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ABSTRACT
We consider continuous-time two-type population size-dependent Markov Branch-
ing Processes. The offspring distribution can depend on the current (alive) and total
(dead and alive) populations. Under finite second-moment conditions, using stochas-
tic approximation technique, we show that the time-asymptotic proportion of the
populations either converges to the equilibrium points or infinitely often enters every
neighbourhood and exits some neighbourhood of a saddle point of an appropriate
ordinary differential equation with a certain probability. We also prove a finite time
approximation result for the stochastic trajectory. Further, we analyse branching
process with attack and acquisition which captures the competition in online viral
markets.
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1. Introduction

One considers the study of growth patterns and limit proportions to analyse vector-valued
Markov chains that are predominantly transient, like two-type branching processes (BPs)
under the super-critical regime (for example, [1, 2]). The limit proportions are important
objects and various authors, like in [3–6], have analysed them in the context of BPs. The
literature mainly considers offspring that depends only on the current (alive) population; such
models are essential in several biological applications (for example, [7, 8]). However, none of
the said papers study the dependency on total population, i.e., the dead plus alive population.
Recently, authors in [9, 10] introduced total-population dependent BPs; in particular, in [9], we
study the content propagation over online social networks (OSNs) where the expected number
of new shares decline with the total shares so far; in [10], the authors analyse the negative
impacts of growing population over non-renewable resource consumption. However, the two
said papers analyse the BPs which shift from the super-to-sub critical regime based on total-
population sizes, while we are interested in throughout-super-critical BPs (introduced in the
immediate next). To the best of our knowledge, no other work considers such total-population

The work of first author is partially supported by Prime Minister’s Research Fellowship, India.
CONTACT Khushboo Agarwal. Email: agarwal.khushboo@iitb.ac.in



dependency; in the second part of this work [11], we further consider multiple death types,
and apply the results to design warning mechanisms for fake-post detection over OSNs.

In this paper, we precisely investigate the time-asymptotic proportion of population types
for a general class of continuous-time two-type population size-dependent Markov BPs. The
offspring depends on the current as well as the total populations, and can also be negative to
model attack (removal of offspring of another type). We analyse such BPs, when the expected
number of offspring produced by any individual is strictly greater than one, for all population
sizes, henceforth referred to as throughout-super-critical BPs. We will refer to the proportion
of the current population size (of one of the types) as the proportion and the time-asymptotic
proportion as the limit proportion.

Limit proportions are crucial objects for many applications. For example, as already men-
tioned, the second part [11] and [12] design warning mechanisms robust against fake posts
propagation, where the control depends on the proportion of posts marked as fake. In [13],
we study the relative visibility of advertisement posts defined in terms of the limit proportion
of unread copies of posts shared by competing content providers. The limit proportions in
prey-predator BP of [14] denote the proportions in which preys and predators co-survive (if
at all).

To analyse proportions, it is sufficient to study the embedded chain of the underlying BP.
This study is derived using stochastic approximation (SA) techniques (e.g., [15]); we have
previously used such an amalgam of SA-based methods in BPs in [9, 12, 13]. In this paper,
we identify a new notion of limiting behavior which we named as hovering around a saddle
point, where the stochastic trajectory moves closer to the point and exits a neighbourhood of it
infinitely often. We proved that hovering around saddle points and convergence to attractors
and saddle points of an autonomous, non-smooth ordinary differential equation (ODE) almost
surely describes the limiting behaviour of proportion. We further prove that the limit set of
a single-dimensional ODE suffices to describe the attractor and saddle sets. We also prove
that the ODE solution approximates certain normalized trajectories of the current and total
population sizes over any finite time window.

Towards the end, we also introduce and analyse a new variant of two-type BP, named BP
with attack, where each population can produce offspring of their type, attack other popula-
tion’s offspring and acquire the attacked individuals; the double-sided attack and acquisition
feature makes BP with attack very different from the prey-predator BP of [14]. We model the
viral competing markets using BP with attack and draw useful insights about the markets.
Lastly, we numerically illustrate that the derived approximate trajectories are indeed good
approximations to the stochastic BP trajectory.

Related work

There is a vast literature related to BPs, however here we discuss few relevant strands.
Irreducible population-dependent BP with discrete and continuous-time framework are

considered in [5, 16] respectively; they do not consider total population-dependent offspring;
further, the population-dependent mean matrix converges to a constant mean matrix, but
we support proportion-dependent mean matrix even at the limit. In [17], authors consider
continuous-time, but population-independent, irreducible BPs.

In [14], the prey-predator BP is analysed in discrete-time setting and co-survival conditions
are identified, but the limit proportion is not derived; they also do not consider population-
dependency. There are some more papers on prey-predator BP (like [18, 19]) but none of
them also consider population-dependency and do not derive limit proportion. In Section 6, we
consider a continuous-time population-dependent BP with double-sided attack and acquisition.
One can also analyse the continuous-time population-dependent variant of prey-predator BP
using our results, as illustrated in arXiv version [20] of this paper.

The Pólya urn literature is closely related to BP literature, as it is shown in [21] that the
Pólya urn models can be embedded into a continuous-time population-independent BP. Thus,
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the asymptotic analysis of the continuous-time BPs can be derived using the corresponding
analysis of the Pólya urn models. In fact, SA based approach has been used in the Pólya urn
literature to investigate limit proportions of the balls of a specific colour (see, for example,
[21–24]). However, the urn-based literature majorly deals with non-extinction scenarios and
considers dependency on the current number of balls (not total) in the urn. While, in BPs,
extinction occurs with non-zero probability, even in the super-critical regime. In [23], which is
an exception, the possibility of extinction is considered, but they do not consider population-
dependency. Further, to the best of our knowledge, no finite time approximation trajectories
exist for Pólya urn-based models.

In [22], the authors analyse the urn model with the removal of balls of other colours (not
the chosen one). This is similar to the negative offspring in BP with attack, where deletion of
offspring (attack) from a population type and addition of the same to the other type (acqui-
sition) occurs, in addition to the production of offspring of own type. However, [22] assume a
unique attractor for ODE and a constant number of additions (offspring) to the urn. We again
have a significant generalization with a random number of offspring and where the random
trajectory of the BP with attack can converge to or hover around one of the attractors/saddle
points of ODE.

In all, our paper significantly generalizes the models not only in the BP literature but
also in the Pólya urn literature by including (total and current) population dependency and
negative offspring. In the arXiv version [20] of this paper, we further consider a variety of
existing and new BPs to illustrate the generality of our result.

In [13], we introduce BP with attack and provide limit proportion for the case with
population-independent and symmetric offspring. We significantly generalize this by consider-
ing total population-dependency and symmetric/asymmetric offspring. We analyse a particular
case of proportion-dependent BP (offspring depend on the proportion of the populations) along
with other co-authors in [12]. Our results cover the model in [12] and in fact one can study
more generalized models, which is considered in the second part ([11]).

Organization: The problem is described in Section 2. In section 3, we discuss the SA
based details. The main result and its proof is provided in Section 4. The ODE analysis is
derived in Section 5, while BP with attack and its application are in Section 6. Section 7
discusses numerical examples for finite time approximation.

Notations: For convenience, we refer the random variable and the corresponding sequence
by the same symbol when the context is clear, for example, Υn. We abbreviate infinitely often
as i.o. and almost surely as a.s. We also use acronyms like BP, SA and ODE defined in the
introduction. For any function f and time τ , let f(τ−) := limt↑τ f(t) and f(τ

+) := limt↓τ f(t).

2. Problem description

We are considering multi-type BPs, see for example, [1]. In particular, we consider two types
of populations, denoted by x and y. Let cx0 , c

y
0 be their respective initial sizes. Let Cx(t) and

Cy(t) be the current population sizes, i.e., the number of alive individuals of x and y-type
populations respectively at time t. Define Ax(t), Ay(t) as the total population sizes, i.e., the
sum of the number of alive and dead individuals of respective population types at time t. Define
Φ(t) := (Cx(t), Cy(t), Ax(t), Ay(t)) as the tuple of population sizes and set (Ax(0), Ay(0)) =
(cx0 , c

y
0).

The lifetime of any individual of any type is exponentially distributed with parameter
0 < λ < ∞, i.e., we consider Markovian BPs. The time instance at which an individual
completes its lifetime is referred to as its “death” time. Consider any n ≥ 1. Let τn be the
death time of the n-th individual (of any type) dying among the alive population; let τ0 := 0.
Let Cxn := limt↑τn C

x(t) be the current-population size of x-type population, just before the
death-time τn. Similarly, define Φn := (Cxn, C

y
n, A

x
n, A

y
n) and let Scn := Cxn + Cyn be the sum

current population just before τn.
The state space of the underlying process is U := {ϕ = (cx, cy, ax, ay) ∈ (Z+)4 : cx ≤
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ax, cy ≤ ay}. Once the population gets extinct, no births are possible as in classical multi-type
BPs, therefore, any state ϕ with sc := cx + cy = 0 is an absorbing state. Let νe := inf{n :
Scn = 0} represent the epoch at which the extinction occurs, with the usual convention that
νe = ∞, when Scn > 0 for all n. The embedded process after extinction is extended by defining
Φn := Φνe and τn := τνe , for all n ≥ νe, when νe < ∞. Observe here that no two individuals
can die at the same time, as for each n, P (τn+1−τn > 0) = 1, since (τn+1−τn) is exponentially
distributed.

We assume that offspring are produced only at the death time by an individual as in [1, 5];
basically, no offspring will be produced in between two consecutive death times. Let Γij(ϕ)
denote the (random) number of j-type offspring produced by an i-type individual at its death
time when the population state is given by ϕ, for i, j ∈ {x, y}. If an i-type parent dies at τn,
the system for any t ∈ [τn, τn+1) (in case n = νe, then for all t ≥ τn), can be described as:

Ci(t) = Cin + Γii(Φn)− 1, Ai(t) = Ain + Γii(Φn),

Cj(t) = Cjn + Γij(Φn), and Aj(t) = Ajn + Γij(Φn), for any i, j ∈ {x, y} with j ̸= i.
(1)

Basically, the sizes of i and j-type populations change by Γii(Φn) and Γij(Φn) respectively
2,

and the current size (not the total size) of i-type reduces by 1 due to death. Thus, the underlying
process is a continuous-time Markov jump process.

Also, observe3 that the probability of an x-type parent dying at time τn is C
x
n/(Cx

n+C
y
n) =:

Bcn, when conditioned on σ{Φn}, the sigma-algebra generated by Φn; here, B
c
n is the proportion

of x-type population among the current population. Further, the conditional probability that a
y-type parent dies at time τn is 1− Bcn.

In (1), the offspring distribution depends on Φn, therefore, we have a total-current
population-size dependent BP. In literature, several current-population dependent BPs are
analysed, for example, see [7, 8]. However, to the best of our knowledge, only [9, 10] study
total-population dependent BPs; as mentioned before, the second part of this work [11] also
considers total-current population-size dependency along with multiple types of deaths. For
each ϕ, let Γii(ϕ) ≥ 0 a.s. for each i ∈ {x, y}, i.e., each individual produces non-negative
offspring of its type. Since Γij(ϕ) ∈ Z for i ̸= j, therefore, any individual can produce either
positive or negative (valued) offspring of the other population, depending upon the population-
sizes. Negative offspring are used to model attack.

