ⇥
RFECV [12] X X ⇥

BanzhafI based [18] X X ⇥
ShapleyV based [17] X X ⇥

LFS [25] X X ⇥
IVI [26] X X ⇥

SVEA based FSS [26] X X X

TABLE 1: Table summarizing FSS methods w.r.t. inter-
pretability from Definition 1.

3.1. Negative valued SVEA and FSS

We observed that the features for which SVEA is neg-
ative (set SV EAneg) are the ones whose joint contribution
in label prediction is substantial. To formalize this idea,
we introduce the notion of the power of classification of
a subset, say K, of features, defined below:
Definition 2 (Power of classification of feature subset K,

PSV (K)). Given a training dataset D of size m with

feature values {xi1, . . . , xin}
m
i=1 and labels {yi}mi=1,

the power of classification of a set of features K =
{j1, j2, . . . , jk} ✓ N is defined as follows:

PSV (K) =

mteP
i=1

1[yif⇤
K(xij1 ,xij2 ,...,xijk

)�0]

mteP
i=1

1[yif⇤
N (xi1,xi2,...,xin)�0]

, (6)

where f⇤
K(·) and f⇤

N (·) are the optimal linear classifiers
in the respective subspaces, mte (different from D) is
the number of sample points used for testing, and 1[A]

is the indicator function with value 1 if A holds and 0
otherwise.

The higher the value of PSV (K), the higher the joint
influence of the subset K in classification. The powerful
subset K = SV EAneg is not pre-decided but determined
by SVEA. Due to Shapley value’s property of identifying
the important players based on their contributions, the SVEA
scheme identifies features that play a dominating role in the
task of classification and forms a set K. We give details
about the FSS interpretation for UCI datasets with the
SVEA, {ej(m)}j2N being negative in Section 4. Besides,in
our preliminary experiments we observed that l1-regularized
squared hinge loss based ERM doesn’t identify important
features for UCI datasets like Heart, Pima, and Thyroid.

3.2. Sample bias robustness of SVEA scheme

To be robust to sample bias, we provide interval esti-
mates for SVEA of features by using multiple sub-samples
from a given dataset. A feature’s joint contribution in label
prediction is substantially high if the interval estimate of
SVEA for a feature lies on the left of origin on R. The proce-
dure is first to partition the dataset into multiple disjoint sub-
samples and compute the apportioning for each sub-sample.
Then, a group of 30 such sub-samples is selected and using
CLT, the average apportioning ēgj , j 2 N for each group g is
asymptotically normally distributed with unknown mean µe

and variance �2
e . Next, using ēgj , we compute t-distribution

based 100(1�↵) confidence intervals. Let G be the number
of groups; then by the definition of confidence intervals, we
have following high probability statement:

P (epj 2 [¯̄ej ± t⇤↵/2,G�1(sj/
p

G)]) � 1� ↵, 8j 2 N,

where epj is the population mean for the error appor-
tioning value of feature j 2 N , ¯̄ej = 1

G

P
g ē

g
j and

sj = ( 1
G�1

P
g(ē

g
j � ¯̄ej)2)1/2 and t⇤↵/2,G�1 is the upper

↵/2 critical value for the t distribution with G� 1 degrees
of freedom. Based on our experiments in Section 4, we
observe that the interval estimates also lead to the same
threshold of 0 while performing FSS. Also, the conclusions
are robust to sample bias due to multiple averaging; thus,
the behavior of features with negative SVEA mentioned in
Section 3.1 is a property of the dataset and not of a particular
sample. The method presented above is tailor-made for the
SVEA scheme. A more general framework to address the
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instability issue, i.e., change in sample leading to change in
feature subset is presented in [39]. The authors first show
that any existing stability measure doesn’t possess all five
desirable properties which a stability measure should have.
Then, taking a statistical approach, they propose a novel
measure that is treated as an estimator of true stability.

