
ON SELECTING DISJUNCTIONS FOR SOLVING MIXED

INTEGER PROGRAMMING PROBLEMS

by

Ashutosh Mahajan

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Doctor of Philosophy

in

Industrial and Systems Engineering

Lehigh University

May 2009



Approved and recommended for acceptance as a dissertation in partial fulfillment of

the requirements for the degree of Doctor of Philosophy.

Date

Dr. Theodore K. Ralphs

Dissertation Director

Accepted Date

Committee Members:

Dr. Theodore K. Ralphs, Chairman

Dr. Garth T. Isaak

Dr. Jeffrey T. Linderoth

Dr. Robert H. Storer

ii



Acknowledgments

I would like to thank Dr. Ted Ralphs for guiding me through this thesis and also through

the last five years of graduate studies. I also thank Dr. Jeff Linderoth for giving valuable

advice on several topics in the thesis, for introducing several computational tools to me

and for pulling me in to the world of Debian. I also want to thank other members of

committee, Prof. Garth Isaak and Prof. Bob Storer, for their constructive feedback and

for raising interesting questions from different topics of this thesis. I gratefully acknowledge

COR@L Lab and HPC-Lehigh for providing software and hardware resources necessary

to undertake the experiments described here. Finally I would like to thank the faculty,

staff and fellow graduate students of the Industrial and Systems Engineering Department

for making my graduate studies at Lehigh a truly wonderful experience.

iii



Contents

Acknowledgments iii

Contents iv

List of Tables vii

List of Figures viii

Abstract 1

1 Introduction 4

1.1 Notation and Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Disjunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 The Branch-and-Bound Algorithm . . . . . . . . . . . . . . . . . . . 12

1.3.2 The Cutting-Plane Algorithm . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Branching and Generating Valid Inequalities . . . . . . . . . . . . . . . . . . 18

1.4.1 Branching Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.2 Valid Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5 Set up for Computational Experiments . . . . . . . . . . . . . . . . . . . . . 27

1.6 Outline of Thesis and Contributions . . . . . . . . . . . . . . . . . . . . . . 28

iv



2 Theory of general disjunctions 30

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Selecting Branching Disjunctions . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.1 Maximizing Bound Improvement . . . . . . . . . . . . . . . . . . . . 32

2.2.2 Minimizing Integer Width . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Complexity of Selecting Branching Disjunctions . . . . . . . . . . . . . . . . 37

2.4 Generating Split Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4.1 Maximum Violation . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4.2 Maximum Bound Improvement . . . . . . . . . . . . . . . . . . . . . 54

2.5 Complexity of Generating Split Inequalities . . . . . . . . . . . . . . . . . . 56

2.6 Disjunctions for Separating Two Points . . . . . . . . . . . . . . . . . . . . 59

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3 Computational Methods for Branching 66

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 Solving MIP Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 Using Disjunctions with Only Two Variables . . . . . . . . . . . . . . . . . 80

3.4 Improving Branching on Variables . . . . . . . . . . . . . . . . . . . . . . . 88

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4 Computational Methods for Valid Inequalities 98

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2 Selecting C-G Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3 Selecting Split Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.4 Cut or Branch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5 Conclusions and Future Research 114

v



A Instances 123

vi



List of Tables

3.1 List of 30 instances used in formulation-based experiments. . . . . . . . . . 70

3.2 Number of nodes (Ni) in branch and bound tree and the ratio ri = N1
Ni

for

selected instances when t = 1000 seconds. The criterion for selecting the

branching disjunction is to maximize the lower bound. . . . . . . . . . . . . 73

3.3 List of 55 instances shortlisted as reasonably sized problems for branch-

and-bound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.4 List of 74 instances shortlisted as reasonably sized problems for branch-

and-cut. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.1 Time (in seconds) and number of nodes used when the same disjunctions

are used for branching (bnb) and for generating valid inequalities in the

root node(bnc). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.1 Number of constraints, variables, integer variables, binary variables and

non-zero coefficients in the 177 instances used in experiments. . . . . . . . 123

A.2 Number of LPs solved and time taken when using Algorithm 3.1 (1) and

Algorithm 3.2 (2) in the root node. . . . . . . . . . . . . . . . . . . . . . . 128

A.3 Number of generated valid C-G inequalities and the gap closed. . . . . . . . 129

A.4 Number of generated valid split inequalities and the gap closed. . . . . . . . 134

vii



List of Figures

1.1 Branch-and-bound algorithm, as described by Nemhauser and Wolsey [1988] 14

1.2 Branch-and-cut algorithm, as described by Nemhauser and Wolsey [1988] . 16

1.3 A branch-and-bound tree depicting a solution procedure for solving prob-

lem (1.10). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 A cutting-plane procedure for solving solving problem (1.10). . . . . . . . . 19

2.1 Illustration of two cases described in Proposition 2.6.1 that are possible for

a line segment T between two points x1, x2. . . . . . . . . . . . . . . . . . . 64

3.1 A branch and bound tree to prove the infeasibility of problem (3.1). A

number in parentheses denotes the optimal value of the associated LP re-

laxation. (inf) denotes that the associated LP is infeasible. . . . . . . . . . 68

3.2 Performance profile for number of subproblems when t = 1000s and k is

varied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3 Performance profile for number of subproblems when t = 100s and k is varied. 75

3.4 Performance profile for number of subproblems when t = 50s and k is varied. 75

3.5 Performance profile for number of subproblems when k is fixed and t (in

seconds) is varied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.6 Performance profile for number of subproblems when cuts are added to the

original problem. t is fixed and k is varied. . . . . . . . . . . . . . . . . . . 78

viii



3.7 Performance profile to compare the effect of branching for maximum lower

bound when M is increased to 10, t = 100 seconds. . . . . . . . . . . . . . . 79

3.8 Performance profile to compare the effects of changing t when M in in-

creased, t = 100 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.9 Performance profile to compare the effect of branching on “thin” directions

against other criteria, t = 100 seconds. . . . . . . . . . . . . . . . . . . . . . 80

3.10 Performance profile comparing the performance of Algorithm 3.1 (evaluate-

all) and Algorithm 3.2 (with-elimination) in terms of number of LPs solved

in the root node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.11 Performance profile comparing the performance of Algorithm 3.1 (evaluate-

all) and Algorithm 3.2 (with-elimination) in terms of time taken in the root

node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.12 Performance profile comparing the time taken by Algorithm 3.2 (with-

elimination) against formulation based branching with parameter t = 1000, 100

and 50s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.13 Performance profile comparing the nodes used by Algorithm 3.2 (with-

elimination) against formulation based branching with parameter t = 1000s, 50s

and also strong branching on variables. . . . . . . . . . . . . . . . . . . . . 90

3.14 Performance profile of time taken in branch-and-bound when the strong

branching variable is chosen using the single-variable variant of Algorithm 3.2

(with-elimination), that of Algorithm 3.1 (evaluate-all) and inbuilt function

of CPLEX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.15 Performance profile of number of calls to dual-simplex in branching for

instances in Table 3.3 for the same experiment as in Figure 3.14. . . . . . . 93

3.16 Performance profile of the same experiment as Figure 3.14 when the in-

stances are limited to those listed in Table 3.3. . . . . . . . . . . . . . . . . 93

ix



3.17 Performance profile of time taken in branch-and-cut when the strong branch-

ing variable is chosen using the single-variable variant of Algorithm 3.2

(with-elimination), that of Algorithm 3.1 (evaluate-all) and strong branch-

ing function of CPLEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.18 Performance profile of time taken in branch-and-cut for same experiment

as in Figure 3.17 for instances listed in Table 3.4 . . . . . . . . . . . . . . . 95

3.19 Performance profile of number of calls to dual-simplex procedure in branch-

ing in same experiment as Figure 3.18 for instances listed in Table 3.4 . . . 96

3.20 Performance profile of time taken in branch-and-cut for instances listed in

Table 3.4(with CPLEX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.1 Plot of number of C-G inequalities generated and the gap closed by them. . 103

4.2 A flowchart depicting the procedure used in the experiments for generating

split inequalities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3 Plot of number of split inequalities generated and the gap closed by them. . 109

x



Abstract

Mixed integer linear programs (MIPs) offer a flexible way to model a variety of real-world

problems. In this thesis, we undertake a comprehensive study of “general disjunctions”

that are a fundamental concept underlying most solution techniques for MIPs, with the

aim of extending the current understanding of the theory of these disjunctions and also of

developing novel ways of using them so as to enhance the performance of current state of

the art MIP solvers.

Solving MIPs is difficult both theoretically (it lies in the class of so called NP-hard

problems) and in practice as well. Two algorithms that have been most successful in

solving MIPs are the “branch-and-bound” and the “cutting-plane” algorithm. The concept

of valid disjunctions, which are logical conditions that will be satisfied by any feasible

solution is fundamental to both these algorithms. In branch-and-bound, one recursively

imposes valid disjunctions on the problem to create smaller “subproblems” and solves the

LP relaxations of these subproblems until a solution is found or the problem can be shown

infeasible. The cutting-plane algorithm works on the principle that any inequality valid

for each subproblem resulting from the imposition of a given disjunction is also valid for

the original MIP. Such valid inequalities are iteratively added until an optimal solution

is exposed or the feasible region can be shown to be empty. The performance of both

algorithms thus greatly depends on which valid disjunctions are selected and imposed at

each step.
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In this thesis, we consider the problem of selecting disjunctions from a rich class

that we call “general disjunctions”. Our work is divided into two parts: theory and

computation. In the first part, we analyze the computational complexity of finding the

“optimal” disjunction based on specific criteria. We show that the problem is in general

NP-hard, i.e., this problem is theoretically as difficult as solving the original MIP. We

also show that the problem of selecting a general disjunction remains NP-hard when

several natural restrictions are imposed. These results lead to analogous results for the

branch-and-bound and the cutting-plane algorithm: the problem of selecting a general

disjunction that maximally improves the bound when used to branch and the problem of

finding an “elementary split inequality” that maximally improves the bound are bothNP-

hard. We also develop a polynomial-time algorithm that solves the separation problem

for the elementary split closure when the point to be separated lies on an edge (i.e., a one

dimensional face) of the feasible region of the LP relaxation.

In the second part, we perform several computational experiments to study the effect of

employing methods for finding an “optimal” general disjunction on the performance of the

branch-and-cut algorithm. We start by formulating the problem of finding an “optimal”

general disjunction as a MIP. In a branch-and-bound setting, the solutions obtained from

exact solution of these problems lead to significant reduction in the number of steps in

the recursive procedure. When the set of allowed disjunctions is further restricted, one

can use explicit enumeration techniques to select the optimal disjunction. We develop a

procedure that eliminates poor choices of disjunctions in such a procedure by analyzing

the solutions obtained from other disjunctions. We observe in our experiments that the

use of this procedure reduces significantly the number of disjunctions that are evaluated

for two particular types of general disjunctions.

We also use the disjunctions obtained from the techniques described above to gener-

ate valid inequalities. We observe that the number of inequalities needed to improve the

bound is significantly fewer than that required by the existing techniques that generate the

2



“most-violated” inequalities. In all our experiments, the time required to select the dis-

junctions by attempting to solve the above-mentioned formulation using an exact method

was prohibitive. This underscores the importance of developing fast computational meth-

ods for solving these problems. To motivate future work, we describe some open problems

related to our work.
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Chapter 1

Introduction

A mixed integer linear program (MILP) is a mathematical programming problem of the

form:

minimize cx

subject to:

Ax ≥ b (1.1)

x ∈ Zd × Rn−d,

where, A ∈ Qm×n, c ∈ Qn, b ∈ Qm, m,n, d(≤ n) ∈ Z+ (see Section 1.1 for notation) are

given as inputs. Since this thesis looks only at problems that are linear (both objective

function and constraints are linear functions of the variable x), the term linear will be

omitted henceforth and MILPs will be referred to as MIPs. Mixed integer programming

offers a flexible framework within which one can model and analyze a variety of problems

encountered in science, engineering and management, such as designing systems, planning

operations, scheduling, logistics, location problems, modelling inventories, designing and

controlling networks, etc. MIPs also arise in several theoretical problems in graph theory

and statistics. Solution of a general mixed integer program is in general difficult and the
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problem is known to lie in the complexity class NP-hard. This means that as their size

increases, the difficulty of solving MIP instances using current state-of-the-art algorithms

can increase exponentially fast.

The two most commonly-used algorithms for solving MIPs, called, the branch-and-

bound algorithm and the cutting-plane algorithm implicitly enumerate the set of all values

that can be assumed by the integer variables. Both these enumeration schemes derive

from a divide-and-conquer paradigm and their performance is greatly influenced by the

way in which the search space is iteratively partitioned.

In this thesis, we develop and analyze new techniques for partitioning the search space

using logical disjunctions with the aim of enhancing the performance of the branch-and-

bound and the cutting-plane algorithm. When d = 0, formulation (1.1) does not have any

integer-constrained variables. Such a program is called a linear program (LP). If such a

problem is formed by dropping the integer-restrictions for a given MIP, then it is called

the LP relaxation of the MIP. An LP relaxation can be solved much more efficiently than

the MIP from which it was derived and hence can be used for an approximate analysis of

the partitions created in the enumerative search.

Branch-and-bound is an enumeration technique first proposed by Land and Doig [1960].

This algorithm generates a bound on the optimal value of the MIP by solving an LP relax-

ation of the given problem. If the optimal solution obtained from solving this relaxation

is feasible for the given MIP, then it is also an optimal solution for the MIP. Otherwise,

the feasible region of the MIP is partitioned by imposing a logical disjunction and the

process is repeated recursively on each of the resulting smaller problems, which we refer

to henceforth as subproblems. The partitioning procedure is traditionally called branch-

ing. Nemhauser and Wolsey [1988, pg. 357] show that the branch-and-bound algorithm is,

under mild conditions on the inputs and branching scheme, sufficient to find an optimal

solution of a given MIP or to show that there is none in a finite number of steps.

Even though the branch-and-bound algorithm is, under mild conditions, sufficient

5



to solve MIPs, naive implementations do not perform well in practice. An alternative

algorithm that can be used to solve MIPs is the cutting-plane algorithm which was first

introduced by Gomory [1958]. In this algorithm, an LP relaxation of the given problem

is first solved to obtain a lower bound on the optimal solution of the MIP. Then valid

inequalities are iteratively added to tighten the relaxation. Valid inequalities are those

linear constraints that are satisfied by all feasible points of the given MIP. These may

not however be satisfied by all feasible points of the LP relaxation, in which case the

inequalities are also called cutting planes. In the cutting-plane algorithm, valid inequalities

are usually selected in such a way that the optimal solution of the LP relaxation is cut off

from the feasible region of the given MIP. The resulting tighter LP can be re-solved to

obtain a possibly tighter lower bound. Almost all methods for generating valid inequalities

for general MIPs are derived from “disjunctions” like those used for branching in branch-

and-bound. Thus, the choice of disjunction can be critical for the performance of these

algorithms as well.

Most MIP solvers use a combination of branch-and-bound and cutting-plane algo-

rithms. Such an algorithm is called a branch-and-cut algorithm. A more detailed de-

scription of this algorithm is provided in Section 1.3. The performance of branch-and-cut

algorithms has improved substantially in the last decade due to both improvements in

available computational resources, and the development of more effective heuristic tech-

niques for tightening relaxations and guiding the search [Bixby et al., 2000]. Even though

all known implementations of the algorithm take exponential time in the worst case, they

perform much better than this on average. This is possible because of the development

of powerful techniques applied during each stage of the algorithm: efficient branching

schemes for making the search faster, procedures for generation of valid inequalities, gen-

eration of good upper bounds through primal heuristics, enumeration through heuristic

search procedures as well as tightening of relaxations through preprocessing and probing

6



techniques. Each of these techniques can require making a good choice among many pos-

sible alternatives. However, making this good choice can be time-consuming and may be

as difficult as the original problem itself.

This thesis looks at the problem of making such a choice for two fundamental tech-

niques used in branch-and-cut: branching and generating valid inequalities. Since both

these techniques rely on the selection of an underlying disjunction, a considerable portion

of this thesis is devoted to the study of disjunctions. In particular, we study the computa-

tional complexity of several decision problems related to selecting disjunctions and show

that these lead to similar results for both branching and generation of valid inequalities.

These problems are then formulated as mathematical programs and computational exper-

iments are carried out to understand the effects of employing exact solution methods for

these selection problems in a branch-and-cut framework. We also try to understand the

trade-offs in approximating these formulations. Control mechanisms that can be used to

control the level of approximation at which these techniques can be used, are developed

and tested. The main goals of this research can be summarized as:

1. Study the theory of disjunctions as the underlying principle for both branching

decisions and generating valid inequalities within a branch-and-cut framework.

2. Formulate and analyze the computational complexity of the problems for selecting

disjunctions for both branching and generation of valid inequalities.

3. Perform computational studies of the effect on the performance of the branch-and-

cut algorithm of solving such selection problems to optimality.

4. Develop new heuristics for solving problems related to selecting disjunctions.

In the next section, we begin by describing the notation used throughout this thesis.

We explain the concept of a valid disjunction in Section 1.2. In Section 1.3, we describe

the branch-and-bound and the branch-and-cut algorithm and also explain the concepts of

7



1.1. NOTATION AND TERMINOLOGY

branching and generating valid inequalities. We survey the existing literature on branching

and generation of valid inequalities in Section 1.4. Section 1.5 contains the description of

the set up used for our computational experiments. Finally, in Section 1.6, we provide an

outline of the thesis and summarize our contributions.

1.1 Notation and Terminology

This section describes the notation used in rest of the thesis. Scalars and one-dimensional

vectors are represented in lowercase italics, e.g., d, α, m, x. The context makes clear the

distinction between a vector and a scalar. The set of natural numbers will be denoted

by N, that of real numbers by R, that of integers by Z and that of rational numbers

by Q. The sets of real, rational and integer vectors of dimension n ∈ N are represented

by Rn,Qn,Zn respectively. For a given set S, S+ denotes the set: {x ∈ S | x ≥ 0}. The

notation dte and btc refer respectively to the floor and ceiling of the scalar t.

Matrices are represented by uppercase letters: A,B, etc. The ith element of an n-

dimensional (for some n ∈ N) vector x is represented as xi where i ∈ {1, 2, . . . , n}. Sim-

ilarly, aij refers to the element in the ith row and jth column of a matrix A. Sets are

represented by uppercase letters: S, T , etc. Elements of countable sets will usually be

denoted by lowercase letters with subscripts: si, ti, etc. If, however, the elements of the

set are themselves vectors, we will denote the elements as ai, si, etc.

Throughout the thesis, a MIP is assumed to be of the form (1.1), where m ∈ Z+, n ∈
Z+, A ∈ Qm×n, b ∈ Qm, c ∈ Qn, d ∈ Z+, d ≤ n are given as inputs. Non-negativity and any

other bounds on the variables, if present, are assumed to be included in the constraint set

Ax ≥ b. Index set I = {1, 2, . . . , d} will be used to denote the set of indices of variables

that are constrained to take integer values only. These variables are sometimes referred

to as integer variables. Similarly, variables that are allowed to take non-integer values

are referred to as continuous variables. Index set C = {d + 1, d + 2, . . . , n} is used to

8



1.2. DISJUNCTIONS

denote the set of indices of these variables. When the variables are restricted to the set

{0, 1}d × Rn−d, the instance is called a mixed binary program (MBP). When n = d, the

resulting instance is called a pure integer program or just an integer program (IP). If for

a given IP, all variables are restricted to the set {0, 1}n, then it is also called a binary

program (BP).

Polyhedra and polyhedral sets are represented by uppercase calligraphic characters like

P,L, etc. The convex hull of a set P is denoted by conv(P). The set S = {x ∈ Zd×Rn−d |
Ax ≥ b} will be used to denote the set of points feasible to a given MIP (1.1). A general

disjunction will be represented as (π, π0) or, more descriptively, as πx ≤ π0∨πx ≥ π0, x ∈
Rn where π ∈ Zd × {0}n−d, π0 ∈ Z. These concepts are described in Section 1.3. A valid

inequality for a MIP of the form (1.1) with associated feasible region S will be denoted by

an ordered pair (α, β) where α ∈ Qn, β ∈ Q, meaning that the relation αx̃ ≥ β is satisfied

for any x̃ ∈ S.

1.2 Disjunctions

Since both the branch-and-bound and the cutting-plane algorithm are fundamentally

based on the concept of valid disjunctions for MIPs, we describe this in detail before

describing the two algorithms. A disjunction in its most general form is a logical operator

that results in true whenever one or more of its operands are true. It is one of the ba-

sic operators used for describing satisfiability problems and constraint logic programming

problems. In the context of linear systems, we say that a disjunction is an operator on

a countable set of systems of inequalities, much like those in formulation (1.1), that re-

sults in true if and only if at least one of the systems has a feasible solution. We write a

disjunction over a given set S as

∨

h∈Q
Ahx ≥ bh, x ∈ S (1.2)
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1.2. DISJUNCTIONS

where Ah ∈ Qmh×n, bh ∈ Qmh , n ∈ N, mh ∈ N, h ∈ Q and Q is an index set, and say that

the disjunction is true if and only if there exist x̃ ∈ S, h ∈ Q such that Ahx̃ ≥ bh. The set

of all points x ∈ S for which the disjunction (1.2) is true, i.e.,

⋃

h∈Q
{x ∈ Rn | Ahx ≥ bh}. (1.3)

is called a disjunctive set.

