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Abstract Branching is an important component of the branch-and-cut al-
gorithm for solving mixed integer linear programs. Most solvers branch by
imposing a disjunction of the form“xi ≤ k ∨ xi ≥ k + 1” for some integer
k and some integer-constrained variable xi. A generalization of this branch-
ing scheme is to branch by imposing a more general disjunction of the form
“πx ≤ π0 ∨ πx ≥ π0 + 1.” In this paper, we discuss the formulation of
two optimization models for selecting such a branching disjunction and then
describe methods of solution using a standard MILP solver. We report on
computational experiments carried out to study the effects of branching on
such disjunctions.
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1 Introduction

In this paper, we consider the effect of using more general branching disjunc-
tions in the well-known branch-and-cut algorithm for solving mixed integer
linear programs (MILPs) than are typically considered by most solvers. Even
though the method of selecting a branching disjunction is a crucial compo-
nent of branch and cut, most solvers still only consider a very limited set of
possible disjunctions when deciding how to branch. It is not clear whether
the reason for this is (i) that it is not known how to generate more general
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branching disjunctions or (ii) the additional effort necessary to generate such
disjunctions is not offset by gains in the overall efficiency of the algorithm.
In what follows, we address this question by formally stating the problem of
selecting a “best” branching disjunction as an optimization problem, propos-
ing a method to solve this optimization problem, and reporting on the effect
of deploying this method of selection in a standard commercial solver. Our
goal here is not to test the efficiency of our method for selecting disjunctions
(it is demonstrably inefficient), but simply to answer the question of what
gains could be realized in the overall efficiency of a branch-and-cut procedure
(in terms of reducing the number of subproblems solved during the solution
procedure) if “optimal” branching disjunctions could be determined.

1.1 Definitions

We consider the mixed integer linear program

min cx

s.t. Ax ≥ b (P)

x ∈ Zd × Rn−d,

where b ∈ Qm, c ∈ Qn, and A ∈ Qm×n are the inputs and the variables
with indices 1, 2, . . . , d are required to take on integral values. If (P) does not
have any feasible solution, then the optimal solution value is taken to be ∞.
The linear programming (LP) relaxation of (P), obtained by dropping the
integrality constraints, is the linear program

min
x∈P

cx, (PLP )

where P = {x ∈ Rn | Ax ≥ b}. Formally defining the problem of determin-
ing the “best” branching disjunction requires defining precisely what set of
possible disjunctions we consider and by what criteria we evaluate them. To
do this, we must first briefly describe the branch-and-bound procedure.

LP-based branch and bound is a recursive procedure for solving (P) in
which a lower bound is first obtained by solving its LP relaxation (PLP ) (with
the minimum taken to be ∞ if P is empty). If the bound obtained is at least
as large as the value of the best feasible solution known (generated either by
a separate heuristic procedure or as a by-product of solving the relaxation),
then the current best solution is globally optimal and we are done. Otherwise,
we determine a disjunction (usually binary) that is satisfied by all solutions
to the original MILP, but not satisfied by the solution to the LP relaxation.
Such a disjunction, referred henceforth to as a valid branching disjunction, is
then used to partition the feasible region into subsets that define subproblems
to which the algorithm can then be applied recursively until exhaustion. For
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a more complete description of the algorithm (and also of the branch-and-
cut algorithm), see [Nemhauser and Wolsey, 1988, page 355]. Note that a
subproblem refers to a restriction of the original problem resulting from the
imposition of one or more branching disjunctions on the original instance.
These subproblems should not be confused with the associated problem of
selecting a branching disjunction, which is formulated below and then solved
to determine an optimal branching disjunction.

Most solvers use branching disjunctions, called variable disjunctions, of
the form “xi ≤ k∨xi ≥ k +1” for some integer k and some i ≤ d, since these
are always valid for (P). More generally, however, any π ∈ Zd × {0}n−d and
π0 ∈ Z yields the disjunction “πx ≤ π0 ∨ πx ≥ π0 + 1” (referred henceforth
to as a general disjunction and denoted by the ordered pair (π, π0)), which
is also always valid for (P). Since the set of general disjunctions includes
all variable disjunctions, considering this larger set should in principle be
advantageous. It is this set of disjunctions we consider in what follows, though
in the computational experiments, we were forced to further restrict the set
in order to obtain results in a reasonable amount of time.