3.3. Characteristic function with regularization

In this section, we first shed some light on the im-
portance of Proposition 1 while using Shapley value for
identifying important features in a non-regularized linear
classifier hinge loss based ERM problem. Shapley value
implicitly assumes that the grand coalition is formed. Mono-
tonicity, i.e., v(N) � v(S), 8S ✓ N of the characteristic
function ensures the formation of grand coalition. To this
end, Proposition 1 for the classification game with a linear
classifier provides a sufficient condition for the formation
of a grand coalition and hence the use of Shapley value to
apportion the total value is justified. However, this might
not be true for other characteristic function as given below.

To address the issues such as over-fitting, we considered
a l2-regularized version of tr er(S,m) defined in Section
2.2. For trade-off parameter C > 0,

tr er(S,m) = min
wj1 ,...,wjr ,br,{⇠i}m

i=1

C
mX

i=1

⇠i +
1

2
kwk

2

s.t. yi

0

@
X

j2S

wjxij + br

1

A � 1� ⇠i, 8i = 1, . . . ,m

⇠i � 0, 8i = 1, . . . ,m.

(7)

Clearly, using Eq. (7) to compute v(S,m) =
tr er(;,m) � tr er(S,m) with tr er(;,m) as in Section
2.2 can lead to negative v(S,m). To avoid this issue,

we define vreg(S,m) = tr er(;,m) �
1
m

mP
i=1

⇠⇤i where

⇠⇤i , i = 1, · · · ,m is optimal solution of problem in Eq. (7).
Even though vreg(S,m) is not shown to be theoretically
positive, we observed it to be positive in all our experiments.

We computed SVEA using vreg(S,m) for various real
and synthetic datasets across five trials. We tuned the pa-
rameter C in the set {0.1, 1, 50, 500} for the optimization
problem in Eq. (7) when S = N and used the best value
of C obtained with S = N in the optimization problem for
all other subsets S 6= N . We observed that the important
feature subset corresponding to those features that have
SVEA ej(m) < 0 is the same irrespective of the fact
whether regularization is used or not in the characteristic
function. This is verified across five trials on the datasets
for which the Shapley value can be computed exactly.
Details available in Table 2. For datasets where Shapley
value approximation algorithm from Appendix B is used,
we observe that the subset SV EAneg varies across trials
and is different with and without regularization. We repeated
this experiment many times and observed different elements
in SV EAneg . This phenomenon is possibly not the effect

of regularization, but that of permutation sampling used
while computing Shapley value estimates. To summarize,
even though the use of Shapley value in this case could be
justified empirically only, its performance is the same as
that of linear unregularized and hence regularization in the
SVEA scheme is not helpful for feature subset selection.

Dataset (m,n) SV EAneg (without reg) SV EAneg (with reg)
sdA (3000,5) {1, 4} {1, 4}
sdB (9000,6) {1, 3, 6} {1, 3, 6}

Thyroid (215,5) {4} {4}
Pima (768,8) {2} {2}

Heart (270,13)

{9, 12, 13};
{3, 11, 12, 13};
{3, 9, 12, 13};
{3, 12, 13};
{3, 9, 12, 13}

{9, 11, 12, 13};
{3, 12, 13};

{3, 9, 12, 13};
{3, 12, 13};
{3, 12, 13}

TABLE 2: Comparison of important feature subset
SV EAneg when the characteristic function was defined with
and without regularization over five different trials (train-test
partitioning). For n < 10, Shapley value is computed exactly
and SV EAneg is same. For datasets with n � 10, the use
of Shapley value estimates led to a difference in the sets
obtained with and without regularization.

4. Computational experiments

In this section, we empirically demonstrate the impli-
cations of SVEA being negative for some features on real-
world datasets from [40], [41]. For the FSS interpretation,
we train a classifier using SVM (linear and rbf kernel),
Logistic Regression (LR), Random Forest (RF) and Multi
Layer Perceptron (MLP) to compute PSV . We also compare
our SVEA approach to Recursive Feature Elimination with
Cross-Validation (RFECV) and RefliefF. Implementation of
RFECV with 5-folds was done in Scikit learn module of
Python [42]. For ReliefF, we used the implementation of
[43] with neighbour parameter k = 2. All the above men-
tioned algorithms are implemented in Python 3 with Gurobi
8.0.0 solver for LPs, on a machine equipped with 4 Intel
Xeon 2.13 GHz cores and 64 GB RAM. To account for
randomness, we repeat each experiment 5 times and report
the average test accuracy (and standard deviation).