Many applications can be modelled using the dynamics as in (1). We now discuss briefly
one application, namely the viral markets on online social networks (OSNs), which requires
several features of the above total-current population-dependent BP.

Example - Viral markets

In online social networks, content providers (CPs) share a variety of content. Each content is
shared in the form of a post with an initial set of users, called seed users. The seed users receive
the post on their timeline, an inverse stack of posts specific to each user. When a seed user
reads the post, it may forward the post to its friends/followers depending upon how much it
likes the post. This sharing procedure is followed by the recipients and the process continues.
The content either gets extinct in the initial phase or gets viral (the copies of the post grow
significantly with time).

Now, there is an important feature about content propagation over OSNs — after reading
the post, the users most likely lose interest in it forever. Thus, reading the post is analogous to
death, while the number of shares by a user is analogous to offspring, when posts from different
CPs are modelled as different population-types. Further, unread and total (read + unread)
copies are analogous to the current and total population respectively. Since the network is

2For each i, j, the distribution of Γij(Φn) depends on the population size Φn, and not on the value of the
epoch, τn.
3At any time, the residual lifetime of x and y-tpe individuals are exponentially distributed with parameters

λCx
n and λCy

n respectively, by memoryless property. Thus, the first individual to die is x-type w.p. Cx
n/(Cx

n+Cy
n).
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closed and some users may share with previous recipients who would not be interested in the
post again, therefore, the effective shares (which actually represent the offspring) depend on
total copies.

...

...

...

y-Post is 
better!!

x-post is
better !!

The real dilemma is “How to identify if the news is Real or Fake?”

...

...

...

...

Post by x-CP    shares
   y-post

Post by y-CP

...

...

x-Post is 
interesting!!

Post by x-CP

    shares
    x-post

Figure 1. Viral competing markets

On OSNs, contents often compete with each other (e.g., advertisements of similar products).
When a new competing post (say y-type) is shared on the user’s timeline of an OSN, the user
might find y-post more attractive than an older residing x-post on its timeline (see Figure 1).
As a result, such a user would not share x-post. This aspect leads to viral competing markets,
where we say y-post has attacked and acquired the opportunities of x-post. Such attacks can
be modelled as negative offspring.

The contents can also compliment each other. Then, the opportunities of the older y-
post may increase - upon seeing the new x-post, the user might get interested in y-post
and thus, share both. Such shares can be modelled as positive offspring for both content
(population) types. In fact, some advertisement posts may seem complimentary to some users,
while competitive to others. Then, the shares/offspring can either be positive or negative.

One can analyse such viral markets using the BP described in (1); more modelling details
and analysis of such markets is provided in sections 6 and 7. For now, we proceed towards
providing the analysis of the BP (1), and firstly, begin with some preliminary analysis.

2.1. Preliminary analysis

In classical BPs with population-independent offspring ([1]), it is shown that almost surely, the
population either grows exponentially at a certain rate time-asymptotically, or gets extinct.
When the BP is super-critical, the probability that the population grows exponentially is non-
zero. For example, for a single x-type BP, [1, Theorem 1, Section 7, Chapter III] shows that
limt→∞ Cx(t)e−λ(E[Γxx]−1)t exists a.s. and is strictly positive with positive probability when
the mean E[Γxx] > 1, which hence is the condition for super-criticality. One says that such
systems exhibit dichotomy — here, the process either gets extinct or explodes. We show that
the total-current population dependent BP exhibits similar dichotomy, when a uniform lower
bound Γ on the population-dependent offspring is “super-critical”, i.e., when E[Γ] > 1:

A.1 There exist two integrable random variables Γ and Γ which bound the random offspring

as: 0 ≤ Γ ≤ Γix(ϕ) + Γiy(ϕ) ≤ Γ a.s., for each ϕ. Also, E[Γ
2
] <∞ and E[Γ] > 1.

Proposition 2.1. [Dichotomy] Let assumption (A.1) hold and define m =: E[Γ]. Then:

P
({

lim inf
n

Scne
−λ(m−1)τn > 0

}
∪
{

lim
n→∞

Scn = 0
})

= 1.

Proof. See Appendix (A).
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In the above result, we could not comment upon the exact rate of explosion, nonetheless,
it is clear that the sum current population exhibits dichotomy at limit – either gets extinct
or explodes; in the latter case, the explosion is lower bounded by an exponentially growing
trajectory with rate λ(m− 1).

Define mij(ϕ) := E[Γij(ϕ)] for i, j ∈ {x, y} as the mean functions and let M(ϕ) :=
[mij(ϕ)]i,j∈{x,y} be the corresponding mean matrix. Then, the assumption (A.1) implies that:

mix(ϕ) +miy(ϕ) ≥ E[Γ] > 1 for each ϕ and i ∈ {x, y}. (2)

One can view the above condition as an equivalent to the super-criticality for our general
framework which encompasses irreducible BPs, negative offspring, proportion-dependency and
more. For this reason, with slight abuse of notation, we shall call the total-current population-
dependent BP to be in throughout super-critical regime if it satisfies (2).

We now proceeds towards the main aim of the paper, the time-asymptotic analysis of the
limit proportion (limn→∞Bcn) of the BPs described via (1). We begin by stating and discussing
an important assumption for the limits of the mean functions mij(ϕ):

A.2 There is a function m∞
ij : [0, 1] → R (referred to as limit mean function) such that

|mij(ϕ)−m∞
ij (β

c)| ≤ 1

(sc)α
as sc = cx + cy → ∞. (3)

for each i, j ∈ {x, y} and for some α ≥ 1, where βc := cx

cx+cy .

The limit mean functions are generally assumed to be constant (see [5, 7, 16]). Here we relaxed
this restriction. Moreover, the limit mean functions need not be continuous. Later, in Section
6, we show that this assumption holds true in our viral market example.

3. ODE-based stochastic approximation for BPs

When one considers a process which explodes with time, like a typical BP, it is a common
practice to scale the process appropriately such that the scaled process converges to a finite
limit; this enables the asymptotic study of the rate of explosion, proportions of various compo-
nents of the process, etc. In Proposition 2.1, it is shown that the sum current population can
explode; thus, analysis of BP also requires appropriate scaling. We propose one such scaling
in (4) given below, further, the scaling is chosen such that the scaled process can be modelled
and analysed using the stochastic approximation (SA) technique (e.g., [15]). Furthermore, as
we are primarily interested in studying the limit proportion, limt→∞Bc(t), it is sufficient to
analyse the embedded process, i.e., the discrete-time chain defined at death-times τn.

Scaled process:

Analogous to Scn, define the sum total population, San := Axn+A
y
n. Further, define the following

ratios, for n ≥ 1, towards constructing the scaled process:

Υn := (Ψcn,Θ
c
n,Ψ

a
n,Θ

a
n) , where Ψcn :=

Scn
n
,Θcn :=

Cxn
n
,Ψan :=

San
n

and Θan :=
Axn
n
, (4)

with Υ0 := (cx0 + cy0, c
x
0 , c

x
0 + cy0, c

x
0). Observe that the proportion Bcn also equals Θcn/Ψ

c
n.

Iterative form:

We now claim that the scaled process in (4) can be written in a form that can be analysed
using SA-tools, and proceed towards the same. To this end, we begin with some definitions.
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For n ≥ 1, let Γij,n be the j-type offspring produced by i-type parent at n-th epoch and
let Γi,k := Γix,k + Γiy,k for i ∈ {x, y}. Define

Hn :=

{
1 if x-type individual dies at n-th epoch,

0 otherwise,

and Hn := 1−Hn. Further, define the function Ln := (Lψ,cn , Lθ,cn , Lψ,an , Lθ,an )t as follows:

Lψ,cn :=

{
Hn

(
Γx,n(Φn−1)− 1

)
+Hn

(
Γy,n(Φn−1)− 1

)}
1Ψc

n−1>0 −Ψcn−1,

Lθ,cn :=

{
Hn

(
Γxx,n(Φn−1)− 1

)
+HnΓyx,n(Φn−1)

}
1Ψc

n−1>0 −Θcn−1,

Lψ,an :=

{
HnΓx,n(Φn−1) +HnΓy,n(Φn−1)

}
1Ψc

n−1>0 −Ψan−1, and

Lθ,an :=

{
HnΓxx,n(Φn−1) +HnΓyx,n(Φn−1)

}
1Ψc

n−1>0 −Θan−1.

(5)

Using the above definitions, the ratios in Υn can be expressed as the following iterative form:

Υn = Υn−1 +
1

n
Ln. (6)

The above equation resembles the typical SA-based iterative schemes, where the step-size
equals 1/n (for example, as in [15]). Taking inspiration from SA-based literature [15], we next
suggest an ODE that can approximate the above scheme, which in turn will be instrumental
in analysing the limits of the BP.

ODE:

Define tn :=
∑n
k=1

1
k and let η(t) := max {n : tn ≤ t}. Let Υ := (ψc, θc, ψa, θa) be a realisation

of Υ. Then, the population sizes can be re-written in terms of ratios as:

ϕ = ϕ(Υ, t) := (θcη(t), (ψc − θc)η(t), θaη(t), (ψa − θa)η(t)) . (7)

From (5) and (7), the conditional expectation of Ln with respect to the sigma algebra, Fn :=
σ{Φk : 1 ≤ k < n}, equals:

ϱ(Υn, tn) := E[Ln|Fn] for ϱ = (ρcψ, ρ
c
θ, ρ

a
ψ, ρ

a
θ) where

ρcψ(Υ, t) :=

{
βc
(
mxx(ϕ) +mxy(ϕ)

)
+ (1− βc)

(
myy(ϕ) +myx(ϕ)

)
− 1

}
1{ψc>0} − ψc,

ρcθ(Υ, t) :=

{
βc
(
mxx(ϕ)− 1

)
+ (1− βc)myx(ϕ)

}
1{ψc>0} − θc, (8)

ρaψ(Υ, t) :=

{
βc
(
mxx(ϕ) +mxy(ϕ)

)
+ (1− βc)

(
myy(ϕ) +myx(ϕ)

)}
1{ψc>0} − ψa, and

ρaθ(Υ, t) :=

{
βcmxx(ϕ) + (1− βc)myx(ϕ)

}
1{ψc>0} − θa.