In its simplest form, the efficiency of the branch-and-bound procedure de-
pends mainly on the number of subproblems generated. The goal of selecting
the branching disjunctions is then to minimize the total number of subprob-
lems to be solved. It is evident that the problem of selecting a branching
disjunction that minimizes the total number of subproblems solved globally
is extremely difficult—at least as hard as solving the original problem and
likely much harder in practice. The approach taken by most solvers, and the
one we shall take here, is to evaluate candidate branching disjunctions by
assessing their effect using more myopic criteria. We defer discussion of the
specific criteria employed in this study until Section 2 below.

1.2 Previous Work

Despite its importance as a component of the branch-and-bound procedure,
relatively little effort has gone into improving methods by which branching
disjunctions are determined. In practice, however, where branching is typi-
cally limited to variable disjunctions, some attention has been paid to select-
ing the “best” such disjunction. Linderoth and Savelsbergh [1999] performed
extensive computational experiments to show that selecting a variable dis-
junction that will lead to maximum estimated increase in the lower bound of
the subproblems is a good strategy. Such estimates are made primarily in one
of two ways. Strong branching consists of making the estimates by partially
solving each subproblem created by branching for each candidate variable dis-
junction. Pseudo-cost branching consists of estimating the change on the basis
of the actual change that occurred when the candidate disjunction was previ-
ously imposed (in some other subproblem). Recently, Achterberg et al. [2005]
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showed empirically that using a hybrid approach, called reliability branching,
yields better results in practice than either of above two approaches used
alone.

The study of branching on general disjunctions is not new either and has
been previously recognized as an important aspect of the theory of inte-
ger programming. In their survey, Aardal and Eisenbrand [2004] discussed
the fact that when the dimension is fixed, polynomial time algorithms for
solving integer programs can be obtained by branching on general disjunc-
tions obtained by determining the so-called thin directions of the feasi-
ble region. These polynomial time algorithms are derived from the seminal
work of Lenstra [H.W. Lenstra, 1983] and its extensions. It has also been
shown, for instance by Krishnamoorthy and Pataki [2006], that certain spe-
cific problems can be solved “easily,” if one branches on some particular
general disjunction. On the other hand, few heuristics have been proposed
that enhance computational performance of standard solvers by using general
branching disjunctions. Fischetti and Lodi [2003] proposed a local branching
heuristic that uses a general disjunction for branching such that one of the
branches has a small feasible region but is more likely to contain feasible
solutions with small objective function values. Owen and Mehrotra [2001]
used a greedy heuristic to generate branching disjunctions with coefficients
in {0, 1,−1}. Karamanov and Cornuéjols [2007] suggested branching using
disjunctions that could be used for generating Mixed Integer Gomory cuts
in the branch-and-cut algorithm. Some general branching disjunctions have
also been shown to be useful for problems with specific structures like special
ordered sets [Beale and Tomlin, 1970].

The remainder of the paper is organized as follows. In Section 2, we present
two different criteria by which to select a branching disjunction and describe
how to solve the problem of determining the optimal general disjunction with
respect to these criteria. In Section 3, we analyze the results of computational
experiments applying the methods from Section 2. In Section 4, we present
our conclusions and indicate directions for future work in this area.

2 Selecting Branching Disjunctions

As previously described, selecting a branching disjunction based on its global
effect is likely to be extremely difficult and we must therefore resort to more
myopic (though still not theoretically efficient) selection procedures. The two
criteria we use here to evaluate a branching disjunction are (i) lower bound
improvement achieved after branching and (ii) width of P in the direction
of the disjunction. The problem of finding an optimal general branching dis-
junction according to each of these criteria is formulated in the following two
sections. It is known from the results of Sebő [1999] and our recent work
[Mahajan and Ralphs, 2008] that the problem of optimizing over the set of
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general branching disjunctions with either of the above criteria is NP-hard,
even when the set of disjunctions is restricted in various ways.

2.1 Branching to Maximize Lower Bound

As previously mentioned, experiments by Linderoth and Savelsbergh [1999]
and Achterberg et al. [2005] provided empirical evidence that selecting vari-
able disjunctions on the basis of estimated increase in the lower bound after
such a branching could result in a reduction in the number of subproblems
solved. Therefore, we base our first criteria for choosing branching disjunc-
tions on the same principle. The procedure is based on detecting infeasibility
of the subproblems resulting from imposition of the branching disjunction,
along with (possibly) an inequality requiring a certain target increase in the
lower bound.