The set of feasible points of a MIP in form (1.1) can be viewed as a linear system of

inequalities with a disjunction because the constraint x ∈ Zd × Rn−d can be expressed as

a disjunction. Using the fact that for a countable index set Q
{

x ∈ Rn | Ax ≥ b,
∨

h∈Q
Ahx ≥ bhx

}
=

{
x ∈ Rn |

∨

h∈Q
(Ax ≥ b, Ahx ≥ bhx)

}
, (1.4)

where Ah, bh are defined as above, we can conclude that the feasible region of a MIP can

be expressed as a single disjunction (with a possibly infinite number of operators).

We call a set {x ∈ S | Ahx ≥ bh}, h ∈ Q associated with a disjunction of the

form (1.2) a subset of the disjunctive set (1.3). In theory, the feasible region of any MIP

can be expressed in the form (1.3). However, the fact that |Q| in such an expression could

be unbounded makes it intractable to use such an expression to solve the MIP directly. In

order to mitigate the effects of a large value of |Q|, both branch-and-bound and cutting-

plane algorithms resort to using disjunctive sets, the union of whose subsets contains (but

is not necessarily the same as) the feasible region of the given MIP. We call a disjunction

whose associated disjunctive set satisfies the above condition a valid disjunction. Thus, a

disjunction of the form (1.2) is said to be valid for a MIP of the form (1.1) if

{x ∈ Zd × Rn−d | Ax ≥ b} ⊆
⋃

h∈Q
{x ∈ Rn | Ahx ≥ bh, Ax ≥ b}. (1.5)

Balas [1998] provide an excellent investigation of several properties of the convex hull of

10
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the union of subsets obtained from valid disjunctions, when they are available, and also

establish some important theoretical results for MBPs. For each subset {x ∈ Rn | Ah ≥
b, Ax ≥ b}, h ∈ Q, we associate the following subproblem P h

minimize cx

subject to:

Ax ≥ b (1.6)

Ahx ≥ bh

x ∈ Zd × Rn−d,

which is obtained by adding the constraints obtained from the disjunction to the original

MIP.

Selection of valid disjunctions whose imposition can lead to a fast solution for a given

MIP is the main topic of research in this thesis. We limit our attention to disjunctions of

the form

πx ≤ π0 ∨ πx ≥ π0 + 1, x ∈ Rn (1.7)

where π ∈ Zn, π0 ∈ Z, πi = 0, i ∈ C. This disjunction is always valid for any MIP of the

form (1.1) because all elements of Zd × Rn−d satisfy the disjunction. Such disjunctions

will henceforth be represented by the notation (π, π0). The subsets associated with such

a disjunction are

{x ∈ Rn | Ax ≥ b, πx ≤ π0} and {x ∈ Rn | Ax ≥ b, πx ≥ π0 + 1} (1.8)

The reason for restricting our study to disjunctions of this form is two-fold. First,

almost all existing methods for branch-and-bound and cutting-plane algorithms can be

11



1.3. ALGORITHMS

described (see Section 1.3) in terms of generation of such disjunctions. The preliminary

studies of Andersen et al. [2007] and Cornuéjols and Margot [2009] are an exception, but

even these consider only disjunctions defined by two constraints. Second, even the problem

of selecting “optimal” disjunctions from the set of all disjunctions of the form (1.2) are, as

shown in Chapter 2, theoretically difficult and very few practical methods are available to

identify these. So using such optimal disjunctions is already a leap forward in the ability

to solve MIPs.

When π is a unit vector or, in other words, when the disjunction is of the form

xi ≤ π0 ∨ xi ≥ π0 + 1, x ∈ Rn (1.9)

for some i = 1, 2, . . . , d and π0 ∈ Z, we call it a variable disjunction. In order to distinguish

variable disjunctions from other disjunctions of the form (π, π0), we will refer to the latter

as general disjunctions. While both branch-and-bound and cutting-plane algorithms use

general disjunctions, they do so in different ways. We now describe these algorithms.

1.3 Algorithms

The branch-and-cut algorithm is essentially a hybrid between the branch-and-bound and

the cutting-plane algorithm. Both the branch-and-bound and the cutting-plane algorithm

use general disjunctions to enumerate implicitly the elements of the feasible set, but they

use these disjunctions very differently. Therefore, we describe the two algorithms inde-

pendently, starting with the branch-and-bound algorithm.

1.3.1 The Branch-and-Bound Algorithm

Let P = {x ∈ Rn | Ax ≥ b} be the feasible region of the LP relaxation of the MIP (1.1) and

let S0 = P∩(Zd×Rn−d) be the set of feasible points of the MIP. Let zIP denote the optimal

value of the MIP. The branch-and-bound algorithm starts by solving the LP relaxation of

12
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the given MIP instance. The solution value of the LP relaxation, zLP , provides a lower

bound on zIP . Any feasible solution of the MIP instance provides an upper bound on zIP .

Branch-and-bound iteratively increases the lower bound and decreases the upper bound

until they are equal, at which point it terminates.

If the solution to the LP relaxation is also feasible to the MIP then it is an optimal

solution to the MIP as well and we are done. Otherwise, let R0 = P and let Ri ⊆
R0, i = 1, . . . , k denote k polyhedra such that ∪k

i=1Ri is a valid disjunctive set for S0 with

disjunctive subsets Ri, i = 1, 2, . . . , k. Let Si = (Zd × Rn−d) ∩ Ri and let P i denote the

problem of minimizing cx for x ∈ Si. Let zi
LP denote the optimal value of LP solved

on Ri using the given objective function. Then clearly z0
LP ≤ mink

i=1 zi
LP ≤ zIP . The

first of these inequalities may be strict if ∪k
i=1Ri does not include the optimal solution

to the LP relaxation of P 0. Hence, we may obtain stronger lower bounds by such a

partitioning. When this procedure is recursively applied to each of Si, i = 1, . . . , k, it

is called a branch-and-bound algorithm. The steps of branch-and-bound algorithm are

described in Figure 1.1. At each iteration of the algorithm, following important decisions

need to be made:

1. What disjunction should one use for branching in step 3 of the algorithm?

2. Which problem should be chosen from L in step 2?

Most implementations of the algorithm limit the number of subsets k at each stage to

two. In such a scheme, general disjunctions of the form (π, π0) are a natural candidate for

branching.

It is often convenient to represent the evolution a branch-and-bound algorithm graph-

ically by a branch-and-bound tree. In such a representation, each subproblem P i is asso-

ciated with a node of the tree, that is connected to k nodes, each denoting a subproblem

resulting from the imposition of a branching disjunction on P i. Thus, each node also

corresponds to an associated LP relaxation that is solved for that particular subproblem.

13
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1. Initialization: Set zLB → −∞, zUB → ∞. k → 0. Set candidate list L → {P 0},
where P 0 = P .

2. If L = φ, then the solution x0 that yielded zUB is optimal. If no such x0 exists,
then declare P infeasible.

3. Select and delete a problem P i from L. Solve the LP relaxation of P i to obtain
the optimal value zi

LP . Let xi
LP be the optimal solution.

4. If the LP is infeasible, or if zi
LP ≥ zUB, then go to Step (2). If LP solution is

feasible to P and zi
LP < zUB, then zUB → zi

LP . Delete all such P j from L that
have zj

LP ≥ zUB and go to step (2). Otherwise go to step (5).

5. Branch: Create k subsets (by adding linear inequalities) of the selected MIP such
that each feasible point of the selected P i is in one of the subsets and each feasible
point in any subset is a feasible point of the selected MIP. Add each of these k
MIPs to L.

6. Update zLB = min{zi
LP | P i ∈ L}. If zLB ≥ zUB, stop. Otherwise, go to step

(2).

Figure 1.1: Branch-and-bound algorithm, as described by Nemhauser and Wolsey [1988]
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Figure 1.3 provides an illustration of such a tree for the example problem (1.10) described

later.

1.3.2 The Cutting-Plane Algorithm

The cutting-plane algorithm works in a different way. An LP relaxation of a given MIP

of form (1.1) is first solved to get a lower bound zLP on the optimal solution value zIP .

Let R0 = P be the feasible region of the LP relaxation and let S0 = P ∩ (Zd × Rn−d). If

the optimal solution of the LP relaxation (say x0
LP ) is also feasible for the MIP, then it

is an optimal solution of the MIP. Otherwise, one can introduce a valid inequality that is

satisfied by all points of S0 but not x0
LP . Such a valid inequality for S0 is traditionally

called a cutting plane. If a valid disjunction of form (1.2) is available for a given MIP (1.1),

then any inequality that is satisfied by each of the |Q| subsets associated with disjunction

is also satisfied by convex hull conv(
⋃

h∈Q{x ∈ Rn | Ax ≥ b, Ahx ≥ bh}) and hence,

also by S0. Thus, an inequality satisfied by all subsets created by a disjunction is also

satisfied by S0. In Section 1.4.2, we will see that in fact, all inequalities that are valid for

S0 are also valid for some disjunction of S0. Thus, the identification of valid disjunctions

implicitly underlies the cutting-plane algorithm as well.

After augmenting the initial LP relaxation with the generated valid inequality, the

modified problem can be quickly re-solved by using the dual simplex method [Bertsimas

and Tsitsiklis, 1997, pg. 156]. The solution of the new LP, z1
LP satisfies: z1

LP ≥ zLP . This

process of adding a cutting plane and re-solving can be continued until either the optimal

solution obtained from the augmented LP is feasible to the MIP (in which case, it is an

optimal solution to the MIP) or the LP become infeasible in which case the MIP is also

infeasible.

At each iteration of the cutting-plane algorithm, following important decisions need

to be made:

1. What disjunctions should be used to generate valid inequalities?
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1. Let zLB and zUB be the lower and upper bounds on the optimal value z of the
given MIP P . Set zLB → −∞, zUB → ∞. k → 0. Set candidate list L → {P 0},
where P 0 = P .

2. If L = φ, stop. i → i+1. Choose an MIP problem P i from the list L and remove
it from L.

3. Solve the LP relaxation of P i to obtain the optimal value zLP . If LP is infeasible,
or if zLP ≥ zUB, go to step (2). If LP solution is feasible to the P and zLP < zUB,
then zUB → zLP and go to step (2).

4. Optionally, add cutting-planes to the LP. If cutting-planes are added, then go to
step (3). Otherwise go to step (5).

5. Branch: Create k subsets (by adding linear inequalities) of the selected MIP such
that each feasible point of the selected P i is in one of the subsets and each feasible
point in any subset is a feasible point of the selected MIP. Add each of these k
MIPs to L.

6. Update zLB = min{zi
LP | P i ∈ L}. If zLB ≥ zUB, stop. Otherwise, go to step

(2).

Figure 1.2: Branch-and-cut algorithm, as described by Nemhauser and Wolsey [1988]

2. Given a disjunction, which valid inequalities should be generated and how?

Unlike the branch-and-bound algorithm, there is only one LP under consideration and the

aforementioned decisions can affect its size, difficulty and the number of iterations and

hence the time required to solve the problem. Neither branch-and-bound nor cutting-plane

algorithms have been found in practice to be effective on their own. As such, most solvers

use an algorithm that combines both of them: the branch-and-cut algorithm. The steps of

a generic branch-and-cut algorithm are outlined in Figure 1.2. Under mild conditions on

the input data and the branching scheme employed, the branch-and-cut algorithm either

terminates and provides an optimal solution to the problem or proves that it is infeasible

[Nemhauser and Wolsey, 1988, pg. 357].
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Before proceeding further, we show by means of an example how both branch-and-

bound and the cutting-plane algorithm make use of disjunctions. Consider as an example,

the following integer program:

min−x1 − 4x2

2x1 − 2x2 ≥ −1

−x1 − 2x2 ≥ −2.5 (1.10)

−x1 + 4x2 ≥ 0

x1, x2 ∈ {0, 1}.

A branch-and-bound tree showing a solution procedure for this problem is shown in Fig-

ure 1.3. The root node of the tree corresponds to the LP relaxation of the problem. The

optimal value of this relaxation is −4.5. This initial lower bound increases to −4.0 after

branching on the disjunction x1 ≤ 0∨x1 ≥ 1, x ∈ R2. After branching, we get two smaller

problems denoted by nodes 2 and 3 in the figure. Each of these subproblems are solved

by branching on the disjunction x2 ≤ 0 ∨ x2 ≥ 1, x ∈ R2. The branch-and-bound tree

shown corresponds to solving seven LP relaxations, one for each subproblem, in order to

solve the problem.

Figure 1.4 shows pictorially the feasible region of the LP relaxation and the valid

inequalities that may be used to solve the problem. x0 = (0.5, 1) is the solution to the

original LP relaxation with solution value −4.5. Using the same disjunction x1 ≤ 0∨x1 ≥
1, x ∈ R2 for generating a valid inequality, we obtain x1− 4x2 ≥ −2 that is valid for both

subsets created by the disjunction. The objective value increases to −4.25 after adding

this inequality and x2 = (1, 0.75) is the optimal solution for the tighter LP relaxation.

Now imposing the disjunction x2 ≤ 0 ∨ x2 ≥ 1, x ∈ R2, we can similarly obtain the

valid inequality −x2 ≥ 0. Solving the LP relaxation after adding this inequality gives

the required optimal solution x2 = (0, 0). Thus, we obtain the solution using the same
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zLP= −0.5 zLP= −4.0

zLP= 0.0

zLP= −4.5

(inf) (inf) (inf)

2 3

7654

1

x1 ≥ 1x1 ≤ 0

x2 ≥ 1x2 ≤ 0 x2 ≤ 0 x2 ≥ 1

Figure 1.3: A branch-and-bound tree depicting a solution procedure for solving prob-
lem (1.10).

disjunctions, albeit in different ways.

1.4 Techniques for Branching and Generating Valid Inequal-

ities

Following the previous discussion on the important role disjunctions play in both branch-

and-bound and the cutting-plane algorithm, we briefly explain the problems related to

identifying such disjunctions and using them in either algorithm. We review the fact

that existing methods for both algorithms can be seen as special cases of using general

disjunctions and then highlight the relationship between branching and generating valid

inequalities.

1.4.1 Branching Methods

Suppose one is given a MIP instance of form (1.1) with set S0 of feasible points. When

branching, one seeks to create k MIP instances P 1, P 2, . . . , P k with the same objective

function as that of (1.1) and with sets of feasible solutions S1,S2, . . . ,Sk such that
⋃k

1 Si =
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x0 = (0.5, 1)

(0, 0.5)

x1 = (1, 0.75)

x1 − 4x2 ≥ −2

−x2 ≥ 0

x2 = (0, 0)

Figure 1.4: A cutting-plane procedure for solving solving problem (1.10).

S0. Even though any such branching rule may be used without affecting the correctness of

the algorithm, the choice of branching rule can nonetheless severely affect its performance

[Jeroslow, 1974]. It is trivial to construct branching rules such that the branch-and-bound

algorithm never terminates. Practically, most implementations branch in such a way that

S1,S2, . . . ,Sk are pairwise disjoint. The most common method of branching in such a way

is to branch on a hyperplane by choosing a general disjunction (π, π0) ∈ Zd ×{0}n−d ×Z,

creating two MIP instances P 1, P 2 where P 1 is constructed by adding the constraint
∑d

i=1 πixi ≤ π0 to the original MIP and P 2 by adding the constraint
∑d

i=1 πixi ≥ π0 + 1.

Even though any choice of (π, π0) is valid for partitioning S, a good choice is one that

makes P 1, P 2 easy to solve. Note that the ease of solving P 1, P 2 again depends on the

branching decisions and other techniques used to solve them. The ease or difficulty of

solving the problem is function of the difficulty of proving that the problem is infeasible

or of finding an optimal solution. A branching strategy can address either or both of

these criteria. Let f(S1, S2), denote a measure of the difficulty of solving the subproblems
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associated with feasible region S0. Then, the branching problem may be formulated as

min{f(S1, S2)}

s.t. S1 = S0 ∩ {x | πx ≤ π0} (1.11)

S2 = S0 ∩ {x | πx ≥ π0 + 1}

(π, π0) ∈ Zd+1.

Several different measures of f may be used and additional restrictions on the set (π, π0)

may be assumed. In fact, most of the existing branching techniques can be described using

the above formulation. We review these techniques next.

When the branching disjunctions are limited to unit vectors, i.e., π = ei, i ∈ 1, 2, . . . , d,

such a branching scheme is known as branching on variables or simply variable branching.

This is the simplest and most widely used branching scheme for solving MIPs. If the

optimal solution to the LP relaxation of the current subproblem is x̃, then a variable-

branching could be of the form xi ≤ bx̃ic ∨ xi ≥ dx̃ie for some i ∈ 1, 2, . . . , d and x̃i

fractional. The last condition ensures that x̃ is not a feasible solution in either subset

created by the disjunction. Several rules have been proposed to select a branching variable

out of the at most d available candidates. These are discussed next.

Dribeek [1966] suggested selecting a variable that would lead to maximum increase in

the lower bound for the subproblem after branching. They proposed doing a few dual-

simplex iterations to estimate this change. This technique later came to be known as

strong branching. Later, Benichou et al. [1971] introduced the idea of using pseudo-costs

to estimate this change in the lower bound. More specifically, suppose x̃k is the optimal

solution of the LP relaxation of subproblem k and that x̃k
i has a fractional value for some

i = 1, 2, . . . , d. Further, suppose that the objective function value of the LP relaxation

of the kth subproblem is zk and that this value changes to zk+1, zk+2 after branching on

variable i (i.e., imposing the disjunction xi ≤ bx̃ic ∨ xi ≥ dx̃ie, x ∈ Rn). Then the upper
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and lower pseudo-costs for variable i are defined as

PCLi =
zk+1 − zk

fk
i

, PCUi =
zk+1 − zk

1− fk
i

, (1.12)

where fk
i = x̃k

i − bx̃k
i c. Benichou et al. [1971] observed that the pseudo-cost of a variable

does not usually change by more than an order of magnitude throughout execution of

branch-and-bound algorithm and hence could be used to quickly estimate the changes in

objective function values. Thus, if zk is the objective value of the LP relaxation of the

current subproblem k then the objective values after branching on a variable, say i, could

be estimated as

ẑk+1
i = (PCLi)fk

i + zk, ẑk+2
i = (PCUi)(1− fk

i ) + zk. (1.13)

These pseudo-costs are initially unavailable and hence cannot be used when they are

not initialized. Eckstein [1994] suggest that when pseudo-costs of only a few variables are

available, the average of these could be used as an estimate. Linderoth and Savelsbergh

[1999] performed extensive experiments to show that even though selecting variables after

performing strong branching leads to much smaller branch-and-bound trees as compared

to those obtained when using pseudo-costs, the overall time taken is less when pseudo-

costs are used. They also suggest choosing the variable such that the convex combination

of the estimated objective function values is maximized, i.e., select a variable i such that

the expression

α min{ẑk+1
i , ẑk+2

i }+ (1− α)max{ẑk+1
i , ẑk+2

i } (1.14)

has the maximum value for a constant α ∈ (0, 1).

Achterberg et al. [2005] combined the ideas of strong branching and pseudo-cost
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branching into a new method called reliability-branching. They suggest performing ex-

plicit strong branching on each variable at least a fixed number of times, called the reli-

ability parameter, before using its pseudo-costs for selection. Their approach was shown

to perform much better than using pseudo-costs alone both in the terms of the size of the

tree and the time taken to solve. While most variable selection schemes have been limited

to the criteria of objective function value, a notable exception is the approach of Patel

and Chinneck [2007]. They select a variable on the basis of its coefficients in the so called

active constraints, or the constraints that are satisfied as equalities by the optimal solution

of the LP relaxation of the current subproblem. They show that their approach leads to

faster solution times and fewer nodes as compared to a state-of-the-art commercial solvers.