In ODE-based SA literature, it is anticipated that the ODE constructed using conditional
expectation (8) provides the limiting behaviour of the SA-scheme. That is, the limits of (6)
are given by the limits of the non-autonomous (time-dependent) ODE Υ̇ = ϱ(Υ, t). However, as
suggested in [15], one can directly derive an approximation result using a simpler autonomous
ODE constructed using the time-limit of the mean functions, and hence that of (8). Thus, in
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view of the assumption (A.2), define h := (hcψ, h
c
θ, h

a
ψ, h

a
θ), where:

hcψ(β
c) = βc

(
m∞
xx(β

c) +m∞
xy(β

c)

)
+ (1− βc)

(
m∞
yy(β

c) +m∞
yx(β

c)

)
− 1,

hcθ(β
c) = βc

(
m∞
xx(β

c)− 1

)
+ (1− βc)m∞

yx(β
c), (9)

haψ(β
c) = βc

(
m∞
xx(β

c) +m∞
xy(β

c)

)
+ (1− βc)

(
m∞
yy(β

c) +m∞
yx(β

c)

)
, and

haθ(β
c) = βcm∞

xx(β
c) + (1− βc)m∞

yx(β
c),

and then, under assumptions (A.1)-(A.2), the autonomous, but non-smooth ODE that can
approximate Υn in (6) is as follows:

Υ̇ = g(Υ) := h(βc)1{ψc>0} − Υ, (10)

with the initial condition:

Υ(0) ∈ DI := {Υ ∈ (R+)4 : θc ≤ ψc ≤ ψa and θa ≤ ψa}. (11)

Notice that the above subset of the domain is relevant (see (4)) for systems modelling the
BPs. Since right hand side of the above ODE is non-smooth, one may not have the classical
solution. Nonetheless, we shall derive the results once the ODE has solution in generalised (or
extended) sense4. Thus, we next assume the existence of the unique generalised (or extended)
solution:

A.3 There exists a unique solution Υ(·) for ODE (10) in the generalised sense over any
bounded interval.

The first important result of this paper, Theorem 4.1(ii), focuses on the time-asymptotic
limits of the ratios (4), derived via the limits of the ODE (10). Thus, next, we recall the
definitions of asymptotically stable and saddle points for autonomous ODE (see [25]), that
facilitates the desired a.s. convergence of ratios (Υn) before stating the required assumptions
- some of the definitions are stated differently to suit our purpose and can also be applied for
the cases with generalised solutions of ODE.

Definition 1. A set E := {Υ : g(Υ) = 0} is called as the set of equilibrium points for the
ODE (10).

Define open ball, Nϵ(A) := {x : d(x,A) < ϵ} for some finite set A.

Definition 2. A subset A of E is said to be a (locally) stable set for ODE (10) if for any
ϵ > 0, there exists a δ > 0 such that every solution of the ODE Υ(t) ∈ Nϵ(A) for every t > 0,
if initial condition Υ(0) ∈ Nδ(A).

Definition 3. A subset A of the locally stable set is called an attractor or
asymptotically stable set and DA ⊂ DI is the domain of attraction for ODE (10) if every
solution Υ(t) → A as t→ ∞ when Υ(0) ∈ DA.

Let A∁ be the complement of A.

Definition 4. A set S ⊂ A∁ ∩ E is said to be saddle set if there exists DS such that

d(Υ(t),A)
t→∞−→ 0 for some Υ(0) ∈ S∁∩DS and d(Υ(t),S) t→∞−→ 0 for some other Υ(0) ∈ S∁∩DS .

Finally, consider the following subset of DI , which represents the combined domain of
attraction towards A ∪ S:

D := (DA ∪ DS) ∩ DI = {Υ ∈ DI : Υ(t) → A∪ S as t→ ∞, if Υ(0) = Υ}. (12)

4A function Υ(·) is said to be a generalised (or extended) solution of ODE (10) if it is absolutely continuous
and satisfies the equation (10) for almost all t ≥ 0.
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Therefore, if the ODE starts in D, it converges asymptotically to A ∪ S.
All of the above provides the required framework for the main results, and we finally

proceed towards the same in the next section.

4. Main results

The first result focuses on the finite-time and time-asymptotic behaviours of the BP trajectory.
As said before, we shall make use of the ODE based SA-technique for facilitating the analysis.
Classically, the SA results imply the convergence possibility to only the attractors of the
ODE, however, in our case, we shall also see convergence to the saddle set (S), under an extra
assumption given below:

A.4 Let A∩DI and S ∩DI be the attractor and saddle set as in Definition 3 and Definition
4 respectively. Consider D as in (12) and let Db := D ∩ {ψa ≤ b}, for some b > 0, be
a compact subset of combined domain of attraction. Assume pb := P (V) > 0, where
V := {ω : Υn(ω) ∈ Db i.o.}.

Further, we shall see in the coming that the BP trajectory also exhibits a new limiting be-
haviour, which we describe next for any stochastic process.

Definition 5. The stochastic process Υn hovers around a set S if Υn ∈ Nδ(S) i.o., for all
δ > 0 and Υn /∈ Nδ1(S) i.o., for some δ1 > 0.

Thus, when a stochastic process hovers around the set S, it means that its trajectory goes
arbitrarily close to the set S i.o., but still comes out of a neighbourhood of it i.o. Finally, the
result is stated below, and its proof is provided in sub-section 4.2 immediately after highlighting
the key points about the stated result.

Theorem 4.1. Under (A.1)-(A.3), we have:

(i) For every T > 0, a.s. there exists a sub-sequence (nl) such that:

sup
k:tk∈[tnl

,tnl
+T ]

d(Υk,Υ(tk − tnl
)) → 0 as l → ∞, where

Υ(·) is the extended solution of ODE (10) which starts at Υ(0) = limnl→∞ Υnl
.

(ii) Further, assume (A.4). Then, P (C1 ∪ C2) ≥ pb, where

C1 := {Υn → (A ∪ S) ∩ DI as n→ ∞}, and C2 := {Υn hovers around S}. □

Thus, when BP (Υn) visits some compact subset of D i.o., then Υn either converges to
the attractor set (A) or saddle set (S) or hovers around S, with probability at least pb > 0.
We will show that (A.1)-(A.4) are satisfied for BP with attack in Section 6, with pb = 1, i.e,
the above results are true a.s.; proving that pb = 1 requires an important result which is the
second main result of the paper and is discussed below.

Second main result

The second main result, Theorem 5.1, is stated in the next section as it requires explanation
of more machinery. This theorem considers the generic form of ODE that can approximate
stochastic processes, like BPs, and provide simpler one-dimensional conditions to verify (A.3)
and (A.4) by identifying the attractors and saddle sets of ODE (10). It will also be proved that
the saddle points are indeed q-attractors (these are special saddle points where convergence,
when possible, is exponentially fast, see Definition 7 for details), by exploiting the structure
of ODE (10).
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4.1. Significance of Theorem 4.1

BP trajectories - Theorem 4.1(i) provides a novel approach for studying the asymptotic
trajectory of the BPs using ODE solution. Consider the solution of ODE (10) initialised with
limnl→∞ Υnl

. Then, for large enough nl and for all k with tk ∈ [tnl
, tnl

+T ], Υk is sufficiently
close to ODE solution Υ(tk − tnl

); and, the approximation improves as nl further increases.
This result only requires (A.1)-(A.3), and hence is true a.s. for all T <∞ and is independent
of pb in (A.4).

However, the result only approximates the path of embedded chain with corresponding
points of ODE solution, while the time information of the original Markov jump process is not
captured.

We suggest and numerically illustrate a better finite-time approximation using a non-
autonomous ODE in Section 7, inspired by [9]; the results in [9] capture a saturated total
population-dependent BP - the one which does not satisfy (A.1) and switches from super-
critical to sub-critical regime.

Limit proportion - Theorem 4.1(ii) provides an alternate approach to derive limit behaviour
via the attractors or saddle points of ODE (10).

In extinction paths, where both populations get extinct, Υn → 0 as n → ∞, say with
probability pe > 0. Thus, extinction paths are in the set V of (A.4). While in the survival
paths, the BP either converges or hovers around (A ∪ (S − {0})) ∩ DI , with probability at
least pb − pe. As an example of convergence to a saddle point, the vector 0 is a saddle point
of ODE (10) (proved in Theorem 5.1) and is well-known to be a limit in extinction paths.

It is now clear that the ratios Υn facilitate the analysis of the underlying BP, however,
there are few important points one needs to note regarding the individual population, say
about the x-type population: (i) if ratio Θcn ↛ 0, then the x-type population does not get
extinct, and the growth rate of Cxn is at least O(n); (ii) if Θcn → 0, then it necessarily does not
mean that Cxn → 0; instead, it just implies that Cxn = o(n). However, by dichotomy proved in
Proposition 2.1, the ratio Ψcn → 0 if and only if the sum current population, Scn → 0. Thus if
the process is irreducible, then Θcn → 0 if and only if Cxn → 0.

Population independent to population dependent BPs - One can analyse any general
BP with limit mean matrix (say) M∞ using a population-independent BP with mean matrix
as M∞. The knowledge about limits of the latter BP (if any) can be useful in deriving ODE
limits and, thus, the limits of the former BP. One still needs to show that the former BP visits
the domain of attraction i.o., given that the latter visits the same i.o.

Limitation - By Theorem 4.1, one can not comment on the individual probability of Υn

converging to a particular limit in (A ∪ S)∩DI or the likelihood of hovering around. Further,
Bcn → {0, 1} does not always imply the extinction of x or y-type population; however, this is
true for the BP with attack considered in Section 6, as proved at the end of Appendix (A).

4.2. Proof of Theorem 4.1

Before we provide the proof, we make an important observation which motivates the derivation
of SA-based scheme (6) and also to prove a boundedness assumption for ratios Υn (4) required
for most SA-based studies.

Key idea: Consider a BP with population-independent and positive offspring, i.e., in

(A.1), assume Γix(ϕ) + Γiy(ϕ) = Γ for all ϕ and all i ∈ {x, y}. Let Πn represent the sample
mean formed by the sequence of offspring plus the initial population size, i.e.,

Πn =
1

n

(
n∑
k=1

Γk + sa0

)
. (13)

By strong law of large numbers, Πn → m := E[Γ1] a.s. The ratio corresponding to the sum
of the total population components of BP given in (1), Ψan = (Ax

n+A
y
n)/n, for this special case
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exactly matches with Πn till the extinction epoch νe (i.e., for all n < νe), and beyond that
(i.e., for all n ≥ νe) the population does not change anymore. Thus:

Ψan = Πn1n<νe + νeΠνe/n1n≥νe ;

hence Ψan converges either to 0 (in extinction paths, i.e., νe <∞) or to m (in survival paths);
and Ψcn respectively converges to 0 or m−1 a.s. This observation actually completes the proof
for this special case with A = {(0, 0), (m−1,m)}, further when single population (say x-type)
is considered. It is well known that the sample mean (13) can be written as a SA-based scheme
and the iterative scheme for Ψcn in (6) shows that this is true even for the general case. Further,
clearly, (13) becomes an upper bound for all components of Υn, which helps in bounding Υn

uniformly in n and a.s. (see (16) given below), again under (A.1).
Analogous to Πn as in (13), one can construct a lower bounding sequence using Γ of (A.1);

this provides a uniform positive lower bound for Ψcn, which will help the proof. We now return
to the main proof with general offspring as in (A.1).