First, consider the integer program (P) and assume that P is not empty
(otherwise, the problem is easy to solve). Let (π̂, π̂0) ∈ Zd × {0}n−d × Z

be a disjunction that is used to branch after (PLP ) is solved. Then the LP
relaxations associated with the two partitions created after branching are of
the form

min cx

subject to:
Ax ≥ b

π̂x ≤ π̂0

and

min cx

subject to:
Ax ≥ b

π̂x ≥ π̂0 + 1.

(1)

Now, consider the related linear programs

z∗L = min π̂x

subject to:
Ax ≥ b

and
z∗R = min−π̂x

subject to:
Ax ≥ b.

(2)

The programs (1) are infeasible if and only if z∗L > π̂0 and z∗R > −(π̂0 + 1).
The dual of the programs (2) can be written as

z∗L = max pb

subject to:
pA = π̂

p ≥ 0

and

z∗R = max qb

subject to:
qA = −π̂

q ≥ 0,

(3)

respectively. By imposing the requirement that z∗L > π̂0 and z∗R > −(π̂0 + 1)
and then combining the two dual formulations (3), one can conclude that the
LPs (1) are both infeasible if and only if the system
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pA − π = 0

qA + π = 0

pb − π0 ≥ δ

qb + π0 ≥ δ − 1 (4)

p ≥ 0

q ≥ 0

(π, π0) ∈ Zn+1,

has a solution for some δ > 0 and with π = π̂, π0 = π̂0.
A sequence of MILPs of the form (4) can now be solved in order to find a

branching disjunction whose imposition maximizes the resulting lower bound
as follows. Suppose it is desired to increase the lower bound resulting from im-
position of the branching disjunction to some value exceeding a given target
zl. This is equivalent to requiring that both the following system of inequal-
ities be infeasible.

Ax ≥ b

π̂x ≤ π̂0

cx ≤ zl

and
Ax ≥ b

π̂x ≥ π̂0 + 1
cx ≤ zl

(5)

Observe that dropping the branching constraints makes the systems (5) fea-
sible, as long as zl > zLP . Using the approach described above, the problem
of finding a suitable (π̂, π̂0) may now be written as that of finding a feasible
solution to the system

pA − sLc − π = 0

pb − sLzl − π0 ≥ δ

qA − sRc + π = 0 (6)

qb − sRzl + π0 ≥ δ − 1

p, sL, q, sR ≥ 0

π ∈ Zn, π0 ∈ Z.

The lower bound obtained after solving the LP relaxations (1) can be in-
creased to at least zl by imposing the branching disjunction (π̂, π̂0) if and
only if π = π̂, π0 = π̂0 is a feasible solution to the system (6) for some δ > 0.
Note the similarity in the formulations (6) and (4). If there is a feasible so-
lution to (6) with sL = sR = 0, then (4) is also feasible and consequently,
imposition of the corresponding branching disjunction will make the LPs
related to each member of partition infeasible.

If one treats zl as a variable in formulation (6), then it becomes a nonlinear
program because of the presence of bilinear terms sLzl and sRzl. Hence, it
is not straightforward to get the maximum value of zl from this formulation.
We overcome this difficulty by solving a sequence of parametric (feasibility)
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MILPs of the form (6) by treating zl as a fixed parameter and choosing a
suitable value for δ. By doing a binary search over a range of values for zl

and solving (6) in each iteration of the search, one can obtain the maximum
value of the lower bound up to a desired level of accuracy. Additionally, if
x∗ is known to be a fractional optimal solution of the LP relaxation of the
original problem (P), then the constraint π0 < πx∗ < π0 + 1 may optionally
be added to formulation (6).

2.2 Branching on Thin Directions

The second criterion by which we judge a branching disjunction (π, π0) is by
the width of P in the direction π, defined to be maxx,y∈P πy−πx. Intuitively,
a branching disjunction with small associated width should be effective be-
cause it is likely that the volume of the union of the feasible regions of the
subproblems resulting from imposition of such a disjunction will be signifi-
cantly smaller than that of the polyhedron P. For a polytope Q, the minimum
width in the direction of any general branching disjunction is called the in-

teger width and is defined to be

w(Q) = min
π

max
x,y∈P

(πy − πx) s.t. π ∈ Zd × {0}n−d, π 6= 0.