Real datasets: Demonstration of FSS using PSV with
threshold 0 on SVEA values First, we consider those UCI
datasets in which some features have negative SVEA and
compute their Power of classification, PSV . Let SV EAneg

be the set of features with ej(m) < 0 and PSV (SV EAneg)
is the power of classification of the set SV EAneg . From
Table 3, the value of PSV (SV EAneg) is close to 1 in most
of the cases. Hence, the features in the set SV EAneg have a
large joint contribution towards classification. Five different
types of classifiers support this behavior, viz., SVM (linear),
LR, RF, SVM(rbf) and MLP. Except for the Thyroid dataset,
the PSV value for a given dataset is similar across classifiers.
Moreover, we have also computed the PSV for all subsets
of the SV EAneg set for Heart dataset and observed that in
comparison to its subsets, SV EAneg has the highest value
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of PSV . For heart dataset, we observed that average accuracy
(± s.d.) over three trials with only feature 3 is 0.765±0.046,
with only feature 12 is 0.697± 0.043, with only feature 13
is 0.77 ± 0.453, with features 3 and 12 is 0.771 ± 0.046,
with features 12 and 13 is 0.77 ± 0.045 and with features
3, 12 and 13, i.e., SV EAneg set is 0.81 ± 0.008 which is
highest among all the subsets.

In addition to the datasets reported in Table 3, we also
implemented our SVEA scheme on other large scale datasets
like EEG-Eye state dataset (14 features, 14980 examples),
Numerai dataset (21 features, 96320 examples). However,
we did not observe any feature with negative value of SVEA
and hence in Table 3 we only report datasets that had
features with SVEA values less than zero.

Real datasets: Demonstration of FSS with a user
given threshold and comparison to RFECV and ReliefF
For a user given feature size, say l, with due justification
in terms of SVEA, our scheme can identify the l sized
feature set with best test accuracy based on the ranking of
the SVEA values. We demonstrate this property of SVEA
based scheme and compare it to RFECV and ReliefF. To do
this, we order the features based on the score/SVEA value
for each scheme and then plot the SVM test accuracy of
linear classifiers learned using first l features (Figure 2).
Too few features lead to degradation in performance, and
too many features defeat the purpose of feature selection.
In comparison to other methods, our scheme achieves the
highest accuracy when one looks for a trade-off by selecting
a subset of features whose cardinality is neither too small
nor too large. Also, if the user given threshold on the
number of features is l, then SVEA has the best accuracy as
observed in Figure 2 for Magic, Heart, and IJCNN dataset
with l = 2, 3, 5 respectively.

Using a statistical significance test to compare our
scheme to RFECV and ReliefF is not straight forward due
to computation of incremental feature accuracy, so we use
the measure that given a fixed number of features and a
lower bound on the accuracy, a good scheme should identify
feature subset leading to high accuracy. However, for the
sake of completeness, we still performed many Friedman
tests (using Scikit-posthoc package in python) by fixing the
number of features across datasets and found no significant
difference between the schemes at 5% level of significance
for most fixed feature sets. For the cases (fixed feature
set) when we observed a significant difference between the
accuracy using the Friedman test, we further performed the
Nemenyi Posthoc test and observed that SVEA has better
accuracy in comparison to ReliefF and RFECV [44].

Real datasets: Sample bias robust interval estimates
To address the issue of sample bias while making con-
clusions based on the SVEA scheme, we will now give
some interval estimates of the SVEA estimates for the large
datasets. Since the computation of interval estimates require
partitioning the whole dataset into many disjoint subsets,
large sample-sized datasets are considered. Figure 3 shows
t-distribution based 95% confidence intervals of SVEA es-
timates for synthetic dataset sdB (details in Appendix B)
and real datasets Magic, IJCNN [45] and MINIBOONE

[46]. There is a partitioning of feature set into two subsets,
one in which the features have their SVEA’s confidence
intervals above the origin and other in which the features
have their SVEA’s confidence intervals below the origin. As
PSV (SV EAneg) (given in Table 3) for the latter subset of
features is high, one can conclude that these features have a
large contribution in label prediction. Since the feature set
partitioning is based on interval estimates, the conclusions
regarding important features are robust to sample bias.