Proof: The proof of part (i) has two major steps: (a) to construct a sequence of piece-wise
constant interpolated trajectories for almost all sample-paths; (b) to prove that the designed
trajectories are equicontinuous in extended sense5. These steps are majorly as in [15, Theorems
2.1-2.2], but for the changes required for measurable g(·). We complete part (i) first.

For part (ii), under (A.4), the proof is again inspired from [15] and [26, Theorem 2.3.1,
pp. 39], even when the solution of ODE (10) is in generalized sense, not the classical one.
However, it requires major changes to incorporate saddle points and hovering around aspect,
and is considered next.

Part (i): For many steps of the proof, we will work only with θc-component of the vector
Υ, when the proof for the remaining components goes through in exactly similar manner.

Let Υn(·) := (Ψn,c(·),Θn,c(·),Ψn,a(·),Θn,a(·)) be the constant piece-wise interpolated tra-
jectory defined as below (see (6), and recall tn =

∑n
i=1 ϵi−1 for ϵi :=

1
i+1 ):

Θn,c(t) := Θcn +

η(tn+t)−1∑
i=n

ϵiL
θ,c
i , for all t ≥ 0, (15)

Ψn,c(t),Ψn,a(t) and Θn,a(t) are defined analogously.
Towards proving equicontinuity, we first consider upper-boundedness of Υn(0) = Υn, as

the iterates are trivially lower bounded by 0. The claim is immediately true by strong law
of large numbers a.s., to be more precise on the set {Πn → m}, because of the following
observation (see (13)-(6)):

Ψcn ≤ Ψan and Θcn ≤ Θan ≤ Ψan = Πn ≤ Πn for all n, (16)

and then for any sample path ω ∈ {Πn → m} and ϵ > 0, there exists a nϵ(ω) <∞,

sup
n

max{Θn,c(0),Ψn,c(0),Θn,a(0),Ψn,a(0)}

≤ max

{
max

n≤nϵ(ω)}
max{Θn,c(0),Ψn,c(0),Θn,a(0),Ψn,a(0)}, m+ ϵ

}
.

(17)

5

Definition 6. Equicontinuous in extended sense ([15, Equation (2.2), pp. 102])): Suppose that for
each n, fn(·) is an Rr-valued measurable function on (−∞,∞) and (fn(0)) is bounded. Also suppose that for
each T and ϵ > 0, there is a δ > 0 such that

lim sup
n

sup
0≤t−s≤δ,|t|≤T

|fn(t)− fn(s)| ≤ ϵ. (14)

Then the sequence (fn(·)) is said to be equicontinuous in the extended sense.
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Towards the second part of equicontinuity (see (14) in footnote 5), the interpolated trajectory
for Θn,c(·) in (15) can be re-written in “almost integral form”, for any t ≥ 0 (see (8)):

Θn,c(t) := Θcn +

∫ t

0

ρcθ(Υ
n(s), s)ds+ En,c1 (t), with the difference term,

En,c1 (t) :=

η(tn+t)−1∑
i=n

ϵiL
θ,c
i −

∫ t

0

ρcθ(Υ
n(s), s)ds.

(18)

We further re-write the interpolated trajectory using the autonomous ODE (10):

Θn,c(t) := Θcn +

∫ t

0

gcθ(Υ
n(s))ds+ En,c1 (t) + En,c2 (t), where

En,c2 (t) :=

∫ t

0

ρcθ(Υ
n(s), s)ds−

∫ t

0

gcθ(Υ
n(s))ds.

(19)

In Appendix (B), we show that En,c1 (t) + En,c2 (t) converges uniformly to 0, as n→ ∞, over
any finite time window and further show:

Lemma 4.2. The sequence (Υn(·)) is equicontinuous in extended sense a.s. □

Now, consider the set N of all sample paths for which (Υn(·)) is not equicontinuous -
by Lemma 4.2, P (N) = 0 (see proof of above Lemma for precise definition of N). Then, by
extended version of Arzela-Ascoli Theorem [15, section 4, Theorem 2.2, pp. 127], there exists
a sub-sequence (Υnm(ω, ·)) which converges to some continuous limit, call Υ(ω, ·), uniformly
on each bounded interval for ω /∈ N such that:

Υ(t) = lim
nm→∞

Υnm
(ω) +

∫ t

0

g(Υ(s))ds. (20)

Thus, for every ϵ > 0 and T > 0, there exists n(ω, ϵ, T ) such that:

sup
l∈L

d(Υl,Υ(tl − tnm
)) ≤ ϵ/2 for all nm ≥ n(ω, ϵ, T ), (21)

where L := {l : tnm
≤ tl ≤ T + tnm

}; observe for any l ∈ L, Υnm(t) = Υl if t = tl− tnm
. Now,

we are left to show that Υ(·) in (20), the solution of the fixed point equation (of the integral
operator), is the extended solution of ODE (10) starting at Υ(0) = limnl→∞ Υnl

, i.e.,

lim
h→0

Υ(t+ h)− Υ(t)

h
= g(Υ(t)) =

dΥ(t)

dt
for almost all t.

One can easily show that the function g ◦ Υ is locally integrable, and thus, by [27, Theorem
3.21], the claim holds. This completes part (i).

Part (ii): The proof is constructed for sample paths ω /∈ N , however, for simplicity, we
drop ω. By (A.4), Υn ∈ Db i.o. Since Db is compact, (Υn) has a limit point Υ0 ∈ Db; then,
there exists a sub-sequence (nk) such that Υnk

→ Υ0. Further, by (extended) equicontinuity
of (Υn(·)), there exists further sub-sequence (denote it again by (nk), for simpler notations)
(Υnk(·)) which converges to the extended solution Υ(·) of the ODE (10) uniformly on each
bounded interval. Also observe, Υnk(0) = Υnk

→ Υ0, and recall Υ(0) = Υ0 is the initial
condition for ODE (10). Under characterization of attractor or q-attractor in (A.4), the ODE
solution Υ(t) converges to some Υ∗ ∈ (A ∪ S) ∩ DI as t→ ∞.

We will now show that for any δ1 > 0, Υn visits Nδ1(Υ
∗) i.o. We will also discuss other

convergence aspects to complete the proof. Towards this, fix δ1 > 0.

Step A: To begin with, assume Υ∗ ∈ A∩DI . Then, by (A.4) (local stability) it is possible
to choose 0 < δ2 < δ1 such that any ODE solution, Υ̃(·), satisfies the following:

Υ̃(t) ∈ Nδ1(Υ
∗) for all t ≥ 0, when initial condition Υ̃(0) ∈ cl(Nδ2(Υ

∗)). (22)

Page 12 of 27



Further, by convergence of solution, Υ(t) → Υ∗, thus there exists Tδ2 <∞ such that:

d(Υ(t),Υ∗) < δ2/2 for all t ≥ Tδ2 . (23)

Now, following similar steps as in part (i) (see (21)), there exists n <∞ such that:

sup
l∈Lk

d(Υl,Υ(tl)) < δ2/2 for all nk ≥ n, (24)

for Lk := {l : Tδ2 + tnk
≤ tl ≤ 2Tδ2 + tnk

}. Using (23) and (24), for all nk ≥ n:

sup
l∈Lk

d(Υl,Υ
∗) ≤ sup

l∈Lk

d(Υl,Υ(tl)) + sup
l∈Lk

d(Υ(tl),Υ
∗) < δ2. (25)

Thus, Υn visits Nδ2(Υ
∗) i.o., and hence Nδ1(Υ

∗) i.o.
Henceforth, the proof is majorly as in proof of [26, Theorem 2.3.1, pp. 39], except for few

changes to consider convergence to q-attractors, not just attractors. Contrary to the claim,
assume that Υn exits Nδ1(Υ

∗) i.o. Thus, by (25), Υn moves from Nδ2(Υ
∗) to Db − Nδ1(Υ

∗)

i.o. Let Υ
0
(·) be the usual linear interpolated trajectory of Υn, i.e.,

Υ
0
(tn) = Υn, and Υ

0
(t) =

tn+1 − t

ϵn
Υn +

t− tn
ϵn

Υn+1 for t ∈ (tn, tn+1).

Then, there exists sequence (lj , rj) such that (i) · · · > rj > lj > rj−1 > lj−1 > . . . , (ii)

rj → ∞, (iii) Υ
0
(lj) ∈ ∂Nδ2(Υ

∗), Υ
0
(rj) ∈ ∂Nδ1(Υ

∗), and (iv) Υ
0
(t) ∈ cl(Nδ1(Υ

∗))−Nδ2(Υ∗),

for all t ∈ [lj , rj ]. Consider the segments (one for each j) of Υ
0
(·), i.e., consider functions,

qj(t) := Υ
0
(lj + t) for any t ≥ 0; observe by construction that for each j, we have qj(t) ∈

{Υ : δ2 < d(Υ,Υ∗) ≤ δ1} for all 0 < t ≤ rj − lj .

Case (a): Suppose there is a T < ∞ such that for some sub-sequence (call it j again)
rj − lj → T . Now, consider a sub-sequence of (qj(·)) which (again) converges to some solution
of ODE, Υ̃(·) uniformly over [0, T ].6 Then, Υ̃(0) ∈ ∂Nδ2(Υ

∗) and Υ̃(T ) ∈ ∂Nδ1(Υ
∗). This

contradicts (22). For T = 0, there is an obvious contradiction.

Case (b): If rj − lj → ∞, then, Υ̃(0) ∈ ∂Nδ2(Υ
∗) and Υ̃(t) ∈ cl(Nδ1(Υ

∗)) − Nδ2(Υ
∗) for

all t > 0. Then, it is a contradiction to Υ∗ being an attractor.
In all, Υn → Υ∗; since Υ∗ ∈ A ∩ DI is arbitrary, we have Υn → A∩DI .

Step S: Now consider Υ∗ ∈ S∩DI . If νe <∞, i.e., in extinction sample paths, Υn → 0 and
we are done. For others, lim infnΨ

c
n > 0 by Lemma 2.1. Thus, with νe = ∞ and Υ∗ ∈ S ∩DI ,

by Definition 7, the initial condition Υ0 ∈ S(Υ∗) with βc(Υ0) = βc(Υ∗).
Similar to step A, by asymptotic stability ((A.4)), one can show that (22) follows for any

ODE solution Υ̃(·) when initial condition Υ̃(0) ∈ Nδ2(Υ
∗) ∩ S(Υ∗). Further, clearly (23)-(25)

also hold for this case. Thus, Υn visits Nδ1(Υ
∗) ∩ S(Υ∗) i.o.

Further, if for every δ1 > 0, Υn does not exit Nδ1(Υ
∗)∩S(Υ∗) i.o., then Υn → Υ∗ ∈ S∩DI .