Sebő [1999] showed that for a given polytope Q, the problem of determining
whether w(Q) ≤ 1 is NP-complete, even when Q is a simplex. It is also
known, from a result of Banaszczyk et al. [1999], that if Q is empty, then

w(Q) ≤ Cn
3

2 , where C is a constant. Derpich and Vera [2006] tried to approx-
imate the direction of the minimum integer width in order to assign priorities
for branching on variables. They showed that the number of subproblems can
be reduced when using this heuristic approach. Aardal and Eisenbrand [2004]
discussed the fact that branching on thin directions leads to polynomial time
algorithms for integer programs when the dimension is fixed. Hence, such
branching directions seem empirically to be useful in reducing the number of
subproblems to be examined during the solution procedure.

For a fixed π̂, the dual of the LP

max π̂y − π̂x

subject to:

Ax ≥ b (7)

Ay ≥ b,

can be written as
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min−qb − pb

subject to:

pA − π̂ = 0 (8)

qA + π̂ = 0

p, q ≥ 0.

Thus, the problem of finding w(P) can be equivalently expressed as the pro-
gram

min−qb − pb

subject to:

pA − π = 0

qA + π = 0 (9)

p, q ≥ 0

π ∈ Zn × {0}n−d, π 6= 0.

Note that if there exists a feasible solution to formulation (4) described in
the previous section, then w(P) < 1. However, the converse is not true.
Furthermore, if (P) does not have any continuous variables (i.e., if d = n)
and if P is not full dimensional then w(P) = 0. In such a case, one may end
up obtaining the same solution from the formulation (9) for each subproblem.
In order to overcome this difficulty, we modified the formulation to

min−qb − pb

subject to:

pA − π = 0

qA + π = 0 (10)

π0 + δ ≤ πx∗ ≤ π0 + 1 − δ

p, q ≥ 0

π ∈ Zn × {0}n−d

π0 ∈ Z,

where x∗ is an optimal solution to the current LP relaxation and δ is a suitably
small constant. The formulation (10) is only an approximation to finding
the integer width of P. However, it ensures that x∗ violates the generated
disjunction and also that π 6= 0.



Experiments with Branching using General Disjunctions 9

3 Computational Experiments

In order to test the effect of selecting branching disjunctions using the for-
mulations presented in the previous section, we performed a sequence of ex-
periments using ILOG CPLEX 10.2 with the default selection method for
branching disjunctions replaced by the ones previously described. Since our
goal was only to discern the effectiveness of employing the disjunctions and
not to test the efficiency of the method for determining them, our measure of
effectiveness was reduction in total number of subproblems required to solve
each instance. Thus, we are ignoring the time required to find the branching
disjunctions, which was substantial in some cases.

Initial experiments were carried out on 91 instances selected from MIPLIB
3.0 [Bixby et al., 1998], MIPLIB 2003 [Achterberg et al., 2006], and the Mit-
telmann test set [Mittelmann, 2008]. The initial set was then reduced to 30
representative instances in order to complete experiments in reasonable time.
Table 1 shows the size of these instances. The branching disjunctions were
imposed using the callback functions provided with the CPLEX callable li-
brary. All experiments were run on 64-bit machines, each with 16GB RAM,
8 1.86GHz cores and 4MB cache. In all experiments, the best known objec-
tive function value was provided as upper bound to the solver to ensure that
the solution procedure was not affected by the order in which subproblems
were solved or other extraneous factors related to improvement in the upper
bound.

Table 1 Number of constraints, variables, integer (including binary) variables and binary
variables in the 30 instances used in experiments.