On the other hand, the criteria for selecting general disjunctions for branching have

primarily been based on the “integer width” of the feasible region associated with the LP

relaxation. Given a polytope P and a direction π ∈ Zn, the width of P along the direction

π, wπ(P) is given by

wπ(P) = max
x,y∈P

π(x− y)

and it integer width is

w(P) = min
π∈Zn,π 6=0

wπ(P)

In their survey, Aardal and Eisenbrand [2004] discussed the fact that when the dimension

is fixed, polynomial time algorithms for solving integer programs can be obtained by

branching on general disjunctions obtained by determining the so-called thin directions of

the feasible region, i.e., disjunctions along which the integer width of the feasible region

is small. These polynomial time algorithms are derived from the seminal work of Lenstra

[H.W. Lenstra, 1983] and mostly vary in the way they approximate the direction of the

LP relaxation. It has also been shown, for instance by Krishnamoorthy and Pataki [2006],

that certain specific problems can be solved “easily” if one branches on particular general

disjunctions.
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Some heuristics that may enhance the computational efficiency of branch-and-cut al-

gorithms by branching on general disjunctions have also been proposed recently. Derpich

and Vera [2006] obtain the direction of minimum width and then give score to each vari-

able, the score being higher if the direction of branching on that variable is closer to that

of minimum width. They then select a branching variable on the basis of this score. Two

commonly found special structures are exploited by Beale and Tomlin [1970] to generate

branching rules called SOS-1 and SOS-2. SOS-1 is used when only one variable out of a

given set of binary variables may take a non-zero value, while SOS-2 can be used when only

two adjacent variables from a given set of binary variables may be non-zero. Fischetti and

Lodi [2003] proposed an improvement heuristic called local-branching in which the branch-

ing disjunction is of the form
∑

i∈I1
xi −

∑
i∈I2

≤ k ∨∑
i∈I1

xi −
∑

i∈I2
≤ k + 1, x ∈ Rn,

where I1 ⊆ I, I2 ⊆ I are sets of the integer-constrained variables that are constructed on

the basis of the best known solution and the solution of the LP relaxation of the current

subproblem. Instead of solving it within the current branch-and-bound tree, the first sub-

problem is given to a MIP solver in the hope that it will find good solutions of that small

problem quickly.

Owen and Mehrotra [2001] developed a heuristic based on strong branching in which

they repeatedly add more variables to a disjunction with coefficients in {-1,0,1}, if by

doing so the lower bound is improved. Karamanov and Cornuéjols [2007] use the fact that

general disjunctions that are used to generate valid inequalities can be used for branching

as well. They select those general disjunctions as candidates for branching that could be

used to generate the Gomory Mixed Integer (GMI) inequalities (a type of valid inequality).

They then explicitly evaluate the improvement in objective function value to select from

a set of such disjunctions. Cornuéjols et al. [2008] try to improve the quality of GMI

disjunctions used above by employing a method similar to that used by Andersen et al.

[2005] to generate reduce-and-split inequalities.
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1.4.2 Valid Inequalities

In a fashion similar to finding the best disjunction for branching as described above, one

can formulate an optimization problem to generate valid inequalities. Suppose, for a

given MIP of the form (1.1) with feasible region S0 and with the feasible region of its LP

relaxation P, we generate a valid inequality (α, β) from a given class C of valid inequalities.

Let g(P, α, β, d) be the measure of difficulty of solving the integer program after adding

this inequality. Then the problem of selecting the best inequality may be written as

min g(P, α, β, d)

s.t. (α, β) ∈ C. (1.15)

Before describing some commonly used classes of valid inequalities, we first show that

an inequality (α, β) is valid for S0 if and only if it is valid for some disjunction of the

form (1.3) valid for S0. Since S0 ⊆ ⋃
h∈Q{x ∈ Rn | Ahx ≥ bh}, it trivially follows that if

(α, β) is a valid inequality for each subset created by a valid disjunction of S0, then it is

also valid for S0. We now show that conversely, all valid inequalities for S0 can be derived

from some disjunction. Since the variables xi, i = 1, 2, . . . , d can assume only integer values

in S0, the projection set T = {t ∈ Zd | ∃x ∈ S0 s.t. xi = ti, i = 1, 2, . . . , d} is countable.

Let Q be an index set of elements of T such that th ∈ Zd is the hth element of T for h ∈ Q.

Further, let Wh∈Q = {x ∈ S0 | xi = thi , i = 1, 2, . . . , d}. Clearly, S0 =
⋃

h∈QWh. It is also

easy to see that Wh is a polyhedral set for each h ∈ Q. This leads to the conclusion that

S0 can be represented as a disjunction
∨

h∈QWh and that any inequality that is valid for

S0 is also valid for
⋃

h∈QWh. Once it is realized that any valid inequality can be derived

from some disjunction of S0, we can study specific families of valid inequalities as though

derived from special restrictions of allowed disjunctions. We now describe two commonly

used such families.

Probably the oldest and also the simplest class of valid inequalities for MIPs are the
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Chvátal-Gomory (C-G) inequalities introduced by Gomory [1958]. Consider a pure IP

in the standard form (1.1) with the set of feasible solutions S0 and the associated LP

relaxation P. Then for any u ∈ Rm
+ , uA ≥ ub is trivially a valid inequality for P. For

the particular case when uA assumes integer values, uAx̃ must also be integer valued for

any point x̃ ∈ S0 since both uA, x̃ are integer valued. Consider, for such a u ∈ Rm
+ , the

general disjunction

uAx ≤ dube − 1 ∨ uAx ≥ dube, x ∈ Rn. (1.16)

Since this is a valid disjunction for S0, S0 ⊆ {x | uAx ≤ dube − 1} ∪ {x | uAx ≥ dube}.
Then, the observation that P ∩ {x ∈ Rn | uAx ≤ dube − 1} = φ leads to the result that

S0 ⊆ {x | uAx ≥ dube}. Hence, (uA, dube) is a valid inequality for S0 even though it may

not be valid for P (when ub 6∈ Z). Such an inequality is called a C-G inequality. So, an

inequality (α, dβe), α ∈ Zn, β ∈ R is a C-G inequality if (α, β) is a valid inequality for P.

We further say that such an inequality is called an elementary C-G inequality if (α, β) is

valid for P. Let P1
CG be the feasible region obtained after adding all possible elementary

C-G cuts to P. It is known that P1
CG is also a polyhedron [Cook et al., 1998] and is called

the elementary C-G closure of P. All inequalities that are valid for P1
CG but not for P

are said to have C-G rank one. In general, inequalities valid for P i+1
CG but not for P i

CG are

said to have rank i.

C-G cuts can also be interpreted in a slightly different manner. Consider again the

pure IP as above. Now consider the following LP

β = min
x∈P

αx (1.17)

for some α ∈ Zn. Clearly, (α, β) is a valid inequality for P. Hence, any point x̃ ∈ S0 must

satisfy αx̃ ≥ dβe. Cook et al. [1990] generalized this idea in the following way. Consider
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the following problem

β =min
x∈P

αx

s.t. πx ∈ Z (1.18)

where π ∈ Zn is fixed. Clearly all points in S0 must be feasible to the program (1.18) and

thus the inequality (α, dβe) is again valid for S0. Cook et al. [1990] relaxed this problem

to

β =min
x∈P

αx

s.t. πx ≤ π0 ∨ πx ≥ π0 + 1 (1.19)

where (π, π0) ∈ Zn+1. Thus, (α, β) is a valid inequality for P∩{x ∈ Rn | πx ≤ π0} and also

P ∩{x ∈ Rn | πx ≥ π0 +1} even when α 6∈ Zn. Since, (π, π0) is a valid general disjunction

for S0, it follows that (α, β) is a valid inequality for S0. Such an inequality is called a split

inequality. These are sometimes also referred to as disjunctive inequalities since they are

derived from some valid disjunction (π, π0). However, we will use the term split inequality

to refer to such inequalities to emphasize the fact that these were generated from some

general disjunctions. The elementary split closure P1
s is defined as the intersection of P

and all possible elementary split inequalities. Cook et al. [1990] showed that P1
s is also a

polyhedron.

It is easy to see, by considering the disjunction uAx ≤ bubc ∨ uAx ≥ dube, x ∈ Rn,

that C-G inequalities are a special case of split inequalities. In fact, many other known

classes of inequalities are also special cases of split inequalities: Gomory Mixed Integer

Inequalities [Nemhauser and Wolsey, 1988], Lift and Project Cuts [Balas et al., 1993],

Intersection Cuts [Balas, 1971], Mixed Integer Rounding Cuts [Nemhauser and Wolsey,

1990], reduce-and-split inequalities [Andersen et al., 2005] etc.
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Most practical methods for generating valid inequalities first generate a set of valid

inequalities using heuristics and then select the best ones from this set. The most com-

monly used criterion for selecting a valid inequality is the amount by which the current

LP solution violates the given inequality after the coefficients (α, β) have been scaled ap-

propriately. The higher the measure of violation, the “closer” it is likely to be to conv(S0)

and hence the “better” the inequality. We visit the criteria for selecting valid inequalities

in Chapter 4 in greater detail.

A valid disjunction (π, π0) ∈ Zn+1 that is used to derive a split inequality is a valid

disjunction for branching as well. Since the main goal of this research is to study the prob-

lem of finding good disjunctions, we will repeatedly use this relation between branching on

a general disjunction and generating split inequalities in our analysis and computational

experiments.

1.5 Set up for Computational Experiments

We now describe the set up used to perform computational experiments for identifying

and selecting general disjunctions for branching and generating valid inequalities. The

actual experiments are described in Chapter 3 and Chapter 4. The instances used in

the experiments have been collected from well-known libraries of MIP instances: MIPLIB

3.0 [Bixby et al., 1998], MIPLIB 2003 [Achterberg et al., 2006], the Mittelmann test set

[Mittelmann, 2008]. Our test set has 177 instances in total. Some characteristics of size

of these problems are described in Tables A.1. All experiments described in the thesis

were performed on these instances only. We used only a subset of these instances in

experiments that were too time consuming or when the experiment was not applicable

to certain instances (like, for instance, if the best known upper bound is provided as an

input, the LP relaxation becomes infeasible). In such cases, we list the subset of instances

used.
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All experiments were performed using a cluster of 64-bit machines, each with 16GB

RAM, 8 Intel-Xeon 1.86GHz cores and 4MB cache. Each node of the cluster was running

the CentOS operating system release-5. All tests were run by first submitting them to

the CONDOR job scheduler that ensured there was at most one test running on each

processor. The computational time reported in the experiments does not include the time

used by the scheduler. The implementations used the ILOG CPLEX 10.2 callable library

with appropriate callbacks, in order to override the default methods. The CoinUtils library

available through COIN-OR was used for creating and modifying the sparse matrices used

in the implementation. The program code was written in C and was compiled using the

GCC compiler, version 4.1.2 with optimization level “-O”.

1.6 Outline of Thesis and Contributions

We start in Chapter 2 by looking at the computational complexity of identifying the

“best” possible disjunction for a given subproblem in a branch-and-bound algorithm.

This requires a discussion about the criteria by which such disjunctions should be se-

lected. Through this analysis, we provide several results for the computational complexity

of choosing such disjunctions and also for that of generation of split inequalities. In

Chapter 3, we show the computational effectiveness of using the disjunctions generated

according to criteria outlined in Chapter 2. We also show effectiveness of some heuristic

methods developed to speed up the performance of such a branching scheme. In Chapter 4

we study the effects of generating valid inequalities using the disjunctions generated with

the techniques mentioned in Chapter 2 and compare them to other approaches used pre-

viously. Finally in Chapter 5, we describe some important questions for future research.

The salient contributions of this work can be summarized as follows.

1. We show that the problem of selecting a general disjunction such that the LP relax-

ation becomes infeasible after branching is NP-complete.
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2. We show that the above problem is NP-complete in the presence of several natural

restrictions on the original problem and/or on the set of disjunctions considered.

3. The above results are shown to result in the following observation: Proving that a

given inequality is an elementary split inequality is NP-complete. We also show

that this problem is different from the one of showing if the split rank of a given

inequality is one.

4. We show that as a consequence of previous results, the problem of finding an ele-

mentary split inequality such that the lower bound on the problem is increased by

the maximum is NP-complete.

5. We provide a polynomial time algorithm that either generates an elementary split

inequality to separate a given point on an edge of the LP relaxation of the problem

or shows that no such inequalities exist.

6. A MIP is formulated to find a disjunction that when used for branching will re-

sult in a given lower bound. Extensive computational experiments show that such

disjunctions can reduce drastically the size of branch-and-bound tree.

7. We develop a method to enumerate disjunctions that have two variables that is

orders of magnitude faster than explicit enumeration. We also use the same idea to

show that strong branching on variables can also be improved substantially.

8. Experiments described in Chapter 4 suggest that selecting C-G cuts that improve

the lower bound by the maximum rather than those that are violated the most by

the given solution of the LP relaxation.
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Chapter 2

Theory of general disjunctions

2.1 Introduction

In this chapter, we study the computational complexity of the problem of selecting “op-

timal” general disjunctions for solving MIPs using branch-and-bound and cutting-plane

algorithms. The motivation for studying the complexity of these problems is that such

models may be useful in guiding branching decisions and generating valid inequalities in

a practical context. In particular, these problems can, in principle, be solved at different

stages of the branch-and-cut algorithm to select the “optimal” disjunction for partition-

ing the feasible region associated with a subproblem. In Chapters 3 and 4, we show by

means of several experiments that the number of iterations for both branch-and-bound

and cutting-plane algorithms can be reduced significantly by employing such selection

procedures. However, the time required to solve these problems, when formulated as

straightforward optimization problems, using a generic solver, is prohibitively large.

In this chapter, we show that these problems in fact lie in the complexity class NP-

hard, even for binary MIPs and even when certain restrictions are imposed on the structure

of the disjunctions. Recall from Section 1.4.2 that the disjunctions used for branching

may also be used to generate valid inequalities, called split inequalities. We show that
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the problem of deciding whether a given inequality is an elementary split inequality can

be reduced to a problem related to determining an optimal branching disjunction. This

immediately leads to a proof that the problem of deciding whether a given inequality is

an elementary split inequality is NP-complete. It is well known that one can find in

polynomial time a split inequality (if any exists), that separates an extreme point of the

feasible region of the LP relaxation from the elementary split closure of the given MIP. It

is also well known that the same separation problem for any given point is NP-complete.

We show that a split inequality that separates any point on an edge of the feasible region

of the LP relaxation from the elementary closure can be found in time polynomial in the

size of inputs.

Before defining the problem of selecting a disjunction, it is necessary to describe the

criterion for it. In its simplest form, the efficiency of the branch-and-bound procedure de-

pends mainly on the number of subproblems generated. The goal of selecting a branching

disjunction is then to minimize the total number of subproblems to be solved. Liberatore

[2000] showed in the context of Satisfiability Problems (SATs) that the problem of finding

an optimal variable disjunction (according to the criteria of minimizing the overall size

of the search tree) is NP-hard. Since SATs are reducible, in polynomial time, to MIPs,

a similar result may be expected for the case of MIPs. In light of this, the problem of

selecting an optimal general branching disjunction appears to be difficult. The approach

taken by most solution procedures, and the one we shall take here, is then to evaluate

candidate branching disjunctions by assessing their effect using more myopic criteria. The

criterion of maximum bound improvement has been shown effective for selecting variable

disjunctions (see Section 1.4.1) and we will use the same for selecting general disjunctions

also. We will also compare this criterion with that of minimizing integer width, which has

often been used for selecting general disjunctions.

In a similar vein, one would like to use as few disjunctions as possible for generating

split inequalities in a cutting plane algorithm. The choice of branching disjunctions that
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lead to a small branch-and-bound tree may also be expected to generate valid inequalities

that can solve the problem using only a few iterations of the cutting-plane algorithm. We

therefore study the complexity of generating “best” valid inequalities based on the same

criterion of maximum bound improvement.

The remainder of the chapter is organized as follows. We describe the problem of

finding the optimal disjunction with respect to both the criteria of maximal bound im-

provement and minimum integer width in Section 2.2 and also provide MIP formulations

that could be used to obtain an optimal disjunction based on these criteria. The computa-

tional complexity of these problems is discussed in Section 2.3. The results obtained there

are then used to derive, in Section 2.4, analogous results for the problem of generating an

elementary split inequality. In Section 2.6 we construct a polynomial time algorithm to

separate points on an edge of an LP relaxation from the elementary split closure. Finally,

in Section 2.7, we present conclusions.

2.2 Selecting Branching Disjunctions

Before addressing the complexity of the problem of selecting a branching disjunction, we

first describe the problem of selecting a general branching disjunction to maximize the

bound improvement and show how to construct a sequence of MIPs to solve it. We then

show, using a similar approach, that the problem of selecting the thinnest integer direction

can be also formulated as a MIP.

2.2.1 Maximizing Bound Improvement

The problem of selecting a disjunction to maximize bound improvement can be stated as

follows. Consider the MIP (1.1) and assume that the associated polyhedron P is nonempty.

Let (π̂, π̂0) ∈ Zd × {0}n−d × Z1 be a given general disjunction. Then the LPs associated
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with the subproblems created after branching are

z∗L = min cx

s.t. Ax ≥ b

π̂x ≤ π̂0

and

z∗R = min cx

s.t. Ax ≥ b

π̂x ≥ π̂0 + 1.

(2.1)

Problem 1 (Greatest lower bound from branching on a general disjunction). Given

a mathematical program of the form (1.1), find (π̂, π̂0) ∈ Zd × {0}n−d × Z1 such that

min{z∗L, z∗R} is maximized, where z∗L, z∗R are as defined in (2.1).

Problem 1 is an optimization problem and the associated decision problem is as follows.

Problem 2 (Lower bound from branching on a general disjunction). Given a mathemat-

ical program of the form (1.1) and zl ∈ R, does there exist (π̂, π̂0) ∈ Zd × {0}n−d × Z1

such that the LP relaxation associated with each subproblem (2.1) created after branching

on (π̂, π̂0) has an optimal objective value of at least zl, i.e., min{z∗L, z∗R} ≥ zl?

Here, we describe a procedure to solve Problem 2 and then show in Section 2.3 that

the problem is NP-complete. We first consider a special case of this problem when the

feasible region of the LPs associated with each subproblem is empty (i.e., zl = ∞) and

then extend the results to the general case. Consider the following problem.

Problem 3 (Disjunctive infeasibility). Given a mathematical program of the form (1.1),

does there exist (π̂, π̂0) ∈ Zd×{0}n−d×Z1 such that the feasible region of the LP relaxations

associated with each subproblem (2.1) created after branching on (π̂, π̂0) is empty, i.e.,

min{z∗L, z∗R} = ∞?

The solution to Problem 3 does not depend upon the cost vector c because it is only

desired to prove that the problem (1.1) is infeasible. The problem of finding a desired

disjunction (π̂, π̂0) can be formulated as follows. Assume again that P is nonempty.

Suppose (π̂, π̂0) is chosen such that both LPs (2.1) become infeasible. Then consider the

following problems:
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ζ∗L = min π̂x

s.t. Ax ≥ b
and

ζ∗R = min−π̂x

s.t. Ax ≥ b.
(2.2)

The dual of each of the above two programs (2.2) can be written, respectively, as:

ζ∗L = max pb

s.t. pA = π̂

p ≥ 0

and

ζ∗R = max qb

s.t. qA = −π̂

q ≥ 0.

(2.3)

The programs (2.1) are infeasible if and only if ζ∗L > π̂0 and ζ∗R > −(π̂0 + 1). By using

this condition and combining the above two dual formulations, one can get the desired

formulation for giving an answer to Problem 3. More precisely, the LPs in (2.1) are

infeasible if and only if the system

pA− π = 0

qA + π = 0

pb− π0 > 0

qb + π0 > −1 (2.4)

p ≥ 0

q ≥ 0

(π, π0) ∈ Zd × {0}n−d × Z1,

has a feasible solution with π = π̂, π0 = π̂0.

Once we have a formulation that may be solved in order to answer Problem 3, we

can extend it in the usual way to address Problem 2 as well. More details about this

procedure are described in Chapter 3. Problem 3 is equivalent to that of finding (π̂, π̂0) ∈
Zd×{0}n−d×Z1 such that P ⊆ {x ∈ Rn | π̂0 < π̂x < π̂0 +1}. If such a (π̂, π̂0) exists, then
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the “width” P is less than one. In the next section, we study the problem of minimizing the

integer width of P and show that the general framework described above can be extended

to this problem as well.

2.2.2 Minimizing Integer Width

Assuming that P is full dimensional, the width of P in direction π is maxx,y∈P(πx− πy),

while the integer width of P is

w(P) = min
π

max
x,y∈P

(πx− πy), π ∈ Zd × {0}n−d, π 6= 0.

Then, a vector π that is obtained from the above optimization problem, along with a scalar

π0 = bπx∗c, where x∗ is the optimal solution of the LP relaxation (1.1), can be used to

determine a disjunction for branching. Sebő [1999] showed that the problem of determining

whether w(P) ≤ 1 is NP-complete, even when P is a simplex. It is also known, from a

result of Banaszczyk et al. [1999], that if P ∩ Zn−d is empty, then w(P) ≤ Cn
3
2 , where C

is a constant. Derpich and Vera [2006] approximate the direction of the minimum integer

width in order to assign priorities for branching on variables and use this to select variable

disjunctions.

The width of P in a given direction π̂ can be obtained by solving the LP

max π̂x − π̂y

s.t. Ax ≥ b (2.5)

Ay ≥ b.
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The dual associated with the LP (2.5) is

min − qb− pb

s.t. pA = π̂

qA = −π̂ (2.6)

p, q ≥ 0.

Therefore, the problem of finding w(P) can be written as

min − qb− pb

s.t. pA− π = 0

qA + π = 0 (2.7)

π 6= 0

π ∈ Zd × {0}n−d

p, q ≥ 0.