Otherwise, for every δ1 > 0, Υn visits and exits Nδ1(Υ
∗) ∩ S(Υ∗) i.o. □

5. Analysis of proportion ODE

Under (A.2), ϕ-dependent mean functions converge to just βc-dependent mean functions, and
thus, one may anticipate that the analysis of βc(Υ(t)) = βc(t) plays a crucial role. In fact,
we claim and prove that the time limits of βc, obtained from the following limit ODE for βc

6The equicontinuity in extended sense can easily be extended to linear interpolated trajectories.
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(derived using (10)), leads to the required analysis:

β̇c =
1

ψc
gβ(β

c)1{ψc>0}, where

gβ(β
c) := −βcm∞

xy(β
c) + (1− βc)m∞

yx(β
c)

+ βc(1− βc)

{
m∞
xx(β

c) +m∞
xy(β

c)−
(
m∞
yx(β

c) +m∞
yy(β

c)
)}
.

(26)

Further from above, gβ depends only on βc, thus, one might expect that the asymptotic analysis
of βc is independent of other components of Υ. We will see that this is indeed true, and in
fact, the asymptotic analysis of all components of Υ can be derived using just gβ .

Before moving towards the analysis of the ODE (26), we first define a special type of saddle
points which are attracted exponentially to S along a particular affine sub-space, and to A in
the remaining space. Such saddle points are facilitated by the virtue of ODE structure in (10).

Definition 7. Any non-zero Υ∗ ∈ S is said to be (quasi) q-attractor if (i) for any Υ(0) ∈
S(Υ∗) := {βc(Υ) = βc(Υ∗)}, Υ(t)

t→∞−→ Υ∗ exponentially, and (ii) Υ(t)
t→∞−→ A for other

initial conditions. Further, if Υ∗ = 0 ∈ S, it is called q-attractor if the above happens with
S(Υ∗) := {ψc = 0}.

Now, we define:

Definition 8. Any point β∗ ∈ [0, 1] is (projected) p-stable if h(β∗) is an attractor for ODE
(10); a β∗ is called p-saddle if h(β∗) is a saddle point, more specifically, q-attractor.

Under certain conditions, we will show that the attractors of the following one-dimensional
ODE are p-stable, while the repellers7 are p-saddle:

β̇c = gβ(β
c). (27)

Figure 2. Repeller of (27) leads to

saddle point of (10)

When β∗ is a repeller of (27), we have gβ(β
∗) = 0.

Thus, when ODE (10) is initialised with βc(Υ(0)) =
β∗, the ODE solution may remain in affine sub-space
{βc(Υ) = β∗} and may converge to h(β∗) (see figure 2).
While if βc(Υ(0)) ̸= β∗, one might expect the solution
of ODE (10) to repel away from h(β∗), by definition of
repeller. These observations indicate that β∗ should be
p-saddle and we precisely prove the same in our second
important result below. This result is instrumental in de-
riving A and S using the limit set of ODE (27); see Ap-
pendix B for the proof.

Theorem 5.1. Consider the interval [0, 1] such that
gβ(0) ≥ 0 and gβ(1) ≤ 0. Let I = {x∗i : 1 ≤ i ≤ n} be the set of dis-continuities with

1 ≤ n < ∞ and J := {y∗i : 1 ≤ i ≤ m} ⊂ I∁ be the set of points with m < ∞ (J is empty
when m = 0) such that:

(a) gβ(x) = 0 for each x ∈ I ∪ J , i.e., I ∪ J is the set of equilibrium points for (27),

(b) for each 1 ≤ i ≤ n, there exists an open/closed/half-open non-empty interval around
x∗i ∈ I, say N ∗

i , such that

(i) ∪1≤i≤nN ∗
i = [0, 1]− J and N ∗

i ∩N ∗
j = ∅ for i ̸= j,

(ii) gβ(β) > 0 for all β ∈ N−
i := N ∗

i ∩ [0, x∗i ), gβ is Lipschitz continuous on N−
i ,

7Any point β∗ ∈ [0, 1] is called a repeller of ODE (27) if gβ(β
∗) = 0 and βc(t) ↛ β∗ as t → ∞ when

βc(0) ∈ Nϵ(β∗) for some ϵ > 0.
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(iii) gβ(β) < 0 for all β ∈ N+
i := N ∗

i ∩ (x∗i , 1], gβ is Lipschitz continuous on N+
i .

Then, ODE (10) satisfies (A.3). Further, the set I is an attractor for (27) and p-stable for
(10); also, J is the set of repellers for (27) and p-saddle for (10). Furthermore, A := {h(x∗i ) :
x∗i ∈ I} is the attractor set, S := {h(y∗i ) : y∗i ∈ J } ∪ {0} is the saddle set in DI and entire
DI is the combined domain of attraction for (10). □

The above Theorem can be extended for gβ which is continuous, by standard ODE results,
and is considered in [11]. However, we require gβ to be discontinuous for BP with attack (see
assumption K.3 in Section 6), and thus the hypothesis of Theorem 5.1. The last part of the
Theorem asserts that the p-stable/p-saddle points are the only attractors/saddle points of
ODE (10), other than 0 ∈ S.

6. Branching Process with Attack

Consider a BP with two population types, say x and y. Each individual of any type lives for
a random time, τ ∼ exp(λ), where λ ∈ (0,∞). Let τn be the death time of the n-th individ-
ual which dies first among the alive population. Say an individual of (say) x-type produces
ξxx(ϕ) offspring of its type, when the system state is given by ϕ. Further, it attacks/removes
ξxy(c

y) individuals of y-type population; naturally, the attacked population can not exceed the
population available to be attacked at the time of death, hence:

K.1 Assume that ξxy(c
y) ≤ cy a.s. and ξyx(c

x) ≤ cx a.s., when the system state is ϕ.

Note that the number of attacks do not depend on the size of the attacking population. The
attacked individuals are then deleted from the y-population, and acquired by (i.e., added
to) the x-population. No offspring are produced and no individual of opposite population is
attacked in between two consecutive death times. Thus, for example, when a x-type individual
dies at time τn, then the current populations change as follows for any t ∈ [τn, τn+1) (in case
τn = τνe , then for all t ≥ τn):

Cx(t) = Cxn + ξxx(Φn) + ξxy(C
y
n)− 1, and Cy(t) = Cyn − ξxy(C

y
n).

The total and y-population also evolve similarly. We call such a BP as Branching Process with
Attack. The dynamics in (1) capture this BP, when for each i, j:

Γii(ϕ) := ξii(ϕ) + ξij(c
j), and Γij(ϕ) := −ξij(cj). (28)

Next, we assume:

K.2 For each i ∈ {x, y}, assume that there exist integrable random variables, ξ, ξ, such that

0 ≤ ξ ≤ ξii(ϕ) ≤ ξ a.s. for each ϕ, E[ξ]2 < ∞ and E[ξ] > 1. Further, let the attack
offspring ξij(ϕ) be integrable for each ϕ and for each i ̸= j ∈ {x, y}.

The above assumption immediately implies (A.1). Define the expectations conditioned on ϕ
as eij(ϕ) := E[ξij(ϕ)] for i, j ∈ {x, y}. We further assume (see (28)):

K.3 For i, j ∈ {x, y}, let e∞ij ≥ 0 with e∞xy > 0. Assume m∞
ij (β

c) satisfy the following:

m∞
xy(β

c) = −e∞xy1{βc<1}, m
∞
yx(β

c) = −e∞yx1{βc>0},

m∞
xx(β

c) = e∞xx + e∞xy1{βc<1} and m∞
yy(β

c) = e∞yy + e∞yx1{βc>0}.

Further, assume the conditions of (A.2) are satisfied with {(mij ,m
∞
ij )}i,j replaced by

{(eij , e∞ij )}i,j .
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We are interested in the BP where attack is prominent8 even at the limit, thus, e∞xy > 0
without loss of generality in K.3. If e∞yx = 0, then it leads to single-sided attack at limit, but
recall anything is possible in transience. Observe the cross-mean function in K.2 converge to

(almost) constant limit, e.g., exy(ϕ)
sc→∞−→ e∞xy1{βc<1}. The reason behind the indicator is that

there is no attack at limit when βc = 1; this is because Cyn → 0 when lim supn→∞ βc(Υn) = 1
as proved at the end of Appendix (A).

For BP with attack, the ODE (10) has the following form:

Υ̇ = h(βc)1{ψc>0} − Υ, where h(βc) := (hcψ, h
c
θ, h

a
ψ, h

a
θ), is such that

hcψ = βce∞xx +
(
1− βc

)
e∞yy − 1, hcθ = βc

(
e∞xx + e∞xy1{βc<1} − 1

)
− (1− βc) e∞yx1{βc>0},

haψ = βce∞xx +
(
1− βc

)
e∞yy, and h

a
θ = βc

(
e∞xx + e∞xy1{βc<1}

)
− (1− βc) e∞yx1{βc>0}.

(29)

We begin with the ODE analysis towards providing ODE approximation result for BP with
attack using Theorem 4.1.

6.1. Analysis of ODE for BP with attack

Define the parameter vector e := {e∞ij : i, j ∈ {x, y}}, and consider the following class of limit
mean functions (by K.3, the vector e defines M∞):

E := {e : e∞yx > 0} ∪ {e : e∞yx = 0 and e∞xx + e∞xy < e∞yy}, which implies (30)

E∁ = {e : e∞yx = 0} ∩ {e : e∞yx > 0 or e∞xx + e∞xy ≥ e∞yy} = {e : e∞yx = 0, e∞xx + e∞xy ≥ e∞yy}.

Observe that the first and second sub-classes in E consider double and single-sided attack,
respectively (at the limit); both classes consider acquisition. An important question for a BP
with attack is regarding the survival of the individual types and co-survival. Corollary 6.2 of
Theorem 4.1 given later provides answers to such questions. Prior to that, the next theorem
derives the asymptotic analysis of (27) and also shows that this analysis is sufficient for analysis
of (29) (see proof in Appendix B).

Theorem 6.1. Assume K.1-K.3. Then, (A.3) holds for (29). Further, we have:

(i) For ODE (27), no interior βc ∈ (0, 1) is an attractor, β∗ = 1 is always an attractor,
but β∗ = 0 is an attractor only if e ∈ E.
Further, again for (27) in [0, 1]: if e ∈ E, then, β∗

r , the unique zero of gβ, is the only
repeller; while if e /∈ E, then 0 is the only repeller.

(ii) The attractors and repellers of ODE (27) determine the attractor (A) and saddle (S)
sets of ODE (29) respectively:

A =

{
{h(1),h(0)}, if e ∈ E ,
{h(1)}, if e /∈ E ,

and S =

{
{0,h(β∗

r )}, if e ∈ E ,
{0,h(0)}, if e /∈ E , where

for example, h(1) = (e∞xx − 1, e∞xx − 1, e∞xx, e
∞
xx) and h(0) = (e∞yy − 1, 0, e∞yy, 0).

(iii) The combined domain of attraction of A ∪ S, i.e., D = DI defined in (11). □

6.2. Analysis of random trajectory of BP with attack

By Theorem 4.1, the following holds (proof in Appendix B):

8If both e∞xy , e
∞
yx = 0, then it will lead to two independent (non-attacking) BPs at limit; if required, one can

derive the analysis for this case, as done in Theorem 6.1.