Instance Cons Vars Ints Bins

10teams 231 2025 1800 1800
aflow30a 479 842 421 421

bell3a 123 133 71 39

blend2 274 353 264 231
egout 98 141 55 55

fiber 363 1298 1254 1254

flugpl 18 18 11 0
gen 780 870 150 144

gesa2 1392 1224 408 240
gesa2 o 1248 1152 672 336

gt2 29 188 24 0

harp2 112 2993 2993 2993
khb05250 101 1350 24 24

l152lav 97 1989 1989 1989

lseu 28 89 89 89

Instance Cons Vars Ints Bins

mod008 6 319 319 319
neos6 1037 8768 8340 8340
nug08 913 1632 1632 0

nw04 36 87482 87482 87482
p0548 176 548 548 548

pp08aCUTS 246 240 64 64

qnet1 503 1541 1417 1288
qnet1 o 456 1541 1417 1288

ran10x26 297 520 260 260
ran12x21 286 504 502 502

ran13x13 196 338 169 169

rout 291 556 315 300
stein45 331 45 45 45

vpm1 234 378 168 168

vpm2 234 378 168 168

In the first experiment, a pure branch-and-bound procedure was used—
other advanced techniques such as cutting planes, heuristics and probing were
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disabled. This allowed us to observe the effects of branching in isolation from
the mitigating effects of applying these additional techniques. In the first
experiment, a sequence of MILPs of the form (6) were solved to determine
the disjunction yielding the maximum increase in lower bound. During initial
testing, we concluded that optimizing over the entire set of general branch-
ing disjunctions was too time-consuming, as the MILPs (6) were sometimes
extremely difficult to solve. We therefore imposed the following limitations
for all tests.

1. π was restricted to the set {−M,−M + 1, . . . ,M}n. M = 1 was used in
the first experiment and higher values were tried in other experiments.

2. Each πi was replaced with two non negative variables substituting πi =
π+

i −π−

i , π+

i , π−

i ∈ [0,M ]. Such a transformation was used in order to make
it easier for the solver to find heuristic solutions to the MILP formulation.

3. The constraint
∑n

i=1
|πi| ≤ k was introduced to further restrict the search

space. k was set to 2, 5, 10, 15 and 20 in different experiments.
4. A time limit of t seconds was imposed for solving any one MILP for se-

lecting a branching disjunction. Additionally, a limit of 8t seconds was
imposed on the time allowed to be spent in total on selecting any single
branching disjunction. In the first experiment, t was set to 1000. Values of
50 and 100 were used in later experiments.

5. A total time limit of 20 hours was imposed for solving each instance. After
18 hours, only variable disjunctions were considered so that the problem
could be solved to completion in the remaining two hours.

In case the search for a branching disjunction failed (because of time limits
or because no solution was found), branching was carried out by consider-
ing variable disjunctions. Since it was not known how the selection rule of
CPLEX works, the LP relaxations of the subproblem resulting from the im-
position of each candidate variable disjunction were solved explicitly in order
to determine the optimal variable disjunction according to the criteria of
maximum increase in lower bound. In cases where it was found that there
was no variable disjunction whose imposition resulted in an increase in the
lower bound, the default variable branching scheme of CPLEX was invoked.
The number of subproblems solved when branching on general disjunctions
was compared against that when branching only on variable disjunctions.

The number of subproblems generated during solution of each instance in
the first experiment is shown in Table 2. Nk denotes the number of subprob-
lems created when the search was restricted by addition of the constraint∑n

i=1
|πi| ≤ k. Thus, N1 denotes the number of subproblems when branching

was done using only variable disjunctions (by selecting a variable disjunc-
tion after solving the resulting LP relaxations explicitly, as described above).
The value rk is defined to be N1

Nk

. Even though the experiments for Table 2
were carried out with 91 instances, only results for the 30 selected for further
investigation are reported, since other instances showed similar results.
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For all remaining experiments, the performance profiles of Dolan and Moré
[2002] are used to display compactly, the results comparing number of sub-
problems solved in various experiments. A point (α, β) in such a plot indicates
that a fraction β of all instances required less than α times the number of
subproblems required in the experiment achieving the lowest total overall.
Figure 1(a) shows a performance profile for the data in Table 2.

In the next two experiments, the time limit t imposed on the solution of
each MILP was reduced to 100 seconds and 50 seconds, respectively. This was
done to determine whether good branching disjunctions could still be found
in a shorter amount of time. Figures 1(b) and 1(c) show the performance
profile when t was fixed and k was varied.

The experiments described so far show that branching on disjunctions
that maximize the subsequent lower bound increase does in fact lead to a
significant reduction in the number of subproblems required to be solved. In
general, the number of subproblems is also reduced when the set of disjunc-
tions considered is larger (i.e., the number of non-zeros allowed in the vector
π is increased).