Since the disjunction (π, π0) is the same as the disjunction (−π,−π0 − 1), the condition

π 6= 0 can be replaced by the inequality
∑n

i=1 πi ≥ 1. Problem (2.7) can now be solved as

a MIP.

Note that if there exists a (π̂, π̂0) ∈ Zn+1 that satisfies the formulation (2.4), then

w(P) < 1. However, the converse is not true. To see this, consider as an example

P = {x ∈ R2
+ | 3 ≤ 4x1 + 4x2 ≤ 5} and d = 2. Then, even though w(P) ≤ 1

2 < 1, (1.1)

is still feasible. Comparing formulations (2.4) and (2.7), one can see that (2.4) is more

constrained than (2.7). As a result, there may be some benefit to using solutions to the

formulation (2.4) to generate branching disjunctions over those of (2.7). A feasible solution

to formulation (2.4) guarantees that the LP relaxations associated with both subproblems
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created after branching are infeasible and therefore gives a short proof of infeasibility,

provided that such a short proof exists. Branching along a direction of minimum width

does not guarantee this. As an example, consider a MIP with feasible region {x ∈ Z2
+ |

7 ≤ 8x1 + 8x2 ≤ 9,−3 ≤ 4x1 − 4x2 ≤ 3}. Branching on the disjunction x1 ≤ 0 ∨ x1 ≥ 1

immediately makes LP relaxation of each subproblem infeasible while branching along

a direction of minimum width (w(P) = 0.25), x1 + x2 ≥ 2 ∨ x1 + x2 ≤ 1 results in

two subproblems out of which one still has a feasible LP relaxation and needs further

processing. Krishnamoorthy [2008] showed that, in general, branching along a direction

of minimum width need not result in a small branch-and-bound tree, even in higher

dimensions.

Even though there are some similarities in the formulations (2.4) and (2.7), it is not

easy to reduce the problem of finding w(P) to Problem 3. Therefore, we use a different

approach to address the complexity of the latter.

2.3 Complexity of Selecting Branching Disjunctions

For the case when (π, π0) is restricted to variable disjunctions only, Problem 3 can be

solved in time polynomial in the size of the input by solving the two LPs associated with

each of the n possible variable disjunctions. The following results show that the problem

becomes difficult in the case of general disjunctions. We first show that Problem 3 is

NP-complete. We then show that the problem remains NP-complete even when several

common restrictions are introduced.

Lemma 2.3.1. If (π̂, π̂0, p̂, q̂) is a feasible solution to (2.4), then π̂0 < p̂b ≤ −q̂b < π̂0 +1.

Proof. The first and last inequalities come directly from the formulation (2.4). Let ζ∗L =

minx{π̂x | Ax ≥ b}, ζ∗R = maxx{π̂x | Ax ≥ b}. Then ζ∗L ≤ ζ∗R. Also, p = p̂ and q = q̂

are feasible solutions to the dual programs (2.3). By using weak duality on the associated

LPs (2.2), we get that ζ∗L ≥ p̂b and ζ∗R ≤ −q̂b. Thus, π̂0 < p̂b ≤ ζ∗L ≤ ζ∗R ≤ −q̂b <
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π̂0 + 1.

We assume for the remainder of the section that the mathematical program (1.1) is a

pure integer program, i.e., that n = d. This assumption is made for notational convenience

only—the results are also valid for the case when d < n.

We first show that the Problem 3 is in the complexity class NP. If the matrices A, b

have integer entries only, then we claim that constraints p < 1, where 1 is the vector of all

ones, may be added to (2.4) without any loss of generality. In order to see this, suppose the

formulation (2.4) has a feasible solution with p = p̂, q = q̂, π = π̂, π0 = π̂0. Further suppose

that p̂i ≥ 1 for some i, 1 ≤ i ≤ m. Then p = p̂− ei, q = q̂ + ei, π = π̂ − ai, π0 = π̂0 − bi is

also a feasible solution. Here, ei is the ith unit vector and ai the ith row of the matrix A.

This process can be applied repeatedly until p is component-wise less than 1. If we assume

that p < 1, then |pb| ∈ [0,
∑m

i=1 |bi|). Also, using (2.4), |πj | ∈ [0,
∑m

i=1 |aij |), j = 1, . . . , n.

Using Lemma 2.3.1, this implies |π0| ≤ |pb| ≤ ∑m
i=1 |bi|. So, if the system (2.4) is feasible,

then a feasible solution may be expressed in size that is polynomial in the size of the input.

Also, given a (π̂, π̂0), one can determine whether a disjunction on (π̂, π̂0) will make the

LPs (2.1) infeasible in time that is polynomial in the size of the input by solving the two

linear programs. This shows that Problem 3 lies in the complexity class NP.

Before further addressing the complexity of Problem 3, we consider the same problem

applied to a system of linear Diophantine equations in place of the system of form (1.1).

Suppose we are given a system of linear Diophantine equations of the form,

Ax = b

x ∈ Zn. (2.8)

Such equations can be solved in time polynomial in the size of the input [Nemhauser and

Wolsey, 1988, pg. 191]. A branching disjunction (π̂, π̂0) that can make the associated LP

relaxations of (2.8) infeasible can be shown, by using the approach above, to satisfy (along
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with a suitable p̂, q̂) the system

pA = π,

−qA = π,

pb > π0, (2.9)

−qb < 1 + π0, and

(π, π0) ∈ Zn+1.

We claim that the system (2.9) can be solved in time polynomial in the size of the input.

The system of Diophantine equations (2.8) is infeasible if and only if there exists a λ such

that λA ∈ Zm and λb 6∈ Z [Nemhauser and Wolsey, 1988, pg. 191]. Further, if (2.8) is

infeasible, then such a λ can be found in polynomial time. In such a case, p = −q =

λ, π = λA, π0 = bλbc is a feasible solution to (2.9). Conversely, suppose that (2.8) has a

feasible solution x0. Such a feasible solution can be found in polynomial time. Then for

any (π, π0) ∈ Zn+1, πx0 = pAx0 = pb and πx0 = −qAx0 = −qb. Since πx0 ∈ Z, there

is no π0 ∈ Z such that π0 > πx0 and π0 < πx0 + 1. Thus, in this case, the existence

of the solution x0 is sufficient to show that (2.9) is infeasible. So a feasible solution for

the system (2.9) can be found or it can be shown that no such solution exists in time

polynomial in the size of the input.

Now consider the problem (1.1) again (recall the assumption that n = d). We just have

shown that the problem of finding λ ∈ Rm such that λA ∈ Zn, λb 6∈ Z is easy. Existence

of such a λ is a necessary condition for the feasibility of a given program of the form (2.4).

To see this, suppose p = p̂, π = π̂, π0 = π̂0 are feasible for (2.4) and substitute λ = p̂.

Then λA = π̂ ∈ Zn, but π̂0 < λb < π̂0 +1. Existence of such a λ is not, however, sufficient

for feasibility of (2.4). For instance, consider the set: P ∩ Z2 = {x ∈ Z2 | 3x1 + 6x2 ≥ 2}
and λ = 1

3 . Clearly λA ∈ Z2, λb 6∈ Z. Still, P ∩ Zn has at least one feasible point (1, 0).

This provides a hint that Problem 3 may not be easy.
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We now show that Problem 3 is NP-complete by reducing the well-known number

partitioning problem to Problem 3. The Number Partitioning Problem PARTITION is

defined as follows

Problem 4 (PARTITION , [Garey and Johnson, 1979]). Given a finite set S and a size

ai ∈ Z+ for each i ∈ S. Is there a subset K ⊆ S such that
∑

i∈K ai =
∑

i∈S\K ai?

Proposition 2.3.1. Problem 3 is NP-complete.

Proof. The proof is a modification of the approach used by Sebő [1999] for the problem

of finding integer width. Consider the Problem 4 above, which is known to be NP-

complete. Let n ∈ N, S = {1, 2, . . . , (n − 1)}, ai ∈ Z+, i ∈ S be inputs for Problem 4.

Let s = 1
2

∑
i∈S ai. An instance of Problem 4 can be answered “yes” if and only if there

exists a set K ⊆ {1, 2, . . . , n − 1} such that
∑

i∈K ai = s. Since multiplying each ai by

4 results in a problem equivalent to Problem 4, it is assumed, without loss of generality,

that s ∈ Z+, s ≥ 2. Problem 4 can be reduced to Problem 3 as follows. Consider the

simplex Ps of points vi, i = 1 . . . n + 1 in n dimensions, with the coordinates of vi defined

as

vi
j =





1
2n if j 6= i, i = 1, 2, . . . , n,

1
2n + 1

2 if j = i, i = 1, 2, . . . , n,

aj if i = n + 1, j = 1, 2, . . . , n− 1,

−1
2

∑n−1
k=1 ak + 1

2 if i = n + 1, j = n.

So, v1 = ( 1
2n + 1

2 , 1
2n , 1

2n , . . . , 1
2n), v2 = (1

2 , 1
2 + 1

2n , 1
2n , . . . , 1

2n), . . . , vn = (1
2 , 1

2 , . . . , 1
2n +

1
2), vn+1 = (a1, a2, . . . , an−1,−s+ 1

2). We will show that the desired subset K exists if and

only if there exists (π̂, π̂0) ∈ Zn+1, such that Ps ⊆ {x | π̂0 < π̂x < π̂0 + 1}.
Suppose the desired subset K exists, i.e., K is a set such that

∑
i∈K ai = s. Let
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π̂i = 1, i ∈ K, π̂n = 1, π̂i = 0, i 6∈ K ∪ {n}, π̂0 = 0. Then, 0 < π̂vi < 1, i = 1, 2, . . . , n.

Also, vn+1π̂ = 1
2 . Since all vertices of Ps satisfy the condition π̂0 < π̂x < π̂0 + 1,

Ps ⊆ {x | π̂0 < π̂x < π̂0 + 1}. (π̂, π̂0) is then the required disjunction.

Conversely, suppose there exists some (π̂, π̂0) ∈ Zn+1 such that Ps ⊆ {x | π̂0 <

π̂x < π̂0 + 1}. Then, π̂0 < π̂vi < π̂0 + 1, i = 1, 2, . . . , (n + 1) and |π̂(vi − vk)| <

1, i = 1, 2, . . . , n, k = 1, 2, . . . , n. Substituting the coordinates of vi and vk, one gets

that | π̂i−π̂k
2 | < 1. Since π̂i, π̂k ∈ Z, this means that |π̂i − π̂k| ≤ 1 for each pair (i, k) ∈

{1, 2, . . . , n}2. So, π̂i ∈ {t, t + 1}, i = 1, 2, . . . , n for some t ∈ Z. Since disjunction (π̂, π̂0)

is equivalent to disjunction (−π̂,−π̂0 − 1), it can be assumed without loss of generality

that t ≥ 0. Let K = {i | π̂i = t + 1}. Substituting the coordinates of v1 and π̂ into the

inequalities π̂0 < v1π̂ < π̂0 + 1, one gets

π̂0 <
n∑

i=1

v1
i π̂i < π̂0 + 1

⇒ π̂0 <
n∑

i=1

π̂i

2n
+

π̂1

2
< π̂0 + 1

⇒ π̂0 <
t

2
+

∑

i∈K

1
2n

+
π̂1

2
< π̂0 + 1.

Since π̂1
2 ∈ { t

2 , t+1
2 }, the only integer value of π̂0 that satisfies the above condition is π̂0 = t.

Thus π̂ ∈ {t, t + 1}n, π̂0 = t. Also, K = φ would mean that π̂0 < t < π̂0 + 1. This is not

possible for any integers t, π̂0. Hence K is not empty. The condition π̂0 < π̂vn+1 < π̂0
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implies:

π̂0<
n∑

i=1

vn+1
i π̂i < π̂0 + 1

⇒ π̂0<
n−1∑

i=1

π̂ia
i − π̂ns +

π̂n

2
< π̂0 + 1

⇒ t < t
n−1∑

i=1

ai +
∑

i∈K

ai − π̂ns +
π̂n

2
< t + 1

⇒ t < 2ts +
∑

i∈K

ai − π̂ns +
π̂n

2
< t + 1.

Now there are two cases. Suppose π̂n = t. Then the above condition implies that t <

ts +
∑

i∈K ai + t
2 < t + 1. This is not possible because s ≥ 2 and K 6= φ. Thus, π̂n must

equal t + 1. In this case, the above condition becomes:

t < 2ts +
∑

i∈K

ai − ts− s +
t + 1

2
< t + 1

⇒ t < (t− 1)s +
∑

i∈K

ai +
t + 1

2
< t + 1.

Since s ≥ 2 and K 6= φ, the only value that t may assume is t = 0. That means

0 <
∑

i∈K ai − s + 1
2 < 1. Thus

∑
i∈K ai = s and K is the required subset for the

Problem 4.

Thus, given a simplex Ps, the problem of finding (π̂, π̂0) ∈ Zn+1 is NP-complete. Since

Ps is a simplex, its description can be transformed into form (1.1) in time polynomial in

the size of the description of Ps. This completes the required proof.

Even though the above proof did not assume any restrictions on values of (π̂, π̂0), the

reduction from Problem 4 imposed the conditions π̂ ∈ {0, 1}n. This shows that several

restrictions of Problem 3 are also NP-complete. Some of these are listed below

Proposition 2.3.2. The following restrictions of Problem 3 are NP-complete.

42



2.3. COMPLEXITY OF SELECTING BRANCHING DISJUNCTIONS

1. Given a mathematical program of the form (1.1), does there exist (π̂, π̂0) ∈ {0, 1}n+1

such that the LP relaxation of both the subproblems (2.1) created after branching on

(π̂, π̂0) are infeasible.

2. Given a mathematical program of the form (1.1), does there exist π̂ ∈ {0, 1}n such

that the LP relaxation of both the subproblems (2.1) created after branching on (π̂, 0)

are infeasible.

3. Given a mathematical program of the form (1.1), does there exist π̂ ∈ {0, 1}n, π̂0 ∈ Z
such that the LP relaxation of both the subproblems (2.1) created after branching on

(π̂, π̂0) are infeasible.

4. Given a mathematical program of the form (1.1), does there exist π̂ ∈ Zn
+ such that

LP relaxation of both the subproblems (2.1) created after branching on (π̂, 0) are

infeasible.

5. Given a mathematical program of the form (1.1), does there exist π̂ ∈ Zn such that

the LP relaxation of both the subproblems (2.1) created after branching on (π̂, 0) are

infeasible.

6. Given a mathematical program of the form (1.1), does there exist π̂ ∈ {0, 1,−1}n, π̂0 ∈
Z such that the LP relaxation of both the subproblems (2.1) created after branching

on (π̂, π̂0) are infeasible. (This problem is mentioned because Owen and Mehro-

tra [2001] developed a greedy heuristic for the optimization version of this problem,

without addressing the complexity of the problem).

Proof. The proof of each of the above propositions follows directly from the proof of

Proposition 2.3.1 above.

If Q is a polytope, then the fact that Q ⊆ {x | π̂0 < π̂x < π̂0 + 1}, for some (π̂, π̂0) ∈
Zn+1, is sufficient to show that w(Q) < 1. The proof provided above settles the question
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of complexity of finding such a sufficient condition. If a program of form (1.1) has only

binary variables, i.e., it is of the form:

min cx

s.t. Ax ≥ b (Pb)

x ∈ {0, 1}n,

then the width of the associated polyhedron Pb is trivially at most one. The following

proposition shows that the problem of deciding whether there exists a disjunction (π̂, π̂0)

that will prove the infeasibility of a binary program is also NP-complete.

Problem 5 (Disjunctive infeasibility for binary programs). Given a mathematical program

of the form (Pb), does there exist a disjunction (π̂, π̂0) ∈ Zn+1, that proves infeasibility?

Problem 5 is a special case of Problem 3 and hence the proof of NP−completeness of

the latter follows from that of the former. However, we address the complexity of Prob-

lem 5 separately because the proof is easier to understand having seen that of Problem 3.

Proposition 2.3.3. Problem 5 is NP-complete.

Proof. The proof is similar to that of Proposition 2.3.1. Let n ∈ Z+, S = {1, 2, . . . , (n −
1)}, ai ∈ Z+, i ∈ S be inputs for an instance of Problem 4. We need to modify our previous

transformation because coordinates of the feasible region of P can only lie in [0, 1], while

ai ∈ Z+, i ∈ S. Let M =
∑

i∈S ai and m = 1
M . If each ai, i ∈ S is divided by M ,

then the problem of partitioning remains the same. Let ãi(= ai

M ) ∈ Q+, i ∈ S so that
∑

i∈S ãi = 1. The answer to an instance of Problem 4 is “yes” if and only if there exists

a set K ⊆ {1, 2, . . . , n− 1} such that
∑

i∈K ãi = 1
2 . Since each ãi is an integer multiple of

1
M , there is no K ⊆ S such that

∑
i∈K ãi ∈ [12 − 1

2M , 1
2) or

∑
i∈K ai ∈ (1

2 , 1
2 + 1

2M ]. This

observation will be useful later.
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Problem 4 can now be reduced to Problem 5 as follows. Let ε = 1
2M = m

2 . Consider

the convex hull, Ps, of points vi, i = 1 . . . n+3 in n+1 dimensions, where the coordinates

of vi are defined as

vi
j =





1
2n if j 6= i, j 6= n, j 6= n + 1, i = 1, 2, . . . , n− 1

1
2n + 1

2 if j = i, i = 1, 2, . . . , n− 1

0 if j = n, n + 1, i = 1, 2, . . . , n− 1

ãj if j = 1, 2, . . . , n− 1, i = n

1 if j = n, n + 1, i = n

ãj if j = 1, 2, . . . , n− 1, i = n + 1

1
2 − ε if j = n, i = n + 1

0 if j = n + 1, i = n + 1

ãj if j = 1, 2, . . . , n− 1, i = n + 2

0 if j = n, i = n + 2

1
2 − ε if j = n, i = n + 2

1
2 if j = n, i = n + 3

0 if j 6= n, i = n + 3

This means v1 = ( 1
2n + 1

2 , 1
2n , 1

2n , . . . , 0, 0), v2 = ( 1
2n , 1

2n + 1
2 , 1

2n , 1
2n , . . . , 0, 0) etc. vn−1 =

( 1
2n , . . . , 1

2n + 1
2 , 0, 0), vn = (ã1, ã2, . . . , ãn−1, 1, 1), vn+1 = (ã1, . . . , ãn−1,

1
2 − ε, 0), vn+2 =

(ã1, . . . , ãn−1, 0, 1
2 − ε), vn+3 = (0, 0, . . . , 0, 1

2 , 0). Clearly, Ps ⊆ {x ∈ Rn+1 | 0 ≤ xi ≤ 1, i =

1, 2, . . . , n}. It will now be shown that a K ⊆ S such that
∑

i∈K ãi = 1
2 exists if and only

if there exists (π̂, π̂0) ∈ Zn+1, such that Ps ⊆ {x | π̂0 < π̂x < π̂0 + 1}. Suppose K ⊆ S
such that

∑
i∈K ãi = 1

2 . Let π̂i = 1, i ∈ K, π̂n = 1, π̂n+1 = −1, π̂i = 0, i 6∈ K ∪ {n, n + 1},
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π̂0 = 0. Then, 0 < π̂vi < 1, i = 1, 2, . . . , n+3. Since all vertices of Ps satisfy the condition

π̂0 < π̂x < π̂0 + 1, Ps ⊆ {x | π̂0 < π̂x < π̂0 + 1}. (π̂, π̂0) is then the required disjunction.

Conversely, suppose there exists some (π̂, π̂0) ∈ Zn+1 such that Ps ⊆ {x | π̂0 <

π̂x < π̂0 + 1}. Then, π̂0 < π̂vi < π̂0 + 1, i = 1, 2, . . . , (n + 3). This also means that

|π̂(vi − vk)| < 1, i = 1, 2, . . . , n− 1, k = 1, 2, . . . , n− 1. Substituting the coordinates of vi

and vk, one gets: | π̂i−π̂k
2 | < 1. Because π̂i, π̂k ∈ Z, this means that |π̂i − π̂k| ≤ 1 for each

pair (i, k) ∈ {1, 2, . . . , n− 1}2. This means that π̂i ∈ {t, t + 1}, i = 1, 2, . . . , n− 1 for some

t ∈ Z. Let K = {i ∈ S | πi = t + 1}. Substituting the coordinates of v1 and π̂ into the

inequalities π̂0 < v1π̂ < π̂0 + 1, one gets:

π̂0 <
n+1∑

i=1

π̂i

2n
+

π̂1

2
< π̂0 + 1

⇒ π̂0 <
t

2
+

∑

i∈K

1
2n

+
π̂1

2
< π̂0 + 1.

Since π̂1
2 ∈ { t

2 , t+1
2 }, the only integer value of π̂0 that satisfies the above condition is π̂0 = t.