Page 16 of 27



Corollary 6.2. Consider the BP as in (28), and assume K.1-K.3. Then, we have:

(i) The assumption (A.3) holds for ODE (29), and hence Theorem 4.1(i) is applicable.

(ii) The following is true w.p. 1 for BP with attack:

• if e ∈ E, either Υn converges to {0,h(0),h(β∗
r ),h(1)} or hovers around {0,h(β∗

r )},
where β∗

r is as in Theorem 5.1 and

• if e /∈ E, either Υn converges to {0,h(0),h(1)} or hovers around {0,h(0)}. □

Recall from Theorem 6.1, ODE for (29) has three types of saddle points: h(0) when e /∈ E ,
h(β∗

r ) when e ∈ E and vector 0 for all cases. The sample paths in which BP hovers around 0
or h(0) or converges to/hovers around h(β∗

r ) indicate co-survival. Both populations survive in
insignificant numbers in the first case, x-population is comparatively small in the second case
and both populations survive in large numbers in the last case. Further, only x or y-population
survives when the process converges to h(1) or h(0) respectively, see the end of Appendix (A).

We re-iterate that our approach does not provide the probability with which BP converges
or hovers around different limit points of the ODE (29).

    { {

   

Figure 3. Behavior of BP with attack trajectory when e ∈ E

Now, we would like to explain the behaviour of the BP with a pictorial representation in
figure 3. Consider e ∈ E and survival paths. Say, the process enters ϵ-neighbourhood of h(β∗

r )
at epochs say k1, k2, . . . (for some ϵ > 0), remains in its 2ϵ-neighbourhood for some epochs
and then exits at epochs l1, l2, . . . At every exit, it can either get attracted to h(0) or h(1) or
it can re-enter the neighbourhood. The solid red line in the figure represents the sample path
when the trajectory enters and exits the ϵ-neighbourhood i.o., i.e., hovers around h(β∗

r ) with
δ1 = 2ϵ. Some sample paths can converge to h(β∗

r ) - see blue dashed line. Similar behaviour is
exhibited when e /∈ E . Such hovering around is also observed in [28], where switching between
super-to-sub critical regimes occurs due to current-population dependency.

6.3. Analysis of Viral competing markets

In section 2, we briefly discussed the viral markets with content providers (CPs) competing
for the propagation of similar posts over OSNs. Recall that the posts from respective CPs (say
x and y) can be viewed as x and y-type populations. The unread and unread plus read copies
of each post respectively correspond to the current and total population of the respective
population-type.

Whenever a new user reads the posts, and shares the preferred post (say x-post), it creates
new unread copies of the x-post. Now, some of the copies of the post are shared to the friends
who either (i) have not received the other competing post, or (ii) have already received the
competing y-post before, or (iii) have received the x-post before. In the first case, copies of the
post are referred to as offspring, ξxx, of the x-type population. While in the second case, the
copies of the post are denoted as ξxy. One can view these copies as the ones where the friends
of the user will not prefer the older residing y-post, as it is deep down on their timelines.
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The friends of the third kind will not be interested in another copy of the post again, and
hence accounts for reduction in the offspring; to be more precise, exx(ϕ) reduces with total
population. Thus, the viral competing markets have the attack and acquisition aspect, and
can be modelled using the BP with attack (see [13] for modelling details).

In [13], we analysed such markets in a restricted setting, while Corollary 6.2 can handle
the generality mentioned here. Both the posts are prominent when the process converges to
or hovers around h(β∗

r ). While, the convergence to h(0) or h(1) represents the dominance of
one of the posts.

From Corollary 6.2, one can get more interesting insights. For instance, let y-CP be more
influential, and thus y-post is shared more on average in the limit, so e∞xx < e∞yy. If the
competition is ignored, the analysis is provided using independent BPs. Such analysis indicates
the possibility of co-virality (both posts get viral simultaneously). However, when a typical
user receives both posts, it may find x-post more appealing, leading to e∞xx + e∞xy > e∞yy with
e∞yx = 0. Therefore, e /∈ E , thus h(1) is a limit, which implies that x-post can dominate the
post of more influential y-CP. Further, none of the limits indicate co-virality.

On the other hand, when some users prefer the y-post (e∞yx > 0), while others prefer the
x-post, then, co-virality is possible due to interior saddle point h(β∗

r ).

7. Finite horizon approximation

In Theorem 4.1(i), we proved the finite-time approximation of Υn using the autonomous ODE
(10); such an ODE is obtained using the limit proportion-dependent mean functions (m∞

ij (β
c)).

However, directly using the population-dependent mean functions mij(ϕ), one may anticipate
better approximation in transience.

We claim that ODE, Υ̇ = ϱ(Υ, t), constructed using the actual conditional expectation,
E[Ln|Fn] = ϱ(Υ, t) given in (8) better approximates the BP ; recall, the difference term En1 (·)
of (18) converges to 0 as shown in the proof of Theorem 4.1. The approximation should
further improve when the new ODE is initialised with Υnm

, and not with limnm→∞ Υnm
as in

Theorem 4.1. From (8), the new ODE is non-autonomous and discontinuous. Also by (A.2),
the right hand side ϱ(Υ, t), converges to that of ODE (10), g(Υ), as t → ∞. Approximation
by such non-autonomous ODE is proved for super-to-sub critical total population-dependent
BP in [9].

We support our claim using a numerical example; more examples are in [20]. Let Cx(0) =
Cy(0) = 1200 and let the dynamics be as in BP with attack till Sa is below a certain threshold,
and then let the population progress with proportion-dependent mean offspring. Specifically,
M(ϕ) =M t(ϕ)1{sa≤104} +M∞(βc)1{sa>104}, where

M t(ϕ) =

[
4 −min(2, cy)

−min(1, cx) 2.2

]
and M∞(βc) =

[
4βc + 1 9βc + 1
8βc + 1 2.2βc + 1

]
.

Observe that (2) holds.
One can view the above dynamics to capture the propagation of new posts over OSNs, which

advertise about complimentary products. In the initial phase of sharing (when sa ≤ 104), the
users are new to both the products, and therefore, some users prefer product advertised in
x-post, while others prefer the y-post (see M t(ϕ)). That is, the dynamics are as in branching
process with attack. But, thereafter, when both posts achieve good response from the users
(in terms of likes, shares), the new users may buy both products (see M∞(βc)). Thus, the
dynamics shift from being foe-type to friend-type.

We plot one sample path of BP and the corresponding solutions of autonomous and non-
autonomous ODEs9 (for all n ≥ nm = 100 and T = 12). The current and total populations
are in figure 4, while the proportion βc(Υn) is in figure 5. From the plots, one can see that the
non-autonomous ODE solution (dashed lines) better approximates the random BP trajectory

9The ODE trajectories are estimated using the well known Piccard’s iterative method (e.g., [25]).
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Figure 4. Finite horizon approximation (current on left, and total on right side)

(dotted lines), than the autonomous ODE (solid lines). As seen from the sub-figures, the
non-autonomous ODE well captures the transition, unlike ODE (10).
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Figure 5. Proportion trajectory, βc
n

Initially, x-type individuals attack more aggres-
sively than y-type and thus, the y-population depletes
faster. In fact, by transition epoch (1300) proportion
βcn = 1. Later, M(ϕ) = M∞(βc) does not have at-
tack component, the y-population is regenerated and
βcn declines to ≈ 0.51 indicating co-survival. This ex-
ample also illustrates that the dynamics in transience
(here, BP with attack) does not influence the limiting
behaviour.

8. Summary and conclusion

We studied time-asymptotic proportion for a class of
two-type continuous-time total-current population-dependent Markov BPs. We extended the
stochastic approximation result to include the notion of “hovering around the saddle points”
of an appropriate ODE and to analyse BPs. The summary to derive the limiting behaviour is:

(s.i) if the BP satisfies the assumption (A.1), then the sum current population exhibits
dichotomy with probability 1 (see Lemma 2.1);

(s.ii) identify the limit mean functions m∞
ij (β

c) satisfying (A.2), if required using the
discussion in Appendix (A) for BPs with negative offspring or attack;

(s.iii) identify the attractors and repellers of one-dimensional ODE (27);
(s.iv) identify the attractor and saddle sets of ODE (10) using (s.iii) and Theorem 5.1;

these provide the limit proportion;
(s.v) Theorem 5.1 also facilitates the proof of assumption (A.4) to conclude about limiting

behaviour of BP via Theorem 4.1.
Interestingly, the limit proportion of any BP depends only on the limit mean matrix,

irrespective of the dynamics in transience. A finite-time approximation result is also provided.
We analysed a recently introduced variant of BP with attack and acquisition under significantly
more general conditions; such BP captures essential aspects of competing content propagation
over online social networks. We could also analyse the transient behaviour of many interesting
variants, for example, the foe-to-friend BP where the populations attack (and acquire) in the
initial phase and later compliment each other.
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Appendix A. Limit mean matrices for BPs with negative offsprings

In this Appendix, we state some important auxiliary results, which are also helpful in further
understanding of the subject at hand. The Proposition 2.1 and the discussion thereafter provide
insights into the derivation of the limit mean matrices of (A.2).

Proof of Proposition 2.1: Let Cx(0) = cx0 and Cy(0) = cy0. Consider a fictitious single (z)
type population-independent BP. Let Z(0) = cx0 + cy0. Each time an individual dies in the new
process, assume that random number of offspring, distributed as Γ in (A.1), are produced.
Further, assume that exactly 1 individual is immigrated into the new system, if Z(t) = 0 for
some t <∞. Thus, Z(·) is a classical continuous time branching process with state-dependent
immigration as in [29]. Observe

∑∞
j=2 jP (Γ = j)log(j) < ∞ due to finite second moment

assumption on Γ in (A.1). Thus, by [29, Theorems 6 and 8], P (Z(t) → ∞) = 1, under (A.1).
For completing the proof, we couple the embedded chains of the two BPs, for all n ≤ νe,

where νe is the extinction epoch of the given system. If νe < ∞, then Scn = 0 for all n ≥ νe.
Otherwise, by coupling arguments, Scn ≥ Zn for all n, and thus Scn → ∞ as n → ∞. Further,
in the latter case, by [30, Theorem 1, Chapter 1], the growth rate of Scn is at least as large as
that of Zn, i.e., λ(m− 1). □

Page 21 of 27



Limit mean matrices for BPs with negative offspring:

In BPs with negative offspring, in the the survival sample-paths, by Lemma 2.1, Scn → ∞. In
such cases, one needs to identify the limit mean matrix of (A.2). Say 0 < lim infn→∞ βc(Υn) ≤
lim supn→∞ βc(Υn) < 1. Then, for such sample-paths, both populations would have exploded,
i.e., (Cxn, C

y
n) → (∞,∞). Hence, there are sufficient number of individuals to be attacked of

both types, which results in the saturation of the number of attacks10; thus, it is appropriate
to consider m∞

xy(β
c) as some constant for all βc ∈ (0, 1), and so is the case with m∞

yx(β
c).

