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An example
I Procurement manager chooses a vendor. Similarly, logistics

manager.

I Vendors give quotes as:

Service Provider µ (days) σ (days) Cost
Provider 1 3 0.5 2500
Provider 2 3 0.75 1500
Provider 3 3 1.0 1250
Provider 4 4 1.0 1000
Provider 5 4 1.25 750
Provider 6 5 1.50 500

Table: Delivery quality and costs offered by six logistics providers to the
distribution manager
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I Procurement and distribution managers give cost curves to
supply chain manager

I Supply chain manager seeks a cost-optimal combination that
meets QoS levels

I Echelon managers seek to maximize profits of their units
(perhaps, independent)

I Quoted cost curves need not be actual ones

I Can have a strategic play, inducing a game
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I Supply chain manager (Central Design Authority) lacks actual
information that echelon managers have

I Aim: Cost-optimal chain formation with incomplete
(decentralized) information that should satisfy specified QoS
levels

I We stick to a single echelon framework

I A two-step procedure:
1. Design an incentive compatible protocol (mechanism) to elicit true

costs
2. Solve an appropriate constrained optimization problem with these

values
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Mean variance allocation problem
I Let n-echelons in a linear network have delivery times Xi ,

Independent normal rvs; means µi and standard deviation σi

I End-to-end delivery time, Y is normal with mean µ =
∑n

i µi and
standard deviation σ =

∑n
i σi

I Suppose τ is target date and T is tolerance allowed; CDA aims
for a delivery within τ ± T days

I Supply chain process capability indices, Cp and Cpk are:

Cp =
U − L

6σ
=

T
3σ

Cpk =
min(U − µ, µ− L)

3σ
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CDA knows these:

1. The delivery window (τ − T , τ + T )

2. Lower bounds of Cp and Cpk as Cp ≥ p and Cpk ≥ q.

3. Lower bounds µi and σi on the mean µi and standard deviation
σi , respectively, of stage i (i = 1, . . . , n). Similarly, upper bounds
µi and σi .

4. Delivery cost function bi(µi , σi) per unit order submitted by the
manager of echelon i .
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Mean variance problem is

minimize
n∑

i=1

bi(µi , σi)

subject to:
Cp ≥ p

Cpk ≥ q

τ − T ≤
n∑
1

µi ≤ τ + T

µi ≤ µi ≤ µi ; σi ≤ σi ≤ σi ; i ∈ N
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Informal example

I In an (English) auction the winner just needs to bid incrementally
more than the second highest bidder

I However, auctioneer can not know winner’s willingness to pay
(true valuation)

I Suppose auctioneer conducts sealed bid second price auction
(Vickery auctions)

I Here, winner gets the item at the bid-price of second highest
bidder

I Under some more conditions winner will now give true valuation
I Can be interpreted as a Mechanism where the auctioneer is

paying an incentive to winner, the difference between highest bid
and second highest bid
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Mechanism Design
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CDA

*
*
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Supply Chain Manager

I Assumption: cost curves for i th echelon are:

ci(µi , σi) = ai0 + ai1µi + ai2σi + ai3µiσi + ai4σ
2
i

I Private information of i th manager is 5-tuple of coefficients
(ai0, ai1, ai2, ai3, ai4).

I Echelon managers report b1(.), . . . , bn(.) as

bi(µi , σi) = âi0 + âi1µi + âi2σi + âi3µiσi + âi4σ
2
i ; i = 1, . . . , n
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I A Mechanism Design model gives true values of these costs
against incentives.

I CDA is viewed as a social planner and echelon managers as
agents.