Thus, π̂ ∈ {t, t + 1}n, π̂0 = t. Also, K = φ would mean that π̂0 < t < π̂0 + 1. This is not

possible for any integers t, π̂0. Hence, K is not empty. The condition π̂0 < π̂vn < π̂0 + 1

implies:

π̂0 <

n−1∑

i=1

π̂iã
i + π̂n + π̂n+1 < π̂0 + 1

⇒ t < t
n−1∑

i=1

ãi +
∑

i∈K

ãi + π̂n + π̂n+1 < t + 1

⇒ π̂n+1 = −π̂n
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The condition π̂0 < π̂vn+1 < π̂0 + 1 implies:

t <

n−1∑

i=1

π̂iã
i + π̂n(

1
2
− ε) < t + 1

⇒ 0 <
∑

i∈K

ãi + π̂n(
1
2
− ε) < 1. (2.10)

The condition π̂0 < π̂vn+2 < π̂0 + 1 implies:

t < t +
∑

i∈K

ãi + π̂n+1(
1
2
− ε) < t + 1

⇒ 0 <
∑

i∈K

ãi − π̂n(
1
2
− ε) < 1. (2.11)

Finally, the condition π̂0 < π̂vn+3 < π̂0 gives:

t <
π̂n

2
< t + 1

⇒ π̂n = 2t + 1.

Since the disjunction (π̂, π̂0) is the same as the disjunction (−π̂,−π̂0 − 1), we assume

without loss of generality that π̂n ≥ 0. The condition π̂n = 2t+1 implies that π̂n ≥ 1, t ≥ 0.

These, along with the conditions K 6= φ,M > 3, and equation (2.10) imply that π̂n = 1.

This along with equations (2.10, 2.11) gives,

∑

i∈K

ãi <
1
2

+ ε and

∑

i∈K

ãi >
1
2
− ε.

These conditions, along with the choice of ε, imply respectively that
∑

i∈K ãi ≤ 1
2 and

∑
i∈K ãi ≥ 1

2 . Therefore,
∑

i∈K ãi = 1
2 and K is the desired subset of S.

To complete the proof, we show that a description of Ps in the form (Pb) can be
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obtained in polynomial time from the finite list of points v1, v2, . . . , vn+2. Note that the

convex hull of v1, v2, . . . , vn+2 is a simplex in (n + 1) dimensions (say Q), and can be

expressed in form (Pb) in time polynomial in the size of the input as follows. If the point

vn+3 ∈ Q, then Ps = Q. Otherwise, delete from Q any such inequalities that are violated

by vn+3. Call this description P ′. Consider each of the 1
2(n+1)(n+2) hyperplanes passing

through vn+3 and any n extreme points of Q. If all of the extreme points of Q lie on one

side of this hyperplane, add this to the description P ′. Once all such hyperplanes are

considered, the region P ′ is the same as Ps. This process takes time polynomial in the size

of the input and yields a description of Ps in form (Pb). The proof is now complete.

The proof provided above is not sufficient to prove a similar result for the restriction

of Problem 5 in which π ∈ {0, 1}n because one of the components of the vector π in the

proof above is restricted to the value of −1. However, the following proof shows that the

problem remains NP-complete even in the presence of this restriction. The proof uses

a reduction of the ONE-IN-THREE-3SAT problem [Garey and Johnson, 1979; Schaefer,

1978], which is known to be NP-complete, to this problem.

Problem 6 (ONE-IN-THREE-3SAT [Garey and Johnson, 1979]). Given a set U of vari-

ables and a collection C of clauses over U such that each clause c ∈ C has |c| = 3 and c

does not contain a negated literal. Is there a truth assignment for U such that each clause

in C has exactly one true literal?

Problem 7 (Disjunctive infeasibility of binary programs using 0-1 hyperplanes). Given a

mathematical program of the form (Pb), does there exist π̂ ∈ {0, 1}n, π̂0 ∈ Z such that the

feasible region of each LP associated with the subproblems (2.1) created after branching on

(π̂, π̂0) (with additional constraints x ∈ [0, 1]n) is empty?

Proposition 2.3.4. Problem 7 is NP-complete.

Proof. We reduce Problem 6 to Problem 7 as follows. Associate variables π̂i, i = 1, 2, . . . , n−
1 with each variable ui in U (where n = |U |+ 1). Let π̂i = 1 if ui is assigned TRUE in a
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truth assignment and π̂i = 0 otherwise. Clearly, an instance of Problem 6 has a required

truth assignment if and only if π̂ satisfies the following constraints,

∑

{i|ui∈c}
π̂i = 1, ∀c ∈ C

π̂i ∈ {0, 1}n (2.12)

Let Aπ̂ be the coefficient matrix associated with the above program (with elements aij = 1

if and only if clause i contains variable uj , 0 otherwise). If rank(Aπ̂) < rank(Aπ̂,1), then

the system (2.12) is infeasible and there does not exist any truth assignment for Problem 6.

Also, any such infeasibility can be detected in polynomial time by calculating the rank

of the above matrices. Hence, it may be assumed that rank(Aπ̂) = rank(Aπ̂,1). It

may also be assumed that the rows of Aπ̂ are linearly independent. Otherwise, one may

drop a redundant row from (2.12) (or equivalently, a redundant clause from Problem 6).

Using these facts, one can assume without loss of generality that |C| = rank(Aπ̂) =

rank(Aπ̂,1) ≤ |U | = n.

Consider the convex hull Ps of m = |C| + 1 points: vi, i = 1, 2, . . .m ∈ Rn. Let the

coordinate j, vi
j , of each point vi assume a value 0 if aij = 0 and a value 1

2 if aij = 1, i =

1, 2, . . . , m− 1, j = 1, 2, . . . , n. Let vi
n = 0, i = 1, 2, . . . , m− 1. Let vm be chosen such that

vm
j = 0, j = 1, 2, . . . , n − 1, vm

n = 1
2 . There exists a π̂ ∈ {0, 1}n such that Ps ⊆ {x ∈ Rn |

π̂0 < π̂x < π̂0 + 1} if and only if vi ∈ {x ∈ Rn | π̂0 < π̂x < π̂0 + 1}, i = 1, 2, . . . , m. This

is true if and only if (π̂, π̂0) satisfy the following conditions

π0 <
1
2

∑
uj∈c

π̂j < π0 + 1, c ∈ C

π0 <
1
2
π̂n < π̂0 + 1,
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or equivalently, if and only if (π̂, π̂0) satisfy the following conditions

∑
uj∈c

π̂j = 2π0 + 1, c ∈ C

π̂n = 2π̂0 + 1.

Since π̂ ∈ {0, 1}n, the above conditions are satisfied if and only if π̂0 = 0, π̂n = 1 and π̂

satisfies the system of equations (2.12). Hence, an instance of Problem 6 has a required

truth assignment if and only if Ps ⊆ {x | π̂0 < π̂x < π̂0 + 1} for some π̂ ∈ {0, 1}n. Since it

was assumed that the rows of Aπ̂ are linearly independent, the points vi are also linearly

independent. Hence, the dimension of Ps is exactly m − 1(= |C|). In order to obtain a

description of Ps in the standard form (1.1), one has to find |C| facets of Ps. This can be

done by making |C| sets, each with |C| − 1 extreme points of Ps and finding a plane that

passes through these. This can be done in time polynomial in the size of the input by

solving |C| systems of equations, each in |C| − 1 variables. These |C| facets can be used

to describe Ps in standard form (1.1). Thus, Problem 7 is NP-complete.

The complexity results for Problem 1 follow directly from those for Problem 3. In

particular, Problem 1 is NP−hard and remains so even when the restrictions described

in Proposition 2.3.2 are applied and even for the case of binary programs.

2.4 Generating Split Inequalities

Recall from Section 1.4.2 that given a MIP of the form (1.1) and the associated polyhe-

dron P, we say that an inequality (α, β) ∈ Rn+1 is an elementary split inequality for P
with respect to variables with indices i = 1, 2, . . . , d if both polyhedra {x ∈ P | πx ≤ π0}
and {x ∈ P | πx ≥ π0 + 1} (and hence also the union of these polyhedra) are subsets of

{x ∈ Rn | αx ≥ β} for some π ∈ Zd × 0n−d and π0 ∈ Z. Since such a (π, π0) is a valid

disjunction for (1.1), such inequalities are also valid for the problem (1.1). In this section,

50



2.4. GENERATING SPLIT INEQUALITIES

we study the problem of selecting disjunctions for generating split inequalities. The way

split inequalities are generated from a given disjunction is important in understanding this

question. This is discussed next.

When a general disjunction (π̂, π̂0) ∈ Zd×{0}n−d×Z is given, one may generate many

valid split inequalities from it. Any such valid inequality (α, β) must be valid for both the

following linear systems.

Ax ≥ b

π̂x ≤ π̂0

x ∈ Rn

and

Ax ≥ b

π̂x ≥ π̂0 + 1

x ∈ Rn.

(2.13)

Using the theory of duality for linear programming (see Hadley [1961], for instance), there

must exist multipliers uL, uR ∈ Rm
+ , sL, sR ∈ R+ such that the following conditions hold.

uLA− sLπ̂ = α

uLb− sLb ≥ β (2.14)

uRA + sRπ̂ = α

uRb + sRb ≥ β

Conversely, a split inequality (α̂, β̂) ∈ Rn+1 can be generated from a given disjunction

(π̂, π̂0) if the above system (2.14) is feasible for α = α̂, β = β̂. One can now find the

“best” split-inequality that can be generated from a disjunction (π̂, π̂0) by optimizing over

the polyhedral set described by (2.14).

Keeping formulation (2.14) in view, we now describe two criteria for selecting disjunc-

tions for generating split inequalities: the criterion of maximum violation that has been

used extensively in the past and the criterion of maximum bound improvement that we

previously used for generating branching disjunctions.
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2.4.1 Maximum Violation

One criterion commonly used for generating valid inequalities is that of maximum viola-

tion. Given x̂ ∈ Rn and a valid inequality (α, β), the violation of x̂ is defined as β − αx̂.

The vector x̂ usually arises as the solution of the LP relaxation of the MIP. This criterion

is based on the intuition that a maximally violated inequality would be “farthest” from

the optimal solution of the LP relaxation and hence should tighten it by the maximum

possible amount. Moreover, if for a given vector, the maximum violation after optimizing

over (2.14) turns out to be non-positive, then this is a proof that the point cannot be sep-

arated using the class of valid inequalities under consideration. The criterion of maximum

violation is hence useful both practically and theoretically and is thus used extensively

in the context of many classes of valid inequalities by, amongst others, Balas and Saxena

[2007] for split inequalities, Fischetti and Lodi [2005] for C-G inequalities, Balas et al.

[1996] for lift-and-project inequalities and Gu et al. [1998] for lifted-cover inequalities.

In the context of split inequalities, a split inequality (α, β) ∈ Rn+1 is equivalent to the

inequality (λα, λβ) for any λ > 0 and hence a maximally violated inequality is well-defined

only under a suitable normalization of α and β. We now define the problem of finding a

maximally violated elementary split inequality.

Problem 8. Given a mathematical program of the form (1.1), a point x̃ ∈ Rn and a

normalization scheme for defining valid inequalities, find an elementary split inequality

that violates x̃ by the maximum.

When a general disjunction (π̂, π̂0) is provided, one can solve the following Cut Gener-

ation Linear Program (CGLP) to find the most violated inequality that may be generated
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from that disjunction.

maxβ − αx̂

uLA− sLπ̂ − α = 0

uLb− sLπ̂0 − β ≥ 0

uRA + sRπ̂ − α = 0

uRb + sR(π̂0 + 1)− β ≥ 0 (2.15)

uL, uR ∈ Rm
+

sL, sR ∈ R+

α ∈ Rn, β ∈ R.

If the above program has solution with positive solution value, then one can scale the

variables arbitrarily to obtain an unbounded solution value. Normalization constraints as

mentioned above are hence required to generate an inequality that is usable.

Balas and Saxena [2007] propose a parametric MIP formulation that may be solved to

obtain a general disjunction that will yield a maximally violated inequality. Thus, they

use the criterion of selecting a disjunction that generates a maximally violated inequality.
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They formulate this problem as the program

maxβ − αx̂

uLA− sLπ̂ − α = 0

uLb− sLπ̂0 − β ≥ 0

uRA + sRπ̂ − α = 0

uRb + sR(π̂0 + 1)− β ≥ 0 (2.16)

uL, uR ∈ Rm
+ , α ∈ Rn

sL, sR ∈ R+, β ∈ R

π ∈ Zd × {0}n−d, π0 ∈ Z,

and introduce a normalization constraint sL + sR = 1. This reduces the above problem to

a parametric MIP with parameter sL ∈ [0, 1] and with sR = 1− sL.

2.4.2 Maximum Bound Improvement

We now describe the criterion of selecting disjunctions that will yield inequalities that

maximally improve the lower bound. Such a criterion has been described for selecting

disjunctions for branching and may thus be useful for generating valid inequalities as well.

In order to address the complexity of the problem of selecting such disjunctions, we first

need to point out the difference between a split inequality of rank one and an elementary

split inequality.

The elementary split closure of a MIP is the region formed by the intersection of P and

all elementary split inequalities of P with respect to xi, i = 1, 2, . . . , d. Cook et al. [1990]

showed that this closure is also a polyhedron. An inequality is said to have split-rank one

if it is valid for the elementary split closure of P but not for P. Thus all elementary split
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inequalities have split-rank at most one. Also, any inequality that is a convex combina-

tion of two elementary split inequalities has split-rank at most one. However, since two

different disjunctions may have been used to generate the two elementary split inequali-

ties thus combined, the convex combination of these inequalities may not necessarily be

an elementary split inequality, even though its rank is one. As an example, consider the

following system

x1 ≤ 0.8

x2 ≤ 0.8 (2.17)

x ∈ Z2.

The inequality x1 + x2 ≤ 0 has split-rank one with respect to (2.17) because it can be

obtained as a convex combination of the elementary split inequalities x1 ≤ 0 and x2 ≤ 0.

The inequality x1 + x2 ≤ 0 separates the points (1
2 , 0), (0, 1

2), (1
2 , 1

2), which are in the

associated polyhedron P, from the feasible region of (2.17). If this were an elementary

split inequality for P generated using a disjunction πx ≤ π0 ∨ πx ≥ π0 + 1, then the

disjunction (π, π0) should also separate the points (1
2 , 0), (0, 1

2), (1
2 , 1

2). So, (π, π0) should,

at least, satisfy the following three constraints:

π0 <
1
2
π1 < π0 + 1

π0 <
1
2
π2 < π0 + 1 (2.18)

π0 <
1
2
(π1 + π2) < π0 + 1

π0, π1, π2 ∈ Z.

Since the system (2.18) is infeasible, there is no such disjunction and hence x1 + x2 ≤ 0

is not an elementary split inequality even though it is a convex combination of two such

inequalities.
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The above distinction between a rank one split inequality and an elementary split

inequality is important to distinguish between the following two problems.

Problem 9. Given a mathematical program of the form (1.1) and K ∈ R, does there exist

a single elementary split inequality for (1.1) such that the LP relaxation bound achieved

after adding it is at least zl?

Problem 10. Given a mathematical program of the form (1.1) and K ∈ R, does there

exist a split inequality of rank one for (1.1) such that the LP relaxation bound achieved

after adding it is at least K?

We will show in next section that Problem 9 can be answered yes if and only if there

exists a general disjunction (π̂, π̂0) such that min{cx | Ax ≥ b, π̂x ≤ π̂0} ≥ K and

min{cx | Ax ≥ b, π̂x ≥ π̂0 + 1} ≥ K. Thus it directly relates to our problem of selecting

a suitable disjunction. Also, Problem 10 that has been studied previously, seems to have

little relation with Problem 9.

2.5 Complexity of Generating Split Inequalities

Caprara and Letchford [2003] showed that the problem of determining whether a given

vector x ∈ Rn may be separated from the elementary split closure of P with respect to the

variables xi, i = 1, 2, . . . , d is NP-complete. Thus, Problem 8 is NP-hard. In order to

answer Problem 10, we have to optimize over the elementary split closure. It thus follows

from the equivalence of separation and optimization, that Problem 10 is NP-hard.

However, this does not imply anything about the complexity of Problem 9 or even of

the problem of showing that a given inequality is an elementary split inequality. We have

already seen that even if an inequality has split rank one, it may not be an elementary

split inequality. We now show that the complexity of these problems follows directly from

Proposition 2.3.1.
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Problem 11. Given a mathematical program of the form (1.1), is a given inequality (α, β)

an elementary split inequality for P with respect to the variables xi, i = 1, 2, . . . , d?

Proposition 2.5.1. Problem 11 is NP-complete

Proof. Consider the special case when α = 0, β = 1. Then αx ≥ β (or 0 ≥ 1) is a split

inequality for P if and only if there exists a disjunction (π̂, π̂0) such that the associated

LPs (2.1) are infeasible. By Proposition 2.3.1, the problem of finding such (π̂, π̂0) is

NP-complete.

In contrast, consider the case of Chvátal-Gomory (C-G) inequalities. Given a pure

integer program (1.1) with d = n, a C-G inequality for (1.1) is an inequality of the form

αx ≥ dβe, (2.19)

where α ∈ Zn and αx ≥ β is a valid inequality for the feasible region P of the LP relaxation.

Eisenbrand [1999] showed that the problem of separating a given vector x ∈ Rn from the

elementary C-G closure of (1.1) is NP-complete. Hence, the problem of deciding whether

a given inequality has C-G rank one or not is also, like for the case of split inequalities,

NP-complete. However, unlike split inequalities, we can decide whether a given inequality

(say αx ≥ δ, where α ∈ Zn, δ ∈ Z) is an elementary C-G inequality or not in polynomial

time by solving the LP

min αx

Ax ≥ b. (2.20)

Then, αx ≥ δ is an elementary C-G inequality for (1.1) if and only if the optimal solution

to (2.20) is strictly greater than δ − 1.

The above results seem somewhat surprising. On the one hand, the problem of deciding

whether the rank of a given inequality is one lies in the complexity class NP-complete for
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the case of both C-G inequalities and split inequalities. On the other hand, the problem

of deciding whether a given inequality is an elementary C-G inequality lies in complexity

class P, while the same problem for a split inequality lies in complexity classNP-complete.

We now provide the proof of complexity of Problem 9.

Proposition 2.5.2. Problem 9 is NP-complete.

Proof. Problem 9 can be shown to be equivalent to Problem 3. Suppose there is a dis-

junction, say (π̂, π̂0), such that the LP objective function value associated with each sub-

problem is at least K, i.e. (π̂, π̂0) is a solution to Problem 3. Then, cx ≥ K is a valid

inequality for both P ∩ {x | π̂x ≤ π̂0} and P ∩ {x | π̂x ≥ π̂0 + 1}. Therefore, cx ≥ K

is a valid elementary split inequality that when added to the LP relaxation makes the

objective function value at least K.

Conversely, suppose there exists an elementary split inequality, say (α, β), derived from

a disjunction (π̂, π̂0), such that the LP bound for the polytope P1 = P ∩ {x | αx ≥ β} is

at least K. Then cx ≥ K is a valid inequality for P1. This means that cx ≥ K is a valid

inequality for the two subsets of P1 : P ∪ {x | π̂x ≤ π̂0},P ∪ {x | π̂x ≥ π̂0 + 1} and hence

branching on the disjunction (π̂, π̂0) will push the LP bound to at least K.

The equivalence of Problem 9 and Problem 3 has been mentioned previously by, among

others, Karamanov and Cornuéjols [2007]. However, we still provide the proof in order to

complete a proof for Proposition 2.5.2. It is also well known that one can always find an

elementary split inequality (for instance, a Gomory mixed integer inequality) to separate

a given basic feasible solution of the LP relaxation in time polynomial in the size of the

input (see, for instance, Cornuéjols [2008]). However, the above problem of maximizing the

lower bound by adding a valid split inequality remains NP-hard even if an optimal basic

feasible point of P is provided as an input because the desired inequality must separate

the set of all points that have lower objective values regardless of if they are basic feasible

58



2.6. DISJUNCTIONS FOR SEPARATING TWO POINTS

solutions.

2.6 Disjunctions for Separating Two Points

In Section 2.3 we showed that Problem 3 is NP-complete. However, a similar problem of

proving the same result when the given polytope P is just a point is trivial. In order to

identify the “simplest” polytopes for which the problem of identifying the required general

disjunction is theoretically difficult, we look at the problem that is a natural extension of

the single-point case. Given a line segment between two points x1, x2 ∈ Qn\Zn, we would

like to know how difficult is it to show that it does not contain any integer points and

what is the minimum number of disjunctions required to prove this. These questions are

answered in the following discussion. The consequences of these results for the problem

of separation of points that lie on an edge of the feasible region of the LP relaxation from

the split closure is also discussed.

Problem 12. Given two distinct points x1, x2 ∈ Qn, let T be the convex hull of x1, x2,

i.e., T = {x ∈ Rn | x = λx1 + (1− λ)x2, λ ∈ [0, 1]}. Does T contain a point z ∈ Zn?

Proposition 2.6.1. Let x1, x2, T be defined as in Problem 12.