Dataset
(m,n) Clf Avg Acc

(±std dev) SV EAneg
Avg Acc (±std dev)

SV EAneg
PSV

Thyroid
(215,5)

SVM 0.89±0.0145
{4}

0.83±0.0087 0.93
LR 0.89±0.0315 0.79±0.0328 0.89
RF 0.93±0.0400 0.76±0.0641 0.82

SVM K 0.95+-0.025 0.78+-0.0405 0.82
MLP 0.94 0.78+-0.0372 0.83

Pima
Diabetes
(768,8)

SVM 0.77±0.0060
{2}

0.75±0.008 0.98
LR 0.75±0.0075 0.73±0.0218 0.97
RF 0.73±0.0097 0.72±0.0230 0.98

SVM K 0.72+-0.0257 0.71+-0.0544 0.99
MLP 0.67+-0.0269 0.66+-0.0273 0.98

Magic
(19020,10)

SVM 0.79±0.0058
{9}

0.74±0.0060 0.93
LR 0.79±0.0058 0.73±0.0061 0.92
RF 0.75 ± 0.0035 0.73± 0.0097 0.97

SVM K 0.82+-0.0620 0.84+-0.0544 1.02
MLP 0.82+-0.007 0.73+-0.0075 0.89

Heart
(270,13)

SVM 0.84±0.0478
{3, 12, 13}

0.81±0.0080 0.96
LR 0.82±0.0381 0.79±0.0309 0.96
RF 0.82±0.0343 0.84±0.0578 1.02

SVM K 0.64+-0.0608 0.84+-0.0544 1.31
MLP 0.77+-0.0482 0.79+-0.0035 1.02

IJCNN
(126701,22)

SVM 0.91 {11, 12, 17,
18, 19}

0.90 0.99
LR 0.91 0.90 0.99
RF 0.90 0.90 1

SVM K 0.979 0.957 0.98
MLP 0.977 0.956 0.98

TABLE 3: Accuracies of the datasets having negative SVEA
for features in SV EAneg for SVM (linear kernel), LR,
RF, SVM K (rbf kernel) and single layer MLP classifier.
The sixth column has the accuracy of the classifiers learnt
only on features in SV EAneg . PSV is the ratio of ac-
curacies in column 3 and column 5 when the important
feature subset is (SV EAneg). SVM, LR, SVM K parameter
C 2 {0.1, 1, 50, 500}, RF parameters n estimators 2

{0.1, 1, 50, 500} and max depth = 2, SVM K parame-
ter � = 1

n⇤V ar(X) , MLP regularization parameter ↵ 2

{10�7, . . . , 10�1
}, constant learning rate of 10�3, Relu

activation and Adam solver. m is the sample size and n is
the number of features. No averaging is done for IJCNN as
the train-test (35000+91701) partitioning is already available
from the source.

5. Discussion and looking ahead

We model a binary classification problem as a cooper-
ative game with features as players and hinge loss based
ERM’s optimal value as a characteristic function; we in-
troduce the notion of classification game. It accounts for
interactions between the features by using a sound solution
concept, Shapley value, which uniquely apportions the total
training error among the features (SVEA).

SVEA scheme identifies a unique set of features whose
joint contribution to prediction is substantial (SV EAneg)
and doesn’t require the user to provide a threshold on im-
portance values or the number of important features. We also
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(a) Dataset: Heart(270,13) (b) Dataset: Magic(19020,10) (c) Dataset: IJCNN(126701,22) (d) Dataset: Wdbc(569,30)

Figure 2: Plot of test accuracy vs number of features used to train the linear classifier using SVM. For each scheme, we have 95% error bar computed
over 5 iterations. Given a fixed number of features and a lower bound on accuracy, SVEA provides the feature subset which leads to highest test accuracy
in most of the cases. Number of trials in the plot for Magic dataset is three; for other datasets number of trials is five.