On the other hand, say lim supn→∞ βc(Υn) = 1, then, βc(Υn) = 1 i.o. This implies
βc(Υn) = 1 for all n large enough, as βc(Υn) = 1 is an absorbing state for processes with
attack, like BP with attack and prey-predator BP. Thus, clearly m∞

xy(β
c) = 0 for βc = 1.

Similarly, m∞
yx(β

c) = 0 for βc = 0.

Appendix B.

Throughout the Appendix, we will consider the solution of the integral operator as the gener-
alized solution of ODE (10). The fact that these two solutions are equivalent, is proved towards
the end of the proof of Theorem 4.1(i).

Proof of Lemma 4.2. By (17), (Υn(0))n is bounded. We will now prove (14) for (Θn,c(t));
it can be proved analogously for other components of Υn(·). Observe from (18) and (19) that
the interpolated trajectory can be re-written as:

Θn,c(t) := Θcn +

∫ t

0

gcθ(Υ
n(s))ds+

η(tn+t)−1∑
i=n

ϵiL
θ,c
i −

∫ t

0

gcθ(Υ
n(s))ds

= Θcn +

∫ t

0

gcθ(Υ
n)ds+Mn,θ,c(t) + ρn,θ,c(t) +Dn,θ,c(t), where

Mn,θ,c(t) :=

η(tn+t)−1∑
i=n

ϵi

(
Lθ,ci − ρcθ(Υi, ti)

)
,

ρn,θ,c(t) :=

η(tn+t)−1∑
i=n

ϵig
c
θ(Υi)−

∫ t

0

gcθ(Υ
n)ds, and

Dn,θ,c(t) :=

η(tn+t)−1∑
i=n

ϵi (ρ
c
θ(Υi, ti)− gcθ(Υi)) .

(B1)

Now, fix T > 0 and define the set SδT := {(s, t) : 0 ≤ t− s ≤ δ, 0 ≤ t ≤ T}. Then:

sup
Sδ
T

|Θn,c(t)−Θn,c(s)| ≤ sup
Sδ
T

∣∣∣∣∫ t

s

gcθ(Υ
n)dr

∣∣∣∣+ sup
Sδ
T

∣∣Mn,θ,c(t)−Mn,θ,c(s)
∣∣

+ sup
Sδ
T

∣∣ρn,θ,c(t)− ρn,θ,c(s)
∣∣+ sup

Sδ
T

∣∣Dn,θ,c(t)−Dn,θ,c(s)
∣∣ . (B2)

To prove our claim, we begin with the first term of (B2). From (10) and (17), |gcθ(Υ)| ≤ m̂ for
an appropriate m̂ > 1, for any Υ, and, thus:∣∣∣∣∫ t

s

gcθ(Υ
n)dr

∣∣∣∣ ≤ m̂(t− s), so, sup
Sδ
T

∫ t

s

|gcθ(Υn)| dr ≤ δm̂.

10To be realistic, the number of attacks by a single individual should saturate, i.e., for example,
limcy→∞ mxy(cy) = m∞

xy < ∞. The case with unsaturated attacks in easier to analyse, and one can eas-
ily prove for BP with attack that only one of the two population types survives with probability 1.
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For the second term of (B2), define Mθ,c
n :=

∑n−1
i=0 ϵi

(
Lθ,ci − ρcθ(Υi, ti)

)
. Then, it is easy to

prove that (Mθ,c
n ) is a Martingale with respect to (Fn). Thus, using Martingale inequality, for

each µ > 0 (where, En(·) denotes the expectation conditioned on (Fn)):

P

{
sup

m≤j≤n
|Mθ,c

j −Mθ,c
m | ≥ µ

}
≤
En

∣∣∣∑n−1
i=m ϵi

(
Lθ,ci − ρcθ(Υi, ti)

)∣∣∣2
µ2

.

Observe, E
[(
Lθ,ci − ρcθ(Υi, ti)

)(
Lθ,cj − ρcθ(Υj , tj)

)]
= 0 for i < j. Using this:

P

{
sup

m≤j≤n
|Mθ,c

j −Mθ,c
m | ≥ µ

}
≤

∑n−1
i=m ϵ

2
iEn

∣∣∣Lθ,ci − ρcθ(Υi, ti)
∣∣∣2

µ2
.

Note that under (A.1) and (17), for some K > 0:

sup
n
En|Lθ,cn − ρcθ(Υi, ti)|2 ≤ sup

n
En
(
Γn − 1

)2
+ sup

n
En|ρcθ(Υi, ti)|2 < K.

Thus, for every n ≥ m:

P

{
sup

m≤j≤n
|Mθ,c

j −Mθ,c
m | ≥ µ

}
≤ K

µ2

∞∑
i=m

ϵ2i .

By first letting n→ ∞ (and using continuity of probability), then, letting m→ ∞,

lim
m→∞

P

{
sup
m≤j

|Mθ,c
j −Mθ,c

m | ≥ µ

}
= 0 for each µ > 0. (B3)

Now, by (B3) and continuity of probability, for each µ > 0:

P

{
lim
m→∞

sup
m≤j

|Mθ,c
j −Mθ,c

m | ≥ µ

}
= 0. (B4)

Let Ak := limm→∞ supm≤j |M
θ,c
j −Mθ,c

m | < 1/k, then, P (Ak) = 1 for each k > 0. We further

restrict our attention to sample paths ω /∈ N := (∩kAk)c ∪ {Π ↛ m}. Now, the second term

in (B2) is upper bounded by 2 supt≥0 |Mn,θ,c(t)|. For any ω /∈ N :

sup
t≥0

|Mn,θ,c(t)| = sup
t≥0

|Mθ,c
η(tn+t)

−Mθ,c
n | = sup

j≥n
|Mθ,c

j −Mθ,c
n |

=⇒ lim
n→∞

sup
Sδ
T

|Mn,θ,c(t)| ≤ lim
n→∞

sup
η(tn+t)≥n

|Mθ,c
η(tn+t)

−Mθ,c
n | < 1/k,

where the last inequality holds because we have considered sample paths which are not in N .
Letting k → ∞, we get, Mn,θ,c(·) → 0 uniformly on each bounded interval.

For the third term in (B2), observe that when t = tk− tn (k > n), ρn,θ,c(t) = 0. Thus, for
any |t| ≤ T (following similar steps as in first term, and noting ϵη(tn+t) ≤ ϵn):

|ρn,θ,c(t)| =

∣∣∣∣∣
∫ t

tη(tn+t)−tn
gcθ(Υ

n)ds

∣∣∣∣∣ < ϵnm̂.

Thus, ρn,θ,c(·) uniformly converges to 0 as n→ ∞ on each bounded interval.
For the last term in (B2), we claim that Dn,θ,c(t) also converges to 0 uniformly on each

bounded interval in (0,∞) as n → ∞, for each ω /∈ N . Towards this, first consider ω ∈

Page 23 of 27



N c∩{Scn → 0}, i.e, extinction paths. Then, ρcθ(Υi, ti) = 0 and gcθ(Υi) = 0 for all i > νe. Thus,
trivially limn→∞Dn,θ,c(t) = 0 for all t ∈ (0,∞).

Next, consider ω ∈ N c ∩ {Scn ↛ 0}; for such sample paths, we first derive a uniform
positive lower bound for Ψcn, required to prove the claim. To this end, analogous to Πn defined
in (13), one can define Πn using Γ given in (A.1). Then, following similar steps as before, i.e.,
using strong law of large numbers and computing as in (17), we get Ψan ≥ Ψcn ≥ ∆ for an
appropriate ∆ > 0, for all n ≥ 1. Thus, we have for each i ≥ 1 (see θc component of (10), (8)
and assumption (A.2)):

|Dθ,c
i | = |Bci (mxx(Φi)−m∞

xx(B
c
i )) + (1− Bci )(myx(Φi)−m∞

yx(B
c
i ))| ≤

2

Sci
=

2

Ψciη(ti)
≤ 2

∆i
.

This implies that, (recall ϵi = 1/(i+ 1))

|Dn,θ,c(t)| =

∣∣∣∣∣∣
η(tn+t)−1∑

i=n

ϵiD
θ,c
i

∣∣∣∣∣∣ ≤
η(tn+t)−1∑

i=n

2

∆i(i+ 1)
≤

∞∑
i=n

2

∆i(i+ 1)
, for any t.

Thus,Dn,θ,c(t) uniformly converges to 0 as n→ ∞. In all, by (B2) and above analysis, it is clear
that for each T > 0 and for any ϵ > 0, there exists nϵ such that supSδ

T
|Θn,c(t)−Θn,c(s)| < ϵ

for all n ≥ nϵ; hence (Θn,c(·)) is equicontinuous in extended sense. □

Proof of Theorem 5.1. Recall βc(Υ) := θc/ψc. Consider the initial condition Υ(0) ∈ DI
with ψc(0) = 0, then ODE (10) simplifies to Υ̇ = −Υ, which clearly has a unique solution and
further Υ(t) → 0 as t → ∞. We claim that 0 ∈ S as we next show that with ψc(0) > 0, the
solution Υ converges to other equilibrium points.

Let ψc(0) > 0, and say without loss of generality, βc(Υ(0)) ∈ N−
i for some i. By Lemma

B.3, ψc(t) > 0 for all t ≥ 0, thus ODE (10) simplifies to Υ̇ = h(βc(Υ)) − Υ. Consider the
following smooth ODE, with initial condition Υ(0) (by (c), the right hand side given below is
Lipschitz continuous):

Υ̇ = f il (β
c)− Υ, where

f il (x) := h(x)1{x<x∗
i }∩N∗

i
+ h∗

l 1{x≥x∗
i } + hol 1x≤∆i

l
, with

h∗
l := lim

xn↑x∗
i

h(xn), h
o
l := lim

xn↓∆i
l

h(xn), and ∆i
l := inf{βc(Υ) : βc(Υ) ∈ N ∗

i }.
(B5)

Then, by [25, Theorem 1, sub-section 1.4, pp. 6], the above smooth ODE has a unique solution,
say Υ1(t). Let τ := inf{t : βc(Υ1(t)) = x∗i }, then by Lemma B.1, τ < ∞. Observe that the
solution of the original ODE (10), with the same initial condition Υ(0), coincides with Υ1(·)
for all t < τ , as ψc(t) > 0 for all t > 0 by Lemma B.3 for such initial condition. Now, let
Υτ := Υ1(τ) and observe βc(Υτ ) = x∗i . Using similar logic, one can prove that x∗i is an attractor
for ODE (27). Further, by uniqueness of the solutions of the smooth11 ODEs, the solution of
ODE (10) for t > τ is given by:

Υ2(t) = (ψc(t), x∗iψ
c(t), ψa(t), θa(t)), (B6)

where the three components of Υ2(·), defined as Ω(·) := (ψc(·), ψa(·), θa(·)) is the solution of
the following initial value problem (IVP) for all t ≥ τ (see (10)):

Ω̇ = hi − Ω, with Ω(τ) := Ω(Υ∗), where constant, hi := (hcψ, h
a
ψ, h

a
θ)|x∗

i
. (B7)

Observe that βc(t) = x∗i for all t > τ by (a). With this, Υ(t) := Υ1(t)1t<τ + Υ2(t)1t>τ is the
unique solution, which satisfies ODE (10) for all t ̸= τ , and with initial condition Υ(0). Thus,
(10) satisfied (A.3). Clearly from (B7),

Υ(t) → h(x∗i ), where h(x∗i ) = (hcψ, x
∗
i h
c
ψ, h

a
ψ, h

a
θ)|x∗

i
.