1. T does not contain integer points if and only if there exists (π̂, π̂0) ∈ Zn+1 such that

T ⊂ {x ∈ Rn | π̂0 < π̂x < π̂0 + 1}.

2. Problem 12 can be solved in time polynomial in size of the inputs.

Proof. The proposition trivially holds true if at least one of x1, x2 ∈ Zn. Assume that

x1 6∈ Zn, x2 6∈ Zn. Let L be the set of points contained in the line that passes through

x1, x2. Then L = {x ∈ Rn | x = x1 + γ(x2 − x1), γ ∈ R}. If L does not contain any

z ∈ Zn, then neither does T . Further, one can find in time polynomial in size of input,

(π̂, π̂0) ∈ Zn+1 such that L ⊂ {x | π̂0 < π̂x < π̂0 + 1} [Nemhauser and Wolsey, 1988,

pg. 191].
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If L contains some integer points, then let z1 = x1 +γ1(x1−x2), z2 = x2 +γ2(x2−x1),

with the condition that γ1, γ2 ≥ 0 and that they are the smallest such values of γ1 and γ2.

These conditions mean that z1 (respectively, z2) is an integer point on L that is closest

to x1 (x2) in the direction away from x2 (x1). Now consider the system of Diophantine

equations

πz1 − π0 = 0

πz2 − π0 = 1 (2.21)

π ∈ Zn, π0 ∈ Zn+1.

We propose that there exists a point z ∈ T ∩Zn if and only if the system (2.21) is infeasible,

i.e., if and only if z1, z2 lie in two different subsets associated with some valid disjunction

(π, π0). This is proved as follows. Clearly, if z ∈ T ∩ Zn, then there exists a β ∈ (0, 1)

such that z = βz1 + (1− β)z2. Then, βπz1 − βπ0 + (1− β)πz2 − (1− β)π0 = πz− π0 ∈ Z
but 0β + (1 − β) 6∈ Z. Hence, the system (2.21) is not feasible. On the other hand

if system (2.21) is not feasible then there exist [Nemhauser and Wolsey, 1988, pg. 191]

β1, β2 ∈ R such that

β1z
1 + β2z

2 ∈ Zn, (2.22)

−β1 − β2 ∈ Z (2.23)

0β1 + β2 6∈ Z (2.24)

From relation (2.22) and relation (2.23), we get β2(z2 − z1) ∈ Zn. Let β2 = f2 + bβ2c.
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f2 ∈ (0, 1) from (2.24). It now follows that

β2(z2 − z1) ∈ Zn

⇒(f2 + bβ2c)(z2 − z1) ∈ Zn

⇒f2(z2 − z1) ∈ Zn

⇒f2(z2 − z1) + z1 ∈ Zn

⇒f2z
2 + (1− f2)z1 ∈ Zn.

The last relation implies that when the system (2.21) is infeasible, there exists a z ∈ T ∪Zn.

This completes the proof of part 1.

In order to prove part 2, when L has some integer points on it, we only need to show

that one can find z1, z2 used in the proof above in time polynomial in the size of inputs.

The problem of finding an integer point on L can be written as a system of Diophantine

equations. Let z0 be such a point on L. All integer points on L then satisfy

z = z0 + C2ζ, ζ ∈ Z,

where, C2 ∈ Zn. Both z0 and C2 can be found in time polynomial in size of the system of

Diophantine equations, which are in turn polynomial in size of the input for Problem 12.

Now one can do binary search over ζ to find the nearest integer point to x1 away from x2

on L. Similarly, one can find z2. This completes the proof for part 2 of the proposition.

The proof above shows that given a line segment T between two points x1, x2 ∈ Qn,

there can only be two cases: either (a) there is an integer point in T as in figure 2.1(a),

or (b) T can be proven infeasible using a single disjunction as shown in figure 2.1(b).

Further, it can be determined in time polynomial in size of inputs, which of these two

cases holds. These results can be applied to the problem of finding split inequalities that

separate points on an edge of the LP relaxation of a MIP from its elementary split closure.
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Consider the problem

Problem 13. Given a MIP with the feasible region of LP relaxation P, two adjacent

extreme points v1, v2 of P and a point x̂ ∈ Qn on the edge joining v1, v2, find an elementary

split inequality that separates x̂ from the split closure of P or show that none exists.

Proposition 2.6.2. Problem (13) can be solved in time polynomial in size of input.

Proof. We prove the result for the case when the given MIP is a pure integer program as

it is easy to extend the result to the mixed case. If x̂ ∈ Zn then the answer to Problem 13

is trivially no. Otherwise, consider the line segments T 1 joining x̂ and v1 and T 2 joining

x and v2. There are two cases

If both T 1 and T 2 contain integer points, then x̂ is in the convex hull of those two

points and hence can not be separated from the elementary split closure of P.

If either of the two segments, say T 1, does not contain an integer point, then using

Proposition 2.6.1, x̂, v1 ∈ {x ∈ Rn | π̂0 < π̂x < π̂0 + 1} for some (π̂, π̂0) ∈ Zn+1. Consider

the two polyhedra: P1 = P∩{x ∈ Rn | π̂x ≤ π̂0} and P2 = P∩{x ∈ Rn | π̂x ≥ π̂0+1}. We

claim that T 1 ∩ conv(P1 ∪ P2) = φ. Clearly T 1 ∩ (P1 ∪ P2) = φ and conv(P1 ∪ P2) ⊆ P
is also a polyhedron. If our claim were false, then any point on T 1 must be convex

combination of two points in P1 ∪ P2. This can not hold since T 1 is part of an edge and

its extreme point v1 is not in P1∪P2. So our claim must be true. Using Proposition 2.6.1,

one can find the required disjunction (π̂, π̂0) in time polynomial in size of input. Now we

can use an approach similar to that used by Caprara and Letchford [2003] and by Balas

and Saxena [2007] to find an elementary split inequality (α̂, β̂) that separates x̂ from the

elementary split closure. Consider the two systems

z∗L = min α̂x

s.t. Ax ≥ b

π̂x ≤ π̂0

and

z∗R = min α̂x

s.t. Ax ≥ b

π̂x ≥ π̂0 + 1.

(2.25)
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(α̂, β̂) is a required inequality if and only if z∗L ≥ β̂ and z∗R ≥ β̂. The dual of these

programs can be written as

z∗L = maxuLb− sLπ̂0

s.t. uLA− sLπ̂ = α̂

uL, sL ≥ 0

and

z∗R = max uRb + sR(π̂0 + 1)

s.t. uRA + sRπ̂ = α̂

uR, sR ≥ 0

(2.26)

Thus, (α̂, β̂) is a required inequality if and only if the following system is feasible

uLb− sLπ̂0 ≥ β̂

uRb + sR(π̂0 + 1) ≥ β̂

uLA− sLπ̂ = α̂ (2.27)

uRA + sRπ̂ = α̂

uL, sL, uR, sR ≥ 0

α̂, β̂ can be scaled arbitrarily without affecting the inequality α̂x ≥ β̂. Thus we are free to

impose a constraint that makes the violation of x̂, β − α̂x̂ = 1. So α̂, β̂ separates x̂ from

the elementary split closure if and only if α = α̂, β = β̂ in some feasible solution of the

linear system

uLb− sLπ̂0 ≥ β

uRb + sR(π̂0 + 1) ≥ β

uLA− sLπ̂ = α (2.28)

uRA + sRπ̂ = α

β − αx̂ = 1

uL, sL, uR, sR ≥ 0
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(a) When T has an integer point, there are no pos-
sible (π̂, π̂0).
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π̂x ≥ π̂0 + 1

π̂x ≤ π̂0

(b) When T has no integer points, one can always
find (π̂, π̂0).

Figure 2.1: Illustration of two cases described in Proposition 2.6.1 that are possible for a
line segment T between two points x1, x2.

Thus, the required inequality can be found in time polynomial in size of input. This

completes our proof.

Given a MIP of the form (1.1) and a point x̂ that lies on an edge of the feasible

region P of the LP relaxation, one can find in time polynomial in size of the input, the

extreme points v1, v2 that are also the endpoints of an edge (see, for instance, Hadley

[1961], pg. 80). Proposition 2.6.2 can thus be reduced to the following corollary.

Corollary 2.6.1. Given a MIP in standard form (1.1), and a point x̂ that lies on an edge

of the feasible region of the LP relaxation, then one can either find in time polynomial in

size of input, an elementary split inequality that violates x̂ or show that no such inequalities

exist.

Corollary 2.6.2. Given a MIP in standard form (1.1), if an edge of the feasible region P
of the LP relaxation does not contain an integer feasible point, then the elementary split

closure of the problem does not contain any points of that edge.
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2.7 Conclusions

In this chapter, we showed that the problem of selecting a general branching disjunction

so that the LP relaxation associated with each subproblem becomes infeasible is NP-

complete. This leads to two important results—that the problem of selecting a general

branching disjunction that maximizes the bound improvement of a given MIP isNP-hard,

and that the problem of deciding whether a given inequality is an elementary split inequal-

ity isNP-complete. We also showed that the former problem remainsNP-hard even when

several natural restrictions are imposed on the disjunctions or when all integer-constrained

variables in the MIP are binary. We further showed that some of these problems can be

solved in time polynomial in size of input if the polytope under consideration is just a line

segment joining two points. Even though we answered some questions about computa-

tional complexity of finding desired disjunctions, there are several other related questions

that are still open. These are described in Chapter 5.
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Chapter 3

Computational Methods for

Branching

3.1 Introduction

In Chapter 2, we formulated the problem of selecting a disjunction for branching as a MIP.

In this chapter, we first describe the computational experiments performed to observe the

effects of using the disjunctions obtained by solving this formulation using a standard

MIP solver. Our experiments show that even though the size of the branch-and-bound

tree is dramatically reduced when such disjunctions are used, the time taken to find these

disjunctions using a stand-alone MIP solver is prohibitively high. In Section 3.2, we ex-

periment with different settings to control the size of and the strategy for solving such

MIPs and report on the effects of changing different parameters on the observed perfor-

mance. In Section 3.3, we restrict ourselves to the study of branching on disjunctions with

two variables only. We compare the performance of finding a two-variable disjunction by

explicitly solving a MIP formulation against the case when it is obtained by enumeration.

We then enhance the enumeration scheme such that the number of candidates that need to
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be enumerated is reduced by orders of magnitude. In Section 3.4, we adapt this enumer-

ation technique for the case of strong branching on variables and demonstrate substantial

improvement for this case as well. We first start with a small example that demonstrates

the importance of the choice disjunctions for branching.

Consider the following problem:

min 2x1 + 2x2 + 2x3 − 3x4

s.t.

2x1 + x2 + x3 − 2x4 − 2r1 = 0.1

x1 + 2x2 + x3 − 2x4 − 2r2 = 0.1

x1 + x2 + 2x3 − 2x4 − 2r3 = 0.1

2x1 + 2x2 + 2x3 ≥ 0.1 (3.1)

0 <= r1 <= 0.90

0 <= r2 <= 0.90

0 <= r3 <= 0.90

x1, x2, x3, x4 ∈ Z+.

The above instance (3.1) is infeasible even when the constraint 2x1 + 2x2 + 2x3 ≥ 0.1 is

dropped. This constraint is added to confuse existing preprocessing routines and prevent

them from detecting infeasibility easily. Although seemingly small and simple, the above

instance is not able to be solved in reasonable time by most commercial and open source

solvers available. For instance, ILOG CPLEX-10.2, with default settings, running on a

machine with 2.4GHz Intel Xeon, 512KB cache and 4GB RAM, is unable to solve it even

after running for 600 seconds and solving more than nine million subproblems. Similar

behaviour is observed with default settings of Xpress-Optimizer-v18.10.00, SYMPHONY-

5.1, CBC-2.1 and SCIP-1.0.
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Figure 3.1: A branch and bound tree to prove the infeasibility of problem (3.1). A number
in parentheses denotes the optimal value of the associated LP relaxation. (inf) denotes
that the associated LP is infeasible.

The same instance can be shown to be infeasible using only thirteen subproblems in

a branch-and-bound tree, without any use of advanced techniques of a generic branch-

and-cut framework like generation of valid inequalities, preprocessing, probing and other

heuristics. Such a branch-and-bound tree is described in Figure 3.1. The branching

disjunctions are chosen to push the objective value of the LP relaxations as high as possible

or to make them infeasible. This problem can be solved by the latest versions of both

CPLEX (version-11.1) and SCIP (version-1.1) but one can still add constraints and modify

the objective function to generate a behavior similar to one observed above. This example

clearly shows that when useful disjunctions are used for either branching or for generating

valid inequalities, the performance of branch-and-cut algorithm is improved dramatically.
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3.2 Solving MIP Formulations

In order to test the effect of selecting branching disjunctions using the formulations pre-

sented in the previous chapter, we performed a series of experiments using ILOG CPLEX

10.2 with the default method for selecting branching disjunctions replaced by the ones

previously described. Since our goal was only to discern the effectiveness of employing

the disjunctions and not to test the efficiency of the method for determining them, our

measure of effectiveness was reduction in total number of subproblems required to solve

each instance. Thus, we ignored the time required to execute the algorithm, which was

substantial in all cases. We used the criterion of maximizing the lower bound obtained

after branching on the given disjunction. The formulation that was used for this purpose

is derived from the formulation (2.4). A disjunction (π̂, π̂0) will result in a lower bound

greater than a given value, say K if and only if, the following systems are both infeasible

Ax ≥ b

cx ≤ K

π̂x ≤ π̂0

and

Ax ≥ b

cx ≤ K

π̂x ≥ π̂0 + 1

(3.2)

It follows from the approach used in Section 2.2.1 that (π̂, π̂0) ∈ Zd × {0} × Z1 is the

required disjunction if and only if π = π̂, π0 = π̂0 in a solution of the system

pA− sLc− π = 0

qA− sRc + π = 0

pb− sLK − π0 ≥ δ

qb− sRK + π0 ≥ −1 + δ (3.3)

p, q, sL, sR ≥ 0

(π, π0) ∈ Zd × {0}n−d × Z1,
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3.2. SOLVING MIP FORMULATIONS

Table 3.1: List of 30 instances used in formulation-based experiments.
10teams gt2 fiber mod008 pp08aCUTS ran13x13
aflow30a harp2 flugpl neos6 qnet1 rout
bell3a khb05250 gen nug08 qnet1 o stein45
blend2 l152lav gesa2 nw04 ran10x26 vpm1
egout lseu gesa2 o p0548 ran12x21 vpm2

for some δ > 0.

The test set for this experiment has only 30 representative instances from our original

set. This set was chosen in order to complete experiments in reasonable time. Table 3.1

lists the names of these instances. The branching disjunctions were imposed using the

callback functions provided with the CPLEX callable library. In all experiments, the best

known objective function value was provided as an upper bound to the solver to ensure

that the solution procedure was not affected by the order in which subproblems were

solved or other extraneous factors related to improvement in the upper bound.

In the first experiment, a pure branch-and-bound procedure was used—other advanced

techniques such as cutting planes, heuristics and probing were disabled. This allowed us

to observe the effects of branching in isolation from the mitigating effects of applying

these additional techniques. In the first experiment, a sequence of MIPs of the form (3.3)

were solved to determine the disjunction yielding the maximum increase in lower bound.

During initial testing, we concluded that optimizing over the entire set of general branching

disjunctions was too time-consuming, as the MIPs (3.3) were sometimes extremely difficult

to solve. We therefore imposed the following limitations for all tests.

1. π was restricted to the set {−M,−M + 1, . . . ,M}n. M = 1 was used in the first

experiment and higher values were tried in other experiments.

2. Each πi was replaced with two non negative variables substituting πi = π+
i −

π−i , π+
i , π−i ∈ [0,M ]. Such a transformation was used in order to make it easier

for the solver to find heuristic solutions to the MIP formulation.
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3.2. SOLVING MIP FORMULATIONS

3. The constraint
∑n

i=1 |πi| ≤ k was introduced to further restrict the search space. k

was set to 2, 5, 10, 15 and 20 in different experiments.

4. A time limit of t seconds was imposed for solving any one MIP for selecting a

branching disjunction. Additionally, a limit of 8t seconds was imposed on the time

allowed to be spent in total on selecting any single branching disjunction. In the first

experiment, t was set to 1000. Values of 50 and 100 were used in later experiments.

5. A total time limit of 20 hours was imposed for solving each instance. After 18 hours,

only variable disjunctions were considered so that the problem could be solved to

completion in the remaining two hours.

In case the search for a branching disjunction failed (because of time limits or because

no solution was found), branching was carried out by considering variable disjunctions.

Since it was not known how the selection rule of CPLEX works, the LP relaxations of

the subproblem resulting from the imposition of each candidate variable disjunction were

solved explicitly in order to determine the optimal variable disjunction according to the

criteria of maximum increase in lower bound. In cases where it was found that there was

no variable disjunction whose imposition resulted in an increase in the lower bound, the

default variable branching scheme of CPLEX was invoked. The number of subproblems

solved when branching on general disjunctions was compared against that when branching

only on variable disjunctions.

The number of subproblems generated during solution of each instance in the first

experiment is shown in Table 3.2. Nk denotes the number of subproblems created when

the search was restricted by addition of the constraint
∑n

i=1 |πi| ≤ k. Thus, N1 denotes

the number of subproblems when branching was done using only variable disjunctions

(by selecting a variable disjunction after solving the resulting LP relaxations explicitly,

as described above). The value rk is defined to be N1
Nk

. Even though the experiments for

Table 3.2 were carried out with 91 instances, only results for the 30 selected for further
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3.2. SOLVING MIP FORMULATIONS

investigation are reported, since other instances showed similar results.

For all remaining experiments, the performance profiles of Dolan and Moré [2002] were

used to display compactly, the results comparing number of subproblems solved in various

experiments. A point (α, β) in such a plot indicates that a fraction β of all instances

required less than α times the number of subproblems required in the experiment achieving

the lowest total overall. Figure 3.2 shows a performance profile for the data in Table 3.2.

In the next two experiments, the time limit t imposed on the solution of each MIP was

reduced to 100 seconds and 50 seconds, respectively. This was done to determine whether

good branching disjunctions could still be found in a shorter amount of time. Figures 3.3

and 3.4 show the performance profile when t was fixed and k was varied.

The experiments described so far show that branching on disjunctions that maximize

the subsequent lower bound increase does in fact lead to a significant reduction in the

number of subproblems required to be solved. In general, the number of subproblems is

also reduced when the set of disjunctions considered is larger (i.e., the number of non-zeros

allowed in the vector π is increased).

Figures 3.5(a)-3.5(e) show the effect of time spent in selecting a branching disjunction

when k is fixed. In general, when k is small, additional time spent selecting a disjunction

pays a bigger dividend than when k is large. Figure 3.5(d) shows that when k = 15

the number of subproblems solved does not vary much as t is increased. When k is set

to 20, the performance with t = 50 is nearly equivalent to that with t = 1000. One

possible explanation is that for large values of k, if a feasible solution to the branching

disjunction selection problem is not found quickly, then it is unlikely that a solution will

be found even after substantial additional search time. Thus, even though branching

on disjunctions that increase the lower bound appears promising, the problem of selecting

disjunctions becomes increasingly difficult with the number of nonzero coefficients that are

allowed in the description. This seems to be the case for the instance vpm1 in particular

(see Table 3.2) —when k is changed from 15 to 20, the number of subproblems goes up
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Figure 3.2: Performance profile for number of subproblems when t = 1000s and k is varied.

from 20 to 5929, presumably because the branching disjunction selection problem becomes

so difficult that only a few effective disjunctions are found within the time limit.

In the next experiment, cutting planes were enabled to see how the branching dis-

junction selection method would perform in a branch-and-cut algorithm. In general, in-

troduction of cutting plane generation should be expected to reduce the total number

of subproblems. The default settings of CPLEX were used for cut generation, with the

exception that MIR, Gomory, and flow (cover and path) cuts were disabled because the

presence of these cuts caused numerical difficulties while solving some of the associated

branching disjunction selection problems. Figure 3.6(a) shows the effect of adding cuts

when t = 100 seconds and k has values 1, 2, and 5. It shows that enabling cuts increases

the performance of the solver significantly, even when branching on general disjunctions

is used. Figure 3.6(b) shows how the performance varies when cuts are enabled and k is

varied from 1 to 20. Figure 3.3 shows that, in the absence of cuts, around 80% of instances
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Figure 3.3: Performance profile for number of subproblems when t = 100s and k is varied.
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Figure 3.4: Performance profile for number of subproblems when t = 50s and k is varied.
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Figure 3.5: Performance profile for number of subproblems when k is fixed and t (in
seconds) is varied.
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required at least half as many subproblems when branching on general disjunctions. When

the cuts were enabled, this fraction dropped to 50%. So the effect of branching on general

disjunctions is substantial even when the cuts are enabled, though it is not as dramatic.

To see the effect of increasing M , we performed one experiment with M = 10, k =

15, t = 100. Figure 3.7 shows a comparison of performance on this test against the others.