Notation
N = {0, 1, . . . , n}, the set of players

0 corresponds to the CDA while 1, . . . , n correspond to the echelon managers

θi = (ai0, ai1, ai2, ai3, ai4) is the private information (type) of player i

θ̂i = (âi0, âi1, âi2, âi3, âi4) is the reported type of player i

ci = True cost function (actual type) of player i ;
ci (µi , σi ) = ai0 + ai1µi + ai2σi + ai3µiσi + ai4σ2

i

bi = Reported cost function (reported type) of player i ;
bi (µi , σi ) = âi0 + âi1µi + âi2σi + âi3µiσi + âi4σ2

i

Θi = Set of all possible types of player i

Θ = Θ0 × Θ1 × Θ2 × . . .× Θn; θ = (θ0, θ1, . . . , θn) ∈ Θ

Θ−i = Θ0 × . . .× Θi−1 × Θi+1 × . . .× Θn; θ−i = (θ0, . . . , θi−1, θi+1, . . . , θn) ∈ Θ−i

Decentralized supply chain N. Hemachandra (IE&OR, IIT Bombay)



An example Mean-Variance allocation A mechanism design framework A numerical example

Assumptions
1. Θ0 = {θ0}; that is type set of CDA is a singleton. Needed for

Dominant strategy incentive compatible mechanism but not for
weaker Bayesian incentive compatible mechanism.

2. µi ∈ [µi , µi ], i = 0, 1, · · · , n
3. σi ∈ [σi , σi ]

4. Actual costs are

ci(µi , σi) = ai0+ai1µi+ai2σi+ai3µiσi+ai4σ
2
i ∀µi ∈ [µi , µi ] ∀σi ∈ [σi , σi ]

5. Coefficients ai0, ai1, ai2, ai3, and ai4 come from some given
intervals:
aij ∈

[
aij , aij

]
for j = 0, 1, 2, 3, 4.

6. These give type sets: Θi as

[ai0, ai0]× [ai1, ai1]× [ai2, ai2]× [ai3, ai3]× [ai4, ai4]

Θ is a compact set in R5.
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I Outcome set X :
I Vector x = (k , I0, I1, · · · , In) where
I k = (µ0, σ0, µ1, σ1, · · · , µn, σn) is called allocation (project choice)

vector and
I I0, I1, · · · , In are money transfers (payments) to CDA, manager 1, ....

I µi and σi are the assigned mean and standard deviation to the
echelon i . Also,

µ0 = µ1 + . . . + µn

σ2
0 = σ2

1 + . . . + σ2
n

For i = 1, . . . , n, Ii is the total budget sanctioned by the CDA for
the manager of echelon i .
I0 is the total budget available with the CDA.
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I The set of feasible outcomes is

X =
{
(µi , σi , Ii)i=0,1,...,n|µi ∈ [µi , µi ] σi ∈ [σi , σi ], Ii ∈ R

}
The set of project allocations {k}s is K (and is compact).

I Valuations:
Let the value of allocation k for player i be vi(k , θi) when the type
set is θi . Define,

vi(µ0, σ0, µ1, σ1, . . . , µn, σn; θi) = −ci(µi , σi)

= −(ai0 + ai1µi + ai2σi + ai3µiσi + ai4σ
2
i )
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I Players’ Utility:
The i th player’s utility ui(·) : X ×Θi to R is taken as

ui(k , I0, I1, . . . , In; θi) = vi(k , θi) + Ii + Ei

where Ei is an initial endowment with player i (i = 0, 1, . . . , n) and
could be taken as zeroes.
This gives the quasi-linear mechanism design framework.

I Social Choice function f (·) : Θ to R:
We take this as

f (θ) = (µi(θ), σi(θ), Ii(θ))i=0,1,...,n , ∀ θ ∈ Θ
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Ex-post Efficiency

I A SCF f (·) is called ex-post efficient if∀θ ∈ Θ, the outcome f (θ) is
such that there does not exist any x ∈ X such that

ui(x , θi) ≥ ui(f (θ), θi) ∀i ∈ N

ui(x , θi) > ui(f (θ), θi) for some i ∈ N

I In an ex-post efficient supply chain formation, payoffs are such
Pareto optimal—utility of a player is improved at the expense of
at least one other players’ utility.

I Fact: In a quasi-linear environment, ex-post efficiency is
equivalent to simultaneously having Allocative efficiency (AE)
and Budget balance (BB).
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Allocative efficiency (AE)
I A SCF f (.) = (k(.), I0(.), I1(.), . . . , In(.)) is AE over all the echelon

managers if ∀θ ∈ Θ, k(.) satisfies
∑n

i=1 vi (k(θ),θi )≥
∑n

i=1 vi (k,θi ) ∀k∈K

I Each allocation k ∈ K maximizes the total valuations of echelon
managers.