Figure 3: Above plots depict 95% confidence intervals for SVEA of features for 6 dimensional synthetic dataset sdB and 3 UCI datasets. As the
importance of a feature is based on intervals of SVEA, we can say that on an average the population value of SVEA would lie inside the interval estimates
95 out of 100 times (which are below 0) and hence important features via SVEA is a pattern manifestation of underlying population.

introduce the notion of interpretable FSS which in addition
to providing transparency in the procedure and relation to
final prediction, also asks that the feature importance values
map to some tangible quantity in the context of final task.
SVEA based FSS is interpretable because one can interpret
the SVEA value as the error contribution of a feature to
the total training error incurred while learning a hinge loss
based linear classifier. Also, our approach can provide to
the user, a given number of important features by ranking
SVEA values. SVEA based FSS is evaluated by computing
power index PSV . We implement a mix of linear and non-
linear classifiers on UCI datasets to demonstrate that PSV

across different classifiers is close to 1. We provide interval
estimates for SVEA values so that our FSS is also robust to
sample bias. It compares favorably with the existing feature
selection schemes RFECV and ReliefF.

We are currently pursuing the use of the SVEA scheme
in dimension reduction and in excess 0-1 risk decompo-
sition of a finite sample-based classifier. Also, we believe
that SVEA values can be interpreted as estimates of true
unknown hinge risk of a feature. A comparison of SVEA
from 0-1 loss function and other surrogate loss function
based classification games would be interesting to explore; a
ranking of surrogate losses for the FSS task can be expected.

Appendix A.

A.1. Proof of Proposition 1

Proof: Consider the optimization problem in Section
2.2 solved to obtain tr er(T,m) and tr er(S,m), say PT

and PS for coalitions T and S respectively. Now if S ✓ T ,

then in addition to the variables in the optimization problem
PS , the optimization problem PT will have extra variables
to solve for. However, a feasible (including optimal) solution
in PS will still remain feasible for PT by assigning the extra
variables a zero value. This implies that minimization in PT

is over a larger feasible set and the objective value of PT

(i.e., tr er(T,m)) would be upper bounded by the objective
value of PS (i.e., tr er(S,m)). Therefore, the training error
due to features in T will be smaller than that of the training
error due to the features that come from all its subset, i.e.,

8S ✓ T ✓ N, tr er(T,m)  tr er(S,m). (8)

The result follows by using tr er(;,m) = c̃(m) � 0 and
the transformation given in Eq. (3).

A.2. Proof of Theorem 1

Proof: From Eq. (4), the Shapely value for a player
j is given by

�j(N, v(·,m)) =
X

S✓N\{j}

|S|!(n� |S|� 1)!

n!
[v(S[{j},m)�v(S,m)].

Using efficiency axiom for Shapley value, we have
X

j2N

�j(N, v(·,m)) = v(N,m)

X

j2N

�j(N, v(·,m)) = tr er({;},m)� tr er(N,m)

=) tr er(N,m) = tr er({;},m)�
X

j2N

�j(N, v(·,m))

=
X

j2N

✓
c̃(m)

n
� �j(N, v(·,m))

◆
.
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The last equation follows from the use of LP given in
Section 2.2. Hence, the contribution of feature j in the total
training error is given as follows:

ej(tr er(N,m)) =
c̃(m)

n
� �j(N, v(·,m)).

A.3. Proof of Proposition 2

Proof: From Theorem 1, the apportioning of the total
training error is:

ej(m) =
c̃(m)

n
� �j(N, v(·,m)) 8j 2 N.

Substituting the value of �j(N, v(·,m)) in above equation,
we have

ej(m) =
tr er({j},m)

n

+
X

S✓N\{j}
S 6=;

|S|!(n� |S|� 1)!
n!

[tr er(S [ {j},m)� tr er(S,m)].