The performance seems to be slightly worse than when M = 1. However, it could not

be established whether this was due to larger coefficients in some of the disjunctions or

because of the increased difficulty of the MIPs used to identify the disjunction. A similar

experiment was carried with M = 10, k = 15, t = 1000 to see the effects for the case when

more time was spent in finding disjunctions with M > 1. Figure 3.8 shows that there are

no considerable effects from spending more time or changing M . These experiments seem

to suggest that k is probably a more important parameter than either t or M .

Finally, we experimented with selecting a branching disjunction along a “thin” direc-

tion by solving the formulation (2.7). Additional constraints, as described for the criteria

of maximizing lower bound above, were also added. Figure 3.9 compares the number of

subproblems solved when branching on “thin” directions with other experiments. The

performance is seen to be comparable to that of branching on variable-disjunctions. One

plausible reason why branching along thin directions did not perform as well as other

criteria might be that most of the integer constrained variables in the test set were binary

variables. For such problems, the integer width of the polytope associated with the LP

relaxation of a subproblem is at most one. Furthermore, there are typically a number of

directions along which the width is one. So, for the case when the minimum width of

the polytope is one, the formulation (2.6) selects any one of the many possible directions

arbitrarily. One way to overcome this problem would be to resort to other criteria when

the minimum width is found to be one. However, we have not yet pursued this line of

research.
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(a) t = 100 seconds
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Figure 3.6: Performance profile for number of subproblems when cuts are added to the
original problem. t is fixed and k is varied.
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Figure 3.7: Performance profile to compare the effect of branching for maximum lower
bound when M is increased to 10, t = 100 seconds.
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Figure 3.8: Performance profile to compare the effects of changing t when M in increased,
t = 100 seconds.
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Figure 3.9: Performance profile to compare the effect of branching on “thin” directions
against other criteria, t = 100 seconds.

3.3 Using Disjunctions with Only Two Variables

The experimental results of Section 3.2 clearly show that branching on appropriate general

disjunctions can greatly reduce the size of the branch-and-bound tree when compared to

strong branching on variables. The experiments also highlight a need to develop fast

heuristics to identify good branching disjunctions. Two reasons why strong branching on

variables seems attractive for selecting a variable disjunction for branching are:

1. There are at most d candidates that need to be evaluated, and

2. The dual-simplex method provides a fast way of re-solving the LP relaxation after

a bound has been changed. The number of iterations used to solve a problem from

scratch is typically an order of magnitude higher than the number required to re-

solve from an advanced basis.
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Keeping in mind these two points, a natural direction for developing heuristics for our

problem is to consider the idea of performing strong branching on a set slightly broader

than the set of variable disjunctions only but still a limited set of all general disjunctions.

We consider the simplest case: strong branching on disjunctions with only two variables.

Further, we consider only disjunctions with co-efficients in {−1, 0, 1}, motivated in part

by the observation that using coefficients of larger absolute values did not have an impact

on the performance in our previous experiments and also in part by the fact that such

disjunctions are sufficient for the case of mixed binary programs, a property that is shown

by most instances of our test set.

The criterion we use to select a branching disjunction is slightly different from the one

used in the experiments of Section 3.2. In the following experiments, we use the score

function of Linderoth and Savelsbergh [1999] to select the best candidate. More precisely,

if zi
L, zi

R are objective function values obtained after branching on disjunction i, then the

score of candidate i is evaluated as

si = α min{zi
L, zi

R}+ (1− α)max{zi
L, zi

R},

where α was fixed to 0.8. Such a function was not used in previous experiment, because

it is trivial to find poor general disjunctions such that max{zi
L, zi

R} is unbounded, thus

making the score function ineffective. Since this is not the case here, we can use the score

function again. When we come across a disjunction, one side of which is infeasible, we store

it as a valid inequality, ignoring its score and passing it to both subproblems along with

the branching disjunction. The description of the steps in Algorithm 3.1 makes this clear.

Upon completion, the algorithm yields a branching disjunction (π, π0) and a collection of

valid inequalities C. This collection of valid inequalities is added to both the subproblems

obtained after branching on the disjunction (π, π0). In the worst case, one needs to solve

2d2 LPs when this routine is called. This number tends to become unacceptably high even
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for moderately sized problems and when the number of integer-constrained variables with

fractional values is much less than d. For instance, after solving the LP relaxation for the

instance “10teams” with d = 1800 and with 148 of the integer variables having fractional

values in the LP solution, this algorithm required to evaluate 971,450 LPs and used 20,000

seconds just for the root node.

In order to compare the solution values obtained after branching on such disjunc-

tions, we use the following notation. The optimal values obtained in the two subprob-

lems obtained after branching on the variable disjunction xi ≤ π0 ∨ xi ≥ π0 + 1 are

denoted as zi
L, zi

R respectively. Those obtained after branching with the disjunction

xi+xj ≤ π0∨xi+xj ≥ π0+1 are denoted as z
(i,j)
L , z

(i,j)
R . Similarly, z

(i,−j)
L , z

(i,−j)
R denote the

optimal values obtained after branching with the disjunction xi−xj ≤ π0∨xi−xj ≥ π0+1.

Observe that number of LPs required to find the best disjunction as described above

can be reduced if one can estimate correctly the score of a particular disjunction from

the solutions obtained while performing strong branching on other disjunctions. To see

this, consider the following simple example. Suppose x̃1 = 0.1, x̃2 = 0.5 in an optimal

solution of the LP relaxation. Therefore, x1−x2 ≤ −1∨x1−x2 ≥ 0 is a valid disjunction.

Also, x1 ≤ 0 ∨ x1 ≥ 1 and x2 ≤ 0 ∨ x2 ≥ 1 are candidates for branching. Then clearly,

z
(1,−2)
R ≤ min{z1

L, z2
R} because {x ∈ [0, 1]2 | x1 ≥ 1} ⊆ {x ∈ [0, 1]2 | x1 − x2 ≥ 0} and

{x ∈ [0, 1]2 | x2 ≤ 0} ⊆ {x ∈ [0, 1]2 | x1 − x2 ≥ 0}. Additionally, if x1 = x2 = 0 appeared

as a solution for one of the earlier candidates, then the optimal value obtained after

imposing this disjunction will provide an upper bound on z
(1,−2)
L . These upper bounds on

z
(1,−2)
L , z

(1,−2)
R , when available, can be used to obtain an upper bound on the score of this

disjunction. If this score happens to be less than the score of the best disjunction found so

far, then this disjunction can be discarded without carrying out any further computation.

The improved version of Algorithm 3.1 is presented as Algorithm 3.2. We have delib-

erately skipped some fine details in the description of Algorithm 3.2 that can be used to

further eliminate some candidates. For instance, if setting xi ≥ 1 makes the LP infeasible
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for some i, then all disjunctions of the form xi + xj ≤ 1 ∨ xi + xj ≥ 2, j = 2, 3, . . . , d may

be ignored when xj ∈ {0, 1}.
A comparison of number of LPs that were solved in the root node only using Algo-

rithm 3.1 and the time taken for the 30 instances listed in Table 3.2 are tabulated against

time taken by Algorithm 3.2 in Table A.2. The performance profiles comparing the num-

ber of LPs solved and the time taken are shown in Figure 3.10 and Figure 3.11. We observe

orders of magnitude improvement for most instances. We also observe that the percentage

reduction seen in running time is less than that seen in the number of LPs solved, though

the decrease in running time is still one to two orders of magnitude. This can probably

be explained by the time used in additional book-keeping required in saving the solutions

and checking if the score can be estimated using previously obtained solutions. In one

instance (bell3a), we observed that the number of LPs solved was more for Algorithm 3.2

than that used by Algorithm 3.1. This is theoretically not possible and we surmise that

this behavior is due to numerical difficulties associated with solving the LPs.

Figure 3.12 compares the performance of strong branching on disjunctions using Al-

gorithm 3.2 against the time taken to solve the instances by solving the formulation in

Section 3.2 with k = 2 and the three different values of parameter t. Even though a time

limit of 20 hours was used for the formulation based branching scheme, it was only two

hours for Algorithm 3.2. Five instances were not solved by Algorithm 3.2 in two hours and

hence we see its profile staying horizontal at around 83%. A comparison of the number of

nodes taken by the same set of experiments is shown in Figure 3.14. These figures show

that the benefits of using dual-simplex method to quickly re-solve the problem from the

current solution combined with the elimination of poor choices of candidates far outweigh

the problem of explicitly evaluating a large number of possible candidates.
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Algorithm 3.1: Algorithm evaluate-all to find the best disjunction with at most
two coefficients by enumerating all solutions.

Input: A subproblem P k, optimal solution x̃k of its LP relaxation, integer
constrained variables 1, 2, . . . , d.

Output: A disjunction (π, π0)
C = φ, maxscore = −∞;
foreach i in 1, 2, . . . , d do

foreach j in i, i + 1, i + 2, . . . , d do
foreach l in {0, 1} do

if (i == j && l == 1) then CONTINUE;
else if (i == j && l == 0) then

activity = x̃k
i ;

π̂ = ei, π̂0 = bactivityc;
else if (l == 0) then

activity = x̃k
i + x̃k

j ;
π̂ = ei + ej , π̂0 = bactivityc;

else if (l == 1) then
activity = x̃k

i − x̃k
j ;

π̂ = ei − ej , π̂0 = bactivityc;
end
if activity − bactivityc > 0 then

(zL, zR) = strongbranch(P k, π̂, π̂0) ;
if min{zL, zR} >= ∞ then

π = π̂, π0 = π̂0 ;
STOP.

end
if zL >= ∞ then Add inequality (π̂, π̂0 + 1) to C;
if zR >= ∞ then Add inequality (−π̂,−π̂0) to C;
score = α min{zL, zR}+ (1− α)max{zL, zR} ;
if (score < ∞ && score > maxscore) then

score = maxscore ;
π = π̂, π0 = π̂0 ;

end
end

end
end

end
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Algorithm 3.2: A refined version of Algorithm 3.1, called with-elimination, to find
the best disjunction with at most two coefficients by enumerating all solutions.

Input: A subproblem P k, optimal solution x̃k of its LP relaxation, integer
constrained variables 1, 2, . . . , d.

Output: A disjunction (π, π0)
C = φ, maxscore = −∞;
foreach i in 1, 2, . . . , d do

foreach j in i, i + 1, i + 2, . . . , d do
foreach l in {0, 1} do

if (i == j && l == 1) then CONTINUE;
else if (i == j && l == 0) then

activity = x̃k
i ;

π̂ = ei, π̂0 = bactivityc;
else if (l == 0) then

activity = x̃k
i + x̃k

j ;
π̂ = ei + ej , π̂0 = bactivityc;

else if (l == 1) then
activity = x̃k

i − x̃k
j ;

π̂ = ei − ej , π̂0 = bactivityc;
end
if activity − bactivityc > 0 then

Find x̂L ∈ L with minimum cx s.t. x̂L satisfies (−π̂,−π̂0);
Find x̂R ∈ L with minimum cx s.t. x̂R satisfies (−π̂,−π̂0);
if x̂L, x̂R exist then estscore = α min{zi

L, zi
R}+ (1− α)max{zi

L, zi
R}

;
else estscore = ∞;
if (estscore > maxscore) then

(zL, zR, L) = strongbranch2(P k, π̂, π̂0, L) ;
if min{zL, zR} >= ∞ then

π = π̂, π0 = π̂0, STOP ;
if zL >= ∞ then Add inequality (π̂, π̂0 + 1) to C and P k;
if zR >= ∞ then Add inequality (−π̂,−π̂0) to C and P k;
score = α min{zL, zR}+ (1− α)max{zL, zR} ;
if (score < ∞ && score > maxscore) then

score = maxscore ;
π = π̂, π0 = π̂0 ;

end
end

end
end

end
end
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Algorithm 3.3: Algorithm strongbranch(Q, π̂, π̂0) describing the strong branching
subroutine used in Algorithm 3.1

Input: An LP Q, a disjunction (π̂, π̂0).
Output: The objective function values zL, zR obtained after branching on (π̂, π̂0).
Add the inequality (−π̂,−π̂0) to Q and solve. Let the solution value be zL;
Remove the inequality from Q;
if Q is infeasible then zL = ∞;
Add the inequality (π̂, π̂0 + 1) to Q and solve. Let the solution value be zR;
Remove the inequality from Q;
if Q is infeasible then zR = ∞;

Algorithm 3.4: Algorithm strongbranch2(Q, π̂, π̂0, L) describing the strong
branching subroutine used in Algorithm 3.2

Input: An LP Q, a disjunction (π̂, π̂0), a list L of feasible points.
Output: The objective function values zL, zR obtained after branching on (π̂, π̂0)

and a list L of feasible points.
Add the inequality (−π̂,−π̂0) to Q and solve. Let the solution value be zL;
Remove the inequality from Q;
if Q is infeasible then zL = ∞;
else Append the current solution to L Add the inequality (π̂, π̂0 + 1) to Q and
solve. Let the solution value be zR;
Remove the inequality from Q;
if Q is infeasible then zR = ∞;
else Append the current solution to L
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Figure 3.10: Performance profile comparing the performance of Algorithm 3.1 (evaluate-
all) and Algorithm 3.2 (with-elimination) in terms of number of LPs solved in the root
node.
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Figure 3.11: Performance profile comparing the performance of Algorithm 3.1 (evaluate-
all) and Algorithm 3.2 (with-elimination) in terms of time taken in the root node.

3.4 Improving Branching on Variables

The dramatic improvement in the time taken to select disjunctions with two non zero

coefficients by using the elimination procedure of Algorithm 3.2 motivated us to try using

a similar technique for improving the performance of strong branching on single variables

as well. Most solvers use strong branching, at least until the pseudo-costs of variables are

assumed to be reliably known. Our enhancements to the strong branching procedure can

potentially eliminate poor candidates without having to spend time when not necessary.

The procedure is exactly the same as described in the previous section with the exception

that only single variable disjunctions are considered in place of disjunctions with two

variables. In order to test this procedure, we performed several experiments on all 177

instances listed in Tables A.1.

Most commercial solvers like CPLEX have built-in functions for strong branching, and
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Figure 3.12: Performance profile comparing the time taken by Algorithm 3.2 (with-
elimination) against formulation based branching with parameter t = 1000, 100 and 50s.

we are comparing the performance of our procedure against this function in our tests.

This is in spite of the fact that we do not know what kind of algorithm is used inside this

function. We studied the source code of an open source LP solver, CLP, but did not find

any strategy similar to that described in Section 3.3. Instead, we found that it implements

several techniques such as saving the LU factorization, disabling scaling, turning off some

checks, etc. in order to speed up the dual-simplex iterations by utilizing the knowledge

that only variable bounds are being changed in each iteration.

In the following experiments, we simply compare the strategy of explicitly calculating

the score of each candidate variable (like in Algorithm 3.1) with that of calculating scores

for those candidates that cannot be eliminated on the basis of feasible solutions obtained

from other candidates (as in Algorithm 3.2). In the first experiment, we performed simple

branch-and-bound, without using any valid inequalities, primal heuristics or preprocessing

techniques. We also provided as input the best known solution value, given so as to
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Figure 3.13: Performance profile comparing the nodes used by Algorithm 3.2 (with-
elimination) against formulation based branching with parameter t = 1000s, 50s and
also strong branching on variables.
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mitigate the effect of the order in which each subproblem was solved. The time taken

using the two strategies is profiled in Figure 3.14 and is compared against the inbuilt

strong branching function of CPLEX. The figure shows that our enhancements do in fact

speed up strong branching substantially when compared against the explicit evaluation of

all candidates. The enhanced performance, however, still lags behind that of the built-in

function, presumably because of the above mentioned techniques implemented in the LP

solver. We now compare the performance of our procedures in order to observe how the

difference in number of calls to dual-simplex procedure in strong branching translates in to

the amount of time used. In order to observe this, we shortlisted 55 problems of medium

difficulty. These are all those instances out of the initial set of 177 instances that satisfy

two criteria:

1. the instance was solved to completion by either of our procedures or by CPLEX

(with strong branching) within two hours and,

2. it took more than 10 seconds to solve the instance by any of the three procedures.

These instances are listed in Table 3.3. Figure 3.15 shows that evaluating all candidates

requires calling the dual-simplex procedure 50% more times than that required by the

elimination procedure in more than half of the instances. Figure 3.16, however, shows

that the savings in time are not as big as the savings in the number of calls, probably on

account of extra time spent in bookkeeping.

We now report the observations for a more realistic experiment: when primal heuristics

and generation of valid inequalities are enabled and no upper bound is provided as an input

for cut off. The time taken when the above three branching strategies are used is profiled

in Figure 3.17. We observe that the elimination strategy is more useful under these

settings than it was in pure branch-and-bound as described above. We also shortlisted

74 instances, listed in Table 3.4, using the above two criteria again. Figure 3.18 and

Figure 3.19 show that the benefits of using an elimination strategy are more pronounced
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Table 3.3: List of 55 instances shortlisted as reasonably sized problems for branch-and-
bound.

10teams cap6000 mas76 neos648910 qiu
30 05 100 core2536-691 misc07 neos7 ran10x26
30 95 98 dano3 3 mitre neos8 ran12x21
aflow30a dano3 4 mod011 neos823206 ran13x13
air04 dano3 5 modglob nug08 rout
air05 fiber mzzv42z nw04 seymour1
bell5 gesa2 neos10 pk1 stein45
biella1 gesa2 o neos11 pp08aCUTS swath2
bienst1 harp2 neos13 prod1 trento1
bienst2 lrn neos4 prod2 vpm1
blp-ir98 mas74 neos5 qap10 vpm2
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evaluate-all
with-elimination
CPLEX-strong

Figure 3.14: Performance profile of time taken in branch-and-bound when the strong
branching variable is chosen using the single-variable variant of Algorithm 3.2 (with-
elimination), that of Algorithm 3.1 (evaluate-all) and inbuilt function of CPLEX.
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Figure 3.15: Performance profile of number of calls to dual-simplex in branching for in-
stances in Table 3.3 for the same experiment as in Figure 3.14.
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Figure 3.16: Performance profile of the same experiment as Figure 3.14 when the instances
are limited to those listed in Table 3.3.
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Table 3.4: List of 74 instances shortlisted as reasonably sized problems for branch-and-cut.
10teams bienst2 m20-75-5 neos4 qap10
30 05 100 binkar10 1 markshare1 1 neos5 qiu
30 95 100 blend2 markshare2 1 neos6 qnet1
30 95 98 dano3 3 mas74 neos648910 qnet1 o
acc3 dano3 4 mas76 neos7 railway 8 1 0
acc4 dano3 5 misc07 neos8 ran10x26
aflow30a fixnet6 mitre noswot ran12x21
air03 gesa2 o mod011 nug08 ran13x13
air04 gt2 modglob nw04 rout
air05 harp2 neos10 p2756 seymour1
arki001 l152lav neos11 pk1 stein45
bc1 m20-75-1 neos13 pp08a swath2
bell3a m20-75-2 neos20 pp08aCUTS swath3
bell5 m20-75-3 neos21 prod1 vpm2
bienst1 m20-75-4 neos23 prod2

in these realistic settings than when doing pure branch-and-bound with an known upper

bound. The profile in Figure 3.20 shows that our elimination strategy performs better

than the strong branching function of CPLEX for these 74 instances. The differences in

the profiles of Figure 3.17 and Figure 3.20 suggest that the elimination strategy becomes

more effective as the difficulty of the problem increases.

3.5 Conclusions

In this chapter, we considered computational employment of general disjunctions of the

form “πx ≤ π0 ∨ πx ≥ π0 + 1” in branch-and-bound and branch-and-cut algorithms. We

formulated the problem of selecting the optimal such disjunction using two different criteria

and reported on the effect of using the associated optimization models to select branching

disjunctions within the branch-and-bound framework of the commercial solver CPLEX.

The naive approach to formulating and solving the branching disjunction selection problem

described herein yielded mixed results. The optimization problems that arose turned out to

be extremely difficult to solve using off-the-shelf software. On the bright side, we observed
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Figure 3.17: Performance profile of time taken in branch-and-cut when the strong branch-
ing variable is chosen using the single-variable variant of Algorithm 3.2 (with-elimination),
that of Algorithm 3.1 (evaluate-all) and strong branching function of CPLEX
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Figure 3.18: Performance profile of time taken in branch-and-cut for same experiment as
in Figure 3.17 for instances listed in Table 3.4
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Figure 3.19: Performance profile of number of calls to dual-simplex procedure in branching
in same experiment as Figure 3.18 for instances listed in Table 3.4
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Figure 3.20: Performance profile of time taken in branch-and-cut for instances listed in
Table 3.4(with CPLEX)
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consistent substantial reductions in the number of subproblems required to be solved when

using general disjunctions for branching. Motivated by these results, we considered using

general disjunctions with only two variables. We observed that even though the number

of such candidates could be unacceptably high for evaluating each of them explicitly with

dual-simplex procedure, still one can reduce this number by orders of magnitude by a

simple elimination strategy. Our experiments showed that this strategy outperforms the

strategy of selecting such candidates by solving the associated MIP formulation, thus

suggesting that solving the formulation may not be the best way for finding disjunctions

with only a few coefficients. However, further research into ways of solving the formulation

may lead to more competitive methods. We also used the elimination procedure for

variable disjunctions and showed that the strong branching function can be significantly

improved by this method.
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Chapter 4

Computational Methods for Valid

Inequalities

4.1 Introduction

Valid inequalities that can be used in a cutting-plane algorithm can be generated in many

ways. Some classes of valid inequalities are derived from the special structure of the

instance, e.g., flow and cover inequalities, implication inequalities, knapsack inequalities,

clique inequalities etc., while others are more general and can be derived from the simplex

tableau or some other transformations of the constraint matrix A e.g., C-G inequalities,

MIR inequalities, GMI inequalities, Lift and Project inequalities etc. So, given a MIP

instance, one can generate a variety of valid inequalities for the cutting-plane algorithm.