I Since, valuation of CDA is sum of valuations of managers, we
then have ∑n

i=0 vi (k(θ),θi )≥
∑n

i=0 vi (k,θi ) ∀k∈K

Now, SCF is AE over all players in the game.
I Such an allocation can be obtained by solution of MVA problem:

f (θ) = (µ∗i (θ), σ
∗
i (θ), Ii(θ))i=0,1,...,n, ∀ θ ∈ Θ

where (µ∗i (θ), σ
∗
i (θ))i=0,1,...,n is the solution of the earlier MVA

problem.
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Budget Balance (BB)

I A SCF f (.) = (k(.), I0(.), I1(.), . . . , In(.)) is said to be budget
balanced if ∀θ ∈ Θ, we have

n∑
i=0

Ii(θ) = 0

I Supply chain is then formed with no deficit or surplus by
distributing budget among all players.

Aim: A formation that is AE, BB that also induces truth revelation from
echelon managers.
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Dominant Strategy Incentive Compatible solution (DSIC)

Dominant Strategy Incentive Compatible Mechanism
(DSIC)

I (µ∗i (θ), σ
∗
i (θ))i=0,1,...,n make SCF f (θ) is allocatively efficient

We choose budgets (Ii(θ))i=0,1,...,n so that it is also possible to
have the SCF f (.) dominant strategy incentive compatible i.e.
echelon managers will report true values.

I Fact Groves mechanism are both AE and DSIC.

Ii(θ) = αi(θ−i)−
∑
j 6=i

bj(µ
∗
i (θ), σ

∗
i (θ)) ∀ θ ∈ Θ

where (µ∗0(θ), . . . , µ
∗
n(θ), σ

∗
0(θ), . . . , σ∗n(θ)) is the optimal solution

of the MVA problem.
For i = 0, 1, 2, . . . , n, αi(θ−i) is any arbitrary function from Θ−i to
R.
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Dominant Strategy Incentive Compatible solution (DSIC)

I Fact AE, BB and DSIC may not be simultaneously possible if
cost functions are sufficiently rich.

I Fact Above is possible if one agent’s type set is singleton.
I Choose αi ’s so that

∑n
0 Ii(θ) = 0 ∀ θ ∈ Θ. Take,

αj(θ−j) =

{
αj(θ−j) : j 6= i

−
∑

r 6=i αr (θ−r )− (n)
∑n

r=0 vr (k∗(θ), θr ) : j = i

I To summarize:
I Cost-optimal solution that also meets QoS requirements (via AE)
I Has Budget balance (BB)
I Induces truth revelation by echelon managers (DSIC)

I Ensures that each manager’s action is optimal irrespective of
what others do

I Payments tend to be high
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Bayesian Incentive Compatible solution (BIC)

Bayesian Incentive Compatible solution (BIC)

I Assume that type sets are statistically independent.
I The dAGVA theorem (d’Aspremont and Gérard-Varet and Arrow)

suggests the payments to be

Ii(θi , θ−i) = βi(θ−i) +Eθ̃−i
[
∑
j 6=i

vj(k∗(θi , θ̃−i), θ̃j)]

where βi : Θ−i → R is any arbitrary function.
I Can now choose to ensure Budget balance (BB).
I The type set of CDA need not be singleton
I Numerical examples show that BIC payments are lower than

those of DSIC.
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(Data is skipped)

Echelon i Payments for Payments for
SCF-DSIC SCF-BIC

1 207.00 80.00
2 219.80 83.00
3 160.80 68.30

Table: Each agent believes that
other agents equally like to be
truthful or untruthful

Echelon i Payments for Payments for
SCF-DSIC SCF-BIC

1 207.00 159.50
2 219.80 166.00
3 160.80 136.50

Table: Each agent believes that
each other agent is completely
truthful
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