Figures 2(a)-2(e) show the effect of time spent in selecting a branching
disjunction when k is fixed. In general, when k is small, additional time
spent selecting a disjunction pays a bigger dividend than when k is large.
Figure 2(d) shows that when k = 15 the number of subproblems solved does
not vary much as t is increased. When k is set to 20, the performance with
t = 50 is nearly equivalent to that with t = 1000. One possible explanation is
that for large values of k, if a feasible solution to the branching disjunction
selection problem is not found quickly, then it is unlikely that a solution will
be found even after substantial additional search time. Thus, even though
branching on disjunctions that increase the lower bound appears promising,
the problem of selecting disjunctions becomes increasingly difficult with the
number of nonzero coefficients that are allowed in the description. This seems
to be the case for the instance vpm1 in particular (see Table 2)—when k is
changed from 15 to 20, the number of subproblems goes up from 20 to 5929,
presumably because the branching disjunction selection problem becomes so
difficult that only a few effective disjunctions are found within the time limit.

In the next experiment, cutting planes were enabled to see how the branch-
ing disjunction selection method would perform in a branch-and-cut algo-
rithm. In general, introduction of cutting plane generation should be expected
to reduce the total number of subproblems. The default settings of CPLEX
were used for cut generation, with the exception that MIR, Gomory, and
flow (cover and path) cuts were disabled because the presence of these cuts
caused numerical difficulties while solving some of the associated branching
disjunction selection problems. Figure 3(a) shows the effect of adding cuts
when t = 100 seconds and k has values 1, 2, and 5. It shows that enabling
cuts increases the performance of the solver significantly, even when branch-
ing on general disjunctions is used. Figure 3(b) shows how the performance
varies when cuts are enabled and k is varied from 1 to 20. Figure 1(b) shows
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Instance N1 N2 r2 N5 r5 N10 r10 N15 r15 N20 r20

10teams 115 106 1.08 28 4.11 18 6.39 12 9.58 12 9.58
aflow30a 36634 19408 1.89 19485 1.88 20388 1.8 24112 1.52 20271 1.81

bell3a 16387 14377 1.14 8771 1.87 588 27.87 259 63.27 259 63.27

blend2 304 251 1.21 231 1.32 188 1.62 165 1.84 209 1.45
egout 2246 1044 2.15 554 4.05 572 3.93 676 3.32 558 4.03

fiber 18412 7676 2.4 7612 2.42 3039 6.06 3358 5.48 3324 5.54
flugpl 394 176 2.24 6 65.67 10 39.4 6 65.67 6 65.67

gen 100 100 1 100 1 100 1 100 1 100 1
gesa2 33526 24433 1.37 21664 1.55 21849 1.53 21849 1.53 21778 1.54

gesa2 o 98550 24777 3.98 24435 4.03 24661 4 24661 4 24661 4

gt2 340 10 34 10 34 12 28.33 10 34 12 28.33
harp2 432010 157377 2.75 174656 2.47 183306 2.36 174454 2.48 179130 2.41

khb05250 738 606 1.22 594 1.24 588 1.26 614 1.2 618 1.19
l152lav 60 40 1.5 32 1.88 28 2.14 34 1.76 30 2

lseu 4058 2365 1.72 226 17.96 78 52.03 58 69.97 58 69.97

mod008 2840 1678 1.69 296 9.59 102 27.84 68 41.76 52 54.62
neos6 5989 2131 2.81 2131 2.81 2131 2.81 2131 2.81 2131 2.81

nug08 14 6 2.33 4 3.5 6 2.33 6 2.33 5 2.8
nw04 30 24 1.25 16 1.88 12 2.5 12 2.5 12 2.5

p0548 1050 500 2.1 466 2.25 566 1.86 565 1.86 565 1.86

pp08aCUTS 1301300 486340 2.68 147271 8.84 166943 7.79 168905 7.7 231527 5.62
qnet1 42 30 1.4 24 1.75 20 2.1 22 1.91 18 2.33

qnet1 o 154 126 1.22 94 1.64 77 2 80 1.93 92 1.67
ran10x26 68449 34693 1.97 23309 2.94 24716 2.77 23704 2.89 21520 3.18
ran12x21 494558 280551 1.76 219967 2.25 208948 2.37 225980 2.19 212910 2.32
ran13x13 124716 87495 1.43 74699 1.67 57825 2.16 66008 1.89 58789 2.12