11The ODEs (B5) and (B7) are the two smooth ODEs.
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Similarly, one can show that Υ(t) → h(x∗i ), if β
c(Υ(0)) ∈ N+

i .
Thus, h(x∗i ) is an attractor for ODE (10), with domain of attraction as Di := {Υ ∈ DI :

βc(Υ) ∈ N ∗
i } ∩ {ψc > 0}. Since x∗i ∈ I is arbitrary, A = {h(x∗i ) : x∗i ∈ I}, with corresponding

domain of attraction as DA = ∪1≤i≤nDi. Also, I is an attractor for (27).
By hypothesis (b.i), any initial condition Υ(0) with βc(Υ(0)) ∈ [0, 1] − J is already con-

sidered above. Now consider Υ(0) with βc(Υ(0)) = y∗i ∈ J , i.e., Υ(0) ∈ S(h(y∗i )). Then, the
analysis follows as in (B6)-(B7) to show that Υ(t) → Υ(y∗i ) as t→ ∞; the exponential conver-
gence is clear from ODE (B7). This proves that h(y∗i ) is a saddle point for ODE (10). Clearly,
by (a), (b.ii)-(b.iii), y∗i ∈ J is a saddle point for ODE (27). Hence, the theorem follows, as
similar things are true for 0. □

Lemma B.1. The time τ defined in the proof of Theorem 5.1 is finite.

Proof. By hypothesis (b), gβ(·) > 0 and continuous, for all βc ∈ N−
i . Further, x∗i is a point

of discontinuity for gβ and gβ(x
∗
i ) = 0; thus βc(h∗

l ) = limxn↑x∗
i
gβ(xn) > 0 (see (B5)), which

implies, inf{βc∈N−
i } gβ(β

c) > 0. Observe τ is determined by βc-component of Υ1(·), the solution
of ODE (B5). From (B5), the latter is a continuous extension of the original ODE (10), thus,
the βc-component of the ODE (B5) can be uniformly lower bounded by inf{βc∈N−

i } gβ(β
c) > 0.

Thus, by Lemma B.2(a.ii), τ <∞.

Lemma B.2. Consider an initial value problem ż = f(z, t), with z(0) ∈ (zl0, z
u
0 ) where f is a

measurable function with finitely many discontinuities.

(a) Say f(z, t) > 0, for all z ∈ (zl0, z
u
0 ) and all t. Then:

(i) z(·) is an increasing function of t till τu := inf{t : z(t) ≥ zu0 }.
(ii) Say f(z, t) > δ for some δ > 0, for all z ∈ (zl0, z

u
0 ) and all t. Then, τu <∞.

(b) If f(z, t) < 0, for all z ∈ (zl0, z
u
0 ) and all t, then t 7→ z(t) is a decreasing function

till τ l := inf{t : z(t) ≤ zl0}, and if in addition f(z, t) < −δ for some δ > 0, for all
z ∈ (zl0, z

u
0 ) and all t, then τ l <∞.

Proof. We will provide the proof for part (a), and it can be done analogously for part (b).
Contrary to the claim, let τ1 < τ2 < τu be two time points such that z(τ1) ≥ z(τ2), with
z(τ1), z(τ2) ∈ (zl0, z

u
0 ). Then, we have:

0 ≥ z(τ2)− z(τ1) =

∫ τ2

τ1

f(z(s), s)ds,

which is a contradiction to the hypothesis. Now if possible, let τu = ∞, then z(t) < zu0
for all t and t 7→ z(t) is an increasing function (as proved before). Further, since z(t) =

z(0) +
∫ t
0
f(z(s), s)ds > z(0) + tδ, there exists Tδ > 0 such that z(t) ≥ zu0 for all t ≥ Tδ, which

contradicts τu = ∞.

Lemma B.3. Let (A.2) and (A.3) hold. Define

ε := inf{m∞
ix(β

c) +m∞
iy (β

c) : βc ∈ [0, 1], i ∈ {x, y}}, and

ε := sup{m∞
ix(β

c) +m∞
iy (β

c) : βc ∈ [0, 1], i ∈ {x, y}}.
(B8)

For any 0 < ϵ < ε − 1, define Aϵ := [ε − 1 − ϵ, ε − 1 + ϵ]. In case, ψc(0) ∈ int(Aϵ) (interior)
for some ϵ > 0, then ψc(t) ∈ Aϵ for all t ≥ 0. Thus, if ψc(0) > 0, then, ψc(t) > ψc(0)− δ for
all t ≥ 0 and for any δ > 0.

Proof. Recall from (10), ODE for ψc is ψ̇c = hcψ(β
c)1ψc>0 − ψc. Now, one can lower bound

hcψ(β
c)− ψc as, for all t (by (A.1) and (B8)):

hcψ(β
c)− ψc ≥ βcε+

(
1− βc

)
ε− 1− ψc = ε− 1− ψc. (B9)
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It is easy to observe (by Weierstrass Theorem) that there exists a strict positive uniform lower
bound lI for any closed interval I ⊂ (0, ε− 1) as below:

ψ̇c ≥ lI > 0 when ψc ∈ I and for all t. (B10)

For the first part, in the above, consider I = [ψc(0), ε− 1− ϵ
2 ], where ψ

c(0) /∈ Aϵ. By Lemma
B.2(a), we have τu := inf{t : ψc(t) ≥ ε− 1− ϵ

2} <∞, i.e., ψc(·) enters Aϵ from the left.
We will now explicitly show that ψc(·) can not exit Aϵ, once it enters/starts in it (set τu = 0

when ψc(0) ∈ int(Kϵ)). In contrast, say ψc leaves Aϵ and to the left. Observe ψc(τu) > ε−1−ϵ.
For ψc to exit Aϵ, by continuity of ψc (and Intermediate Value Theorem, IVT), there exist
ε− 1− ϵ < ν < ν < ε− 1 such that for some t2 > t1 > τu, ψc(t2) = ν and ψc(t1) = ν. Then,
by MVT, we have:

ψ̇c(s) =
ψc(t2)− ψc(t1)

t2 − t1
=

ν − ν

t2 − t1
< 0,

for some s ∈ (t1, t2). This is a contradiction as ψ̇c(t) > 0 for ψc ∈ (0, ε − 1) and any t.
Conclusively, ODE solution ψc(·) enters Aϵ from left when ψc(0) < ε − 1 − ϵ, and does not
exit Aϵ from left.

Similarly from (10), hcψ(β
c)− ψc can be upper bounded as (by (A.1) and (B8)):

hcψ(β
c)− ψc ≤ βcε+

(
1− βc

)
ε− 1− ψc = ε− 1− ψc, (B11)

and ψ̇c ≤ ε− 1− ψc ≤ uI < 0 for all t and for any ψc ∈ I where I ⊂ (ε− 1,∞) is any closed
interval. Then, applying similar arguments as above, one can show that ψc(·) enters and does
not exit Aϵ from/to right as well.

Proof of Theorem 6.1. We first study ODE (27), using which we then analyse ODE
(10)/(29). Observe by definition of m∞

xy(·), m∞
yx(·) in K.3 that 0, 1 are equilibrium points

of ODE (27). Further, gβ(β
c) is convex or concave in only (0, 1), respectively if m∞ ≤ 0 or

≥ 0, as can be seen from below (see K.3 for definitions):

gβ(β
c) =

(
−e∞yx + βcm̃∞ − (βc)2m∞) 1βc∈(0,1), where

m̃∞ := e∞xx + e∞xy − e∞yy + e∞yx, and m
∞ := e∞xx − e∞yy.

(B12)

At first by Lemma B.3, 0 is a saddle point for ODE (10) and hence for (29). Now, let
m∞ ≥ 0, and consider the following two sub-cases.

Sub-case 1: e∞xy > 0 and e∞yx > 0. Since gβ(·) is continuous in (0, 1):

gβ(0
+) = lim

δ→0
gβ(δ) = −e∞yx < 0, and gβ(1

−) = lim
δ→0

gβ(1− δ) = e∞xy > 0. (B13)

Therefore, there exists a unique zero of gβ , say β
∗
r ∈ (0, 1). Further by concavity, gβ(β

c) < 0
when βc < β∗

r and gβ(β
c) > 0 when βc > β∗

r . Thus, the result follows for this case by Theorem
5.1 with x∗1 = 0, x∗2 = 1 and y∗ = β∗

r . That is, {0, 1} is the attractor set, {β∗
r} is the repeller

set for ODE (27). Thus, A = {h(0),h(1)} is the attractor set and D = {0,h(β∗
r )} is the saddle

set for ODE (10), with combined domain of attraction, D as in (v) of the Theorem.

Sub-case 2: e∞xy > 0 and e∞yx = 0. Observe e∞xx < e∞yy is not possible here, as it would
contradict m∞ ≥ 0. Thus, e∞xx ≥ e∞yy. Therefore, for any β ∈ (0, 1), gβ(β) = β(1 − β)(e∞xx −
e∞yy)+βe

∞
xy > 0. Further, gβ(1

−) > 0, as in case 1. Thus, the result follows for this case as well
by Theorem 5.1 with x∗1 = 1 and y∗ = 0.

This completes parts (i) and (ii) for the case when m∞ ≥ 0. Analogously, one can prove
(i) and (ii) when m∞ ≤ 0. Then, the proof is complete using Theorem 5.1. □

Proof of Corollary 6.2. Given limit mean functions as in K.3, the assumption (A.3) is
guaranteed by Theorem 6.1. We now prove the assumption (A.4).
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A and S are the attractor and saddle sets of ODE (29) respectively, with subset of the
combined domain of attraction as DI , as identified in Theorem 6.1. Towards getting a compact
sub-domain of DI , from (16), (28) and K.2, one can bound Ψan as:

Ψan ≤ Ψ
a

n :=
1

n

min{νe,n}∑
k=1

(
ξxx,k + ξyy,k

)
1{Ψc

k>0} + sc0

 .

As before, Ψ
a

n → E[ξxx,1 + ξyy,1] a.s. in survival paths and Ψ
a

n → 0 in extinction paths,

as n → ∞. Thus, Db := DI ∩
{
Υ : ψa ∈ [0, E[ξxx,1 + ξyy,1]]

}
is the compact subset of DI

and pb := P (Υn visits Db i.o.) = 1. Hence, by Theorem 6.1 and Theorem 4.1(ii), we have
Υn → A∪ S with probability 1. □
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