When n = 2, we have,

e1(m) =
1
2
(tr er({1},m) + (tr er({1, 2},m)� tr er({2},m)))

 q
2
+

q0 �Q
2

 q � Q
2
, (* q0  min{q,Q})

The last inequality along with the condition that Q
2 � q > 0

implies that e1(m)  0. Similarly, for feature 2, the appor-
tioning of total training error is given by:

e2(m) =
1
2
tr er({2},m) +

1
2
(tr er({1, 2},m)� tr er({1},m))

=
1
2
(Q+ q0 � q) � 0

The last inequality holds because Q �
Q
2 � q > 0 and

q0 � 0 by construction from Section 2.2.

Appendix B.
An alternative definition of Shapley value [7] in terms

of all possible orders of the players N has been used in
the approximation algorithm. Suppose ⇡ : {1, . . . , n} 7!

{1, . . . , n} be a permutation and PermSet(N) be the
set of all possible permutations with player set N . Given
a permutation ⇡, let us denote by Predj(⇡) the set of
all predecessors of player j in the permutation ⇡, i.e.,
Predj(⇡) = {⇡(1), . . . ,⇡(k � 1)}, if j = ⇡(k). Therefore,
the Shapley value can be expressed as follows: 8j 2 N

�j(m) =
X

⇡2PermSet(N)

1

n!

h
v(Predj(⇡) [ {j},m) � v(Predj(⇡),m)

i
.

Synthetic dataset B (sdB): We first generate a bi-
nary class label Y from Bernoulli distribution with pa-
rameter p = 0.65 and then, a 6-dimensional feature vec-
tor X for the label Y by drawing a sample such that
X|Y = 1 ⇠ N([2, 0.4, 2.15, 1, 1.1, 2.05],⌃) and X|Y =
�1 ⇠ N([�2, 0.4,�2.15, 1, 1.1,�2.05],⌃). The matrix ⌃

Algorithm for Shapley value approximation
Require: Feature set N = {1, 2, . . . , n}, Number of sample permutations

samPerm, Number of examples m, Set of coalitions Sam co set = [()].
Ensure: Approximate Shapley value Ŝhj(m)8j 2 N

1: Initialize: v((),m) = 0, Shapley value estimate Ŝhj(m) := 0 8j 2 N .
2: Define tr er(·,m) on Sam co set and compute tr er((),m) = c̃(m)

using LP in Section 1.
3: for s = 1, 2, .., samPerm do
4: Take ⇡ 2 PermSet(N) with probability 1

n! .
5: for j = 1, 2, ..., n do
6: Compute the sets Predj(⇡) and Predj(⇡) [ {j},
7: if Predj(⇡) not in Sam co set then
8: Compute tr er(Predj(⇡),m).
9: Compute v(Predj(⇡),m) = c̃(m) � tr er(Predj(⇡),m).

10: Append Predj(⇡) to Sam co set.
11: end if
12: if Predj(⇡) [ {j} not in Sam co set then
13: Compute tr er(Predj(⇡) [ {j},m).
14: Compute v(Predj(⇡)[{j},m) = c̃(m)�tr er(Predj(⇡)[

{j},m).
15: Append Predj(⇡) [ {j} to Sam co set.
16: end if
17: Ŝhj(m) = Ŝhj(m)+v(Predj(⇡)[{j},m)�v(Predj(⇡),m).
18: end for
19: end for
20: Ŝhj(m) =

Ŝhj(m)

samPerm , 8j 2 N .

is symmetric and most of the entries are zero. The only non-
zero entries are ⌃1,3 = 0.9,⌃1,6 = 2.6,⌃3,6 = 2, ⌃5,5 =
0.002,⌃k,k = 5, if k = 1, 3, 6 and ⌃l,l = 0.001, if l = 2, 4.
The class conditional means of feature 2,4,5 are the same,
and the only differentiating features between two classes
are features 1,3, and 6. This is further supported by large
variance for the later classes. Thus, features 1,3 and 6 are
intuitively important and dominant for label prediction. This
is reflected in the SVEA values as for features 1,3, and 6,
the 95% intervals on SVEA values lie below zero that is
shown in the top left panel of Figure 3.
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