rout 219322 79399 2.76 65201 3.36 61806 3.55 61226 3.58 57673 3.8

stein45 31086 31177 1 21238 1.46 20594 1.51 20601 1.51 20601 1.51
vpm1 263111 40952 6.42 145 1814.56 32 8222.22 20 13155.55 5929 44.38

vpm2 273994 145152 1.89 77504 3.54 67014 4.09 69515 3.94 73687 3.72
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Fig. 1 Performance profile for number of subproblems when t is fixed and k is varied.
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Fig. 2 Performance profile for number of subproblems when k is fixed and t (in seconds)
is varied.

that, in the absence of cuts, around 80% of instances required at least half as
many subproblems when branching on general disjunctions. When the cuts
were enabled, this fraction dropped to 50%. So the effect of branching on
general disjunctions is substantial even when the cuts are enabled, though it
is not as dramatic.

To see the effect of increasing M , we performed one experiment with M =
10, k = 15, t = 100. Figure 4(a) shows a comparison of performance of this
test against the others. The performance seems to be slightly worse than
when M = 1. However, it could not be established whether this was due
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Fig. 3 Performance profile for number of subproblems when cuts are added to the original
problem. t is fixed and k is varied.

to larger coefficients in some of the disjunctions or because of the increased
difficulty of the MILPs used to identify the disjunction. A similar experiment
was carried with M = 10, k = 15, t = 1000 to see the effects for the case when
more time was spent in finding disjunctions with M > 1. Figure (5(a)) shows
that there are no considerable effects from spending more time or changing
M . These experiments seem to suggest that k is probably a more important
parameter than either t or M .

Finally, we experimented with selecting a branching disjunction along a
“thin” direction by solving the formulation (10). Additional constraints, as
described for the criteria of maximizing lower bound above, were also added.
Figure 6(a) compares the number of subproblems solved when branching on
“thin” directions with other experiments. The performance is seen to be com-
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Fig. 4 Performance profile to compare the effect of branching for maximum lower bound
when M is increased to 10.
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Fig. 5 Performance profile to compare the effects of changing t when M in increased.

parable to that of branching on variable-disjunctions. One plausible reason
why branching along thin directions did not perform as well as other criteria
might be that most of the integer constrained variables in the test set were
binary variables. For such problems, the integer width of the polytope asso-
ciated with the LP relaxation of a subproblem is at most one. Furthermore,
there are typically a number of directions along which the width is one. So,
for the case when the minimum width of the polytope is one, the formulation
(8) selects any one of the many possible directions arbitrarily. One way to
overcome this problem would be to resort to other criteria when the mini-
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mum width is found to be one. However, we have not yet pursued this line
of research.
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Fig. 6 Performance profile to compare the effect of branching on “thin” directions against
other criteria.

4 Conclusion

In this paper, we considered the use of general disjunctions of the form “πx ≤
π0∨πx ≥ π0+1” in branch and bound and branch and cut. We formulated the
problem of selecting the optimal such disjunction using two different criteria
and reported on the effect of using the associated optimization models to
select branching disjunctions within the branch-and-bound framework of the
commercial solver CPLEX. The naive approach to formulating and solving
the branching disjunction selection problem described herein yielded mixed
results. The optimization problems that arose turned out to be extremely
difficult to solve using off-the-shelf software. Our experiments have given us
many ideas as to how improve the efficiency of solving these problems and
also how to develop fast heuristics for obtaining “good” disjunctions quickly.
However, this is future work and was not the focus of this initial study.

With regard to the effectiveness of using more general disjunctions, our
conclusion is that such an approach, if it can be made efficient, will undoubt-
edly yield improved solution times. We observed consistent substantial reduc-
tions in the number of subproblems required to be solved when using general
disjunctions for branching. We therefore conclude that this is a fruitful line of
future research, though much thought has to go into how to make solution of
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the formulations presented here efficient. Other interesting lines of research
concern the development of additional criteria for selection of branching dis-
junctions and the study of the relationship between disjunctions used for
generating valid inequalities and those used for branching. Both these topics
have been addressed already to some extent, but certainly deserve further
study.
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