A good choice of valid inequality can reduce the number of iterations of the algorithm

significantly. However, a poor choice of an inequality can lead to many more iterations

and also make the LP relaxation difficult to solve. The choice of valid inequalities is thus

critical for the branch-and-cut algorithm.

As described in Section 1.4.2, all the above mentioned classes of inequalities are special

cases of split inequalities that can be derived from general disjunctions. The disjunctions

98



4.2. SELECTING C-G INEQUALITIES

that we derived in Chapter 2 and Chapter 3 for maximally improving the bound are then

natural candidates for deriving split inequalities as well. The experiments we perform in

this chapter look at precisely such inequalities.

Motivated by the computational results from Chapter 3 showing the effectiveness of

the criterion of maximizing the lower bound for selecting a disjunction for branching,

we propose to employ the same criterion for selecting disjunctions for generating valid

inequalities as well. In Section 4.2, we compare the effects of selecting C-G inequalities on

the basis of the two above mentioned criteria. We observe that the problem of maximizing

the bound improvement after adding a C-G inequality can be formulated as a MIP, not

much different from one used in Chapter 3. In Section 4.3, we perform a similar experiment

for split inequalities. Our experiments indicate that a greater improvement in bound can

be achieved by selecting much fewer inequalities using our criteria.

In Section 4.4 we consider the problem of deciding whether the disjunctions that we

derived are more suitable for branching or for generating valid inequalities. We perform

a simple experiment to observe the differences in performance of these two approaches.

Even though the experiment does not completely settle the question, it does give some

valuable insight in to the problem and also gives a motivation to study a larger problem

of deciding whether one should use valid inequalities or branch in order to most efficiently

solve a given problem (or even a subproblem in the branch-and-cut algorithm). We finally

present conclusions in Section 4.5.

4.2 Selecting C-G Inequalities

In this section, we compare the two criteria for selecting Chvátal-Gomory cuts. We first

formulate the problem of selecting a C-G inequality on the basis of these criteria. Recall

from Section 1.4.2 that an inequality (α̂, β̂) ∈ Zn+1 is an elementary C-G inequality for a

MIP in standard form (1.1) if minx∈Rn{α̂x | Ax ≥ b} > β̂ − 1. Consider the following two
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LPs

Ax ≥ b

α̂x ≤ β̂ − 1,
and

Ax ≥ b

cx ≤ K

α̂x ≥ β̂,

(4.1)

where K ∈ Rn is given. Clearly, both the above LPs are infeasible if and only if (α̂, β̂) is

a valid C-G inequality that when added to the MIP pushes the optimal value of the LP

relaxation to at least K. Using the same approach used in Section 2.2.1, it can be shown

that we can improve the lower bound of the LP relaxation to at least K if and only if the

program

pA− α = 0

pb− β ≥ −1 + δ

qA− sRc + α = 0 (4.2)

pb− sRK + β > δ

p, q, sR ≥ 0

(α, β) ∈ Zd × {0}n−d × Z1,

has a feasible solution with α = α̂, β = β̂ for some δ > 0. The maximum such K can

be obtained by solving program (4.2) for different values K using a standard MIP solver.

The same approach can be used to find a maximum violation C-G inequality by solving
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the MIP,

maxβ − αx∗

pA− α = 0

pb− β ≥ −1 + δ (4.3)

p ≥ 0

(α, β) ∈ Zd × {0}n−d × Z1,

for some δ > 0. Formulation (4.3) has been used by Fischetti and Lodi [2005] for de-

termining the elementary closure of C-G inequalities and also mentioned by Eisenbrand

[1999].

In order to compare the effectiveness of the criteria of maximum violation and max-

imum bound improvement, we carried out computational experiments using a set-up de-

scribed in Section 1.5. For the criterion of maximum violation, we solve, in each iteration,

the MIP (4.3) and the C-G inequality corresponding to the best solution obtained in a

time limit of 1000 seconds. For selecting a C-G inequality resulting in maximum bound

improvement, we solve, at each iteration, several MIPs of the form 4.2, to find the maxi-

mum value for K. Each of these MIPs is solved with a time limit of 1000 seconds. A C-G

inequality (α, β) obtained for the highest such K is then added to the LP relaxation and

the process is repeated. For both cases, we continue iterating until we are unable to find

a required valid C-G inequality or we reach the maximum time limit of four hours. We

also added the constraint −1 ≤ αi ≤ 1, i = 1, 2, . . . , d to further restrict the problem so as

to achieve results in a reasonable time.

In order to measure the effectiveness of the two criteria, we compare them on the basis

of the percentage of the gap, between the objective function value of the LP relaxation
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and the best known solution closed by each. The measure can be expressed formally as

φ = 100
(

1− z − zLP

zbest − zLP

)
,

where z is the lower bound obtained after the C-G cuts have been added iteratively, zLP

is the lower bound obtained after solving the LP relaxation of the original instance and

zbest is the value of the best known solution for that instance.

Figure 4.1 plots the gap closed by using each of the two criteria and the number of

cuts that were generated. The number of iterations used by each procedure is the same

as the number of cuts since we add only one inequality in each iteration. We observe that

the criterion of maximum bound improvement closed the gap by more than 64% for eight

instances but the criterion of maximum violation did the same for only three instances.

The tallies for 16% gap stand at 19 and 10 instances, respectively. We also observe

that 10 or more inequalities were generated for only four instances when the criterion of

maximum bound improvement was used, while the same number for the other criterion

was 77. Thus, even though generation of inequalities that maximize violation is easier

(as reflected from the number of inequalities generated) than the generation of those that

maximize bound improvement, they appear to be significantly less effective in changing the

bound. Table A.3 tabulates the number of cuts and the gap closed for all 177 instances.

4.3 Selecting Split Inequalities

We now describe a similar experiment for selecting split inequalities. Recall from Sec-

tion 1.4.2 that an inequality (α, β) ∈ Rn+1 is a split inequality for a MIP of the form (1.1)

if (α, β) is a valid inequality for both the disjunctive subsets {x ∈ Rn | Ax ≥ b, π̂x ≤ π̂0}
and {x ∈ Rn | Ax ≥ b, π̂x ≥ π̂0+1} for some general disjunction (π̂, π̂0) ∈ Zd×{0}n−d×Z.

We have already described in Section 2.4 that if the bound obtained after branching on a

general disjunction (π̂, π̂0) improves to say K, then the same disjunction can be used to
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4.3. SELECTING SPLIT INEQUALITIES

generate split inequalities which when added to the LP relaxation will improve the bound

to K. The MIP formulation (3.3) can be solved for some δ > 0 in order to find such a

disjunction. We rewrite the formulation here

pA− sLc− π = 0

qA− sRc + π = 0

pb− sLK − π0 ≥ δ

qb− sRK + π0 ≥ −1 + δ (4.4)

p, q, sL, sR ≥ 0

(π, π0) ∈ Zd × {0}n−d × Z1.

In order to select a disjunction that generates a split inequality with maximum viola-

tion, we resort to the technique of Balas and Saxena [2007]. Suppose (α̂, β̂) ∈ Rn+1 is an

elementary split inequality for a given MIP of the form (1.1). Let (π̂, π̂0) ∈ Zd×{0}n−d×Z
be a general disjunction that can be used to derive (α̂, β̂). Then, by definition, (α̂, β̂) is a

valid inequality for the feasible regions of both the following LPs:

Ax ≥ b

π̂x ≤ π̂0

and
Ax ≥ b

π̂x ≥ π̂0 + 1
(4.5)

The inequality (α̂, β̂) is valid for the above two systems if and only if there exist p, q ∈ Rm
+

and sL, sR ∈ R+ such that

pA− sLπ̂ = α̂

pb− sLπ̂0 ≥ β̂
and

qA + sRπ̂ = α̂

qb + sR(π̂0 + 1) ≥ β̂.
(4.6)

Thus, in order to find a split inequality that violates a given point, say x̂ ∈ Rn, one can
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4.3. SELECTING SPLIT INEQUALITIES

solve the following program

minαx̂− β

s.t.pA− sLπ = α

pb− sLπ0 ≥ β

qA + sRπ = α

qb + sR(π0 + 1) ≥ β (4.7)

p, q ∈ Rm
+ , α ∈ Rn

sL, sR, β ∈ R+

π ∈ Zd × {0}n−d, π0 ∈ Z.

Observe that the program (4.7) has nonlinear terms sLπ, sLπ0, etc. Also observe that if

there exists a solution to the program such that the objective function is negative, then one

can scale the variables α, β, p, q, sL, sR arbitrarily to make the objective function αx̂ − β

arbitrarily low. Balas and Saxena [2007] propose normalizing the variables by using an

additional constraint sL + sR = 1. Under such a normalization, one can reformulate the
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4.3. SELECTING SPLIT INEQUALITIES

program (4.7) as a parametric MIP with a single parameter θ

minαx̂− β

s.t.pA− θπ = α

pb− θπ0 ≥ β

qA + (1− θ)π = α

qb− (1− θ)(π0 + 1) ≥ β (4.8)

p, q ∈ Rm
+ , α ∈ Rn, β ∈ R

π ∈ Zd × {0}n−d, π0 ∈ Z.

θ ∈ [0, 1]

We can now solve a series of MIPs of the form (4.8), fixing θ to different values in each

iteration in order to solve approximately the program (4.7).

A C-G inequality is itself a valid disjunction whose one disjunctive subset is infeasible.

However, this is not true for the case of split inequalities and thus, one can generate many

different split inequalities using a given general disjunction (π̂, π̂0). In our experiments, we

use an iterative procedure to generate split inequalities from disjunctions based on either

criteria. This procedure uses a cut-generating LP (CGLP) similar to one mentioned in
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4.3. SELECTING SPLIT INEQUALITIES

Section 2.6. Given a general disjunction (π, π0), and a point x̂ ∈ Rn, we solve the LP

minαx̂− β

pA− sLπ̂ = α

qA + sRπ̂ = α

pb− sLπ̂0 ≥ β (4.9)

qb + sR(π̂0 + 1) ≥ β

p, q, sL, sR ≥ 0

α ∈ Rn, β ∈ R

to obtain a split inequality (α, β). The normalization constraint
∑m

i=1 pi +
∑m

i=1 qi + sL +

sR = 1 is used to avoid arbitrary high values of variables in the case a desired inequality

exists. If this LP returns a feasible solution with a non-negative solution value, we add

the inequality (α, β) to the LP relaxation of the MIP and obtain a new solution x̂ to the

tighter LP. We continue to iteratively solve CGLPs of the form (4.9) until one becomes

infeasible or we obtain a solution that lies in one of the disjunctive subsets associated with

the disjunction (π, π0). In the latter case, we identify another disjunction using the desired

criterion and start again. The iterative procedure for solving MIPs to obtain a disjunction

and then generating split inequalities from that disjunction is depicted in Figure 4.2.

Table A.4 tabulates the number of inequalities generated and the gap closed by the

procedures described above. The scatter plot in Figure 4.3 provides a graphical description

of the same. We observe that the disjunctions generated using the criterion of maximum

bound improvement usually provide split inequalities that can close much more of the gap

than that can be closed by the criterion of maximum violation. Further, the difference

between the two criteria is much more pronounced than the difference in the case of C-G

inequalities.
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inequality?
Do we have a valid

Solve a sequence of MIPs to find a

StopDo we have a valid
disjunction?

no

yes

no

yes

LP relaxation and re−solve
Add the valid inequality to the

general disjunction (π, π0)

Solve CGLP using the disjunction (π, π0)

Figure 4.2: A flowchart depicting the procedure used in the experiments for generating
split inequalities.

4.4 Cut or Branch

Experiments performed in Section 3.2, Section 4.1 and Section 4.2 indicate that using

certain disjunctions can reduce significantly the number of iterations of both the branch-

and-bound and the cutting-plane algorithm. In this section, we perform experiments

to observe whether the disjunctions derived previously are more effective when used for

branching or for generating valid inequalities. This experiment is thus a step towards

understanding the more general question of deciding whether a given arbitrary disjunction

should be used for branching or for generating valid inequalities which in turn is a step

towards understanding at what stage should one switch from a cutting-plane algorithm to

the branch-and-bound algorithm in a branch-and-cut framework.

Given a general disjunction (π, π0) ∈ Zd × Rn−d × Z, there are some obvious trade-

offs in the decision to branch or to generate valid inequalities. Branching on a poor

disjunction will create two subproblems that may be as difficult as the problem under
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4.4. CUT OR BRANCH

consideration and thus double the time to solve. On the other hand, generating too

many valid inequalities from a good disjunction may make the LP relaxation difficult to

solve and generating too few inequalities may not lead to full benefits from imposing the

disjunction. Another difference between branching and generating valid inequalities from

a given disjunction is that of repetition. Once a disjunction has been used for branching,

it will never be used again in any of the subproblems. However, the same disjunction may

be used again to generate more inequalities after valid inequalities obtained from other

disjunctions have been added. It is not apparent how such disjunctions should be used.

The decision to branch or to generate valid inequalities may also affect the choice

of disjunctions in the subsequent iterations and this makes the decision problem even

more complex. The myopic criterion of maximum bound improvement is theoretically not

applicable to this problem, because one can get the same improvement with branching and

generating valid inequalities from a given disjunction. The improvement in the bound,

the number of iterations and the running time can be different when several disjunctions

are used iteratively and it is precisely this difference that we wish to study. Toward this

goal, we performed a simple experiment to study the difference in the performance of the

CPLEX solver when disjunctions obtained by previously mentioned methods are for the

two techniques.

In our experiment, we solved the instances by using the branch-and-bound algorithm

of CPLEX with two different strategies. In the first method, we identified general disjunc-

tions that improve the lower bound by the maximum using the methods of Section 3.2 and

then used those for branching. We also saved the disjunctions for the second method. We

tried to generate these disjunctions for all subproblems associated with the first k levels of

the branch-and-bound tree only. All other branching decisions were done using the solver’s

default method. In the second method, we used the general disjunctions generated in the

first to generate valid inequalities in the root node instead of using them to branch. We

continued to add valid inequalities derived from these disjunctions until we could not add
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4.4. CUT OR BRANCH

Table 4.1: Time (in seconds) and number of nodes used when the same disjunctions are
used for branching (bnb) and for generating valid inequalities in the root node(bnc).

Instance # disj. # cuts time time time # nodes # nodes
(disj) (bnb) (bnc) (bnb) (bnc)

10teams 1 5 3602.05 12.30 2260.91 1187 126837
bc1 9 18 3823.03 129.21 7180.90† 2001 89177 †

bell3a 6 130 2.92 3.16 4.93 19736 16395
bienst1 13 250 8923.97 70.77 256.24 22318 12663
bienst2 15 257 13942.31 411.39 4223.55 93670 148905
dcmulti 12 555 2490.92 0.41 32.44 1014 960

egout 5 5 2.86 0.03 0.04 299 287
gesa2 1 276 9085.47 7.51 387.37 13108 190285

gesa2 o 4 349 4666.20 14.62 4161.61 23590 308324
lseu 17 157 1160.31 0.32 1.64 3175 6174

misc03 2 1 3.20 0.36 0.41 684 853
neos11 17 149 13534.66 1162.16 3170.10 15484 10506
neos20 13 11 324.03 211.74 748.33 72346 184286
neos7 5 1 290.18 20935.84 10798.49† 5161360 2372189†

neos8 4 1 2070.84 81.81 63.30 6 46
nug08 3 7 2906.38 6.60 39.61 4 554
qnet1 7 155 2306.29 1.86 12.31 363 157

qnet1 o 12 289 5200.83 1.53 42.32 638 489
rout 6 339 4649.99 1155.17 7197.67† 1788298 601802†

seymour1 5 271 15258.85 861.94 1745.10 10271 12003
vpm1 5 7 193.42 0.03 0.02 79 31
vpm2 9 1329 1896.94 64.32 3600.80 226790 315397

†Result obtained after stopping the solver because of time limit

any more or we hit a time limit (1000s in our experiment), at which point we continued

with the default branch-and-bound strategy. We compare the time spent and the number

of subproblems solved in each case. We do not include the time used in identifying the

disjunctions since the same disjunctions are used in both methods. In both methods, we

let the solver do branch-and-bound for 7200s in addition to the time spent in identifying

the disjunctions and the valid inequalities.

Table 4.1 shows the comparison between the two methods in terms of the time spent

and the number of subproblems solved in the branch-and-bound stage. Even though
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the experiment was performed on all 177 instances listed in Table A.1, we report only 22

instances because on all other instances, either no disjunctions were found in the time limit

or both the methods reached the time limit in branch and bound. For the problems listed

in Table 4.1, the second method of generating valid inequalities in the root node seems to

take much more time than simply using the disjunctions for branching. This is especially

true for the case of 10teams, where the time spent and the number of subproblems solved

when using valid inequalities differs by two orders of magnitude. We also observe that

even though generation of valid inequalities by solving the CGLP consistently leads to

longer running times, the number of subproblems solved is reduced for some instances

(bell3a, bienst1, dcmulti, egout, neos11, qnet1, qnet1 o, vpm1).

While the experiment provides strong evidence that the general disjunctions that we

obtain are more suitable for branching than for generating valid inequalities, the reasons

are not particularly clear. In particular, we do not know whether this is because of the

inequalities generated using the CGLP or was it because of the way the experiment is set

up (we do not know of any other documented experiments of this kind).

4.5 Conclusions

The computational experiments performed in this chapter provide strong evidence that

generating valid inequalities from disjunctions that improve the bound is more effective

than the existing techniques of generating inequalities using the criterion of maximum

violation. The time taken in identifying such disjunctions using a MIP solver is, like that

observed in Chapter 3, exorbitant and fast heuristics are required to mitigate this problem.

Our experiments also suggest that these disjunctions are more beneficial for branching than

for generating valid inequalities, even though the reasons for these observations are not

fully clear. The bigger question of whether branching or generation of valid inequalities is

more useful for a given problem or even a given subproblem obtained in a branch-and-cut
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algorithm arises naturally in this context. This is discussed in more detail in the next

chapter on future work.
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Chapter 5

Conclusions and Future Research

In this thesis, we investigated several problems concerning identification of good disjunc-

tions from the rich class of general disjunctions. We applied the criterion of maximum

bound improvement that has previously been used for selecting variable disjunctions to

the problem of selecting general disjunctions. The problem of selecting the best general

disjunction for this criterion turns out to be NP-hard. This result in turn leads to more

results on the computational complexity of selecting and identifying elementary split in-

equalities. An analogous question regarding the computational complexity of problems

when applied to the special case of C-G inequalities are still open.

Problem 14. Given a mathematical program of the form (1.1) and K ∈ R, does there exist

a single elementary C-G inequality for (1.1) such that the LP relaxation bound achieved

after adding it is at least K?

In Chapter 2, we also developed a polynomial time algorithm to find a split inequality

that can separate a point on an edge of the feasible region of the LP relaxation of a MIP.

The computational complexity of the problem for finding a C-G inequality with the same

quality is also open. We formally define the problem as follows.

Problem 15. Given a MIP with the feasible region of LP relaxation P, two adjacent

114



extreme points v1, v2 of P and a point x̂ ∈ Qn on the edge joining v1, v2, find an elementary

C-G inequality that separates x̂ from the C-G closure of P or show that none exists.

A natural extension of Proposition 2.6.1 is to find conditions under which a general

disjunction could be used to separate more more than two points simultaneously. Two

such problems are as follows.

Problem 16. Given three points x1, x2, x3 ∈ Qn does there exist a disjunction (π̂, π̂0)

such that x1, x2, x3 ∈ {x ∈ Rn | π̂0 < π̂x < π̂0 + 1}.

Problem 17. Given k points x1, x2, . . . , xk ∈ Qn does there exist a disjunction (π̂, π̂0)

such that x1, x2, x3, . . . , xk ∈ {x ∈ Rn | π̂0 < π̂x < π̂0 + 1}.

In our computational experiments, we studied the impact on the branch-and-cut algo-

rithm of using those general disjunctions that maximize the improvement in lower bound.

The use of such disjunctions for branching seems to reduce dramatically the number of

iterations when compared to the existing techniques like strong-branching using variable

disjunctions and branching on thinnest directions. Analogous results were observed when

the disjunctions that maximize bound improvement are used to generate split inequalities

and C-G inequalities. Much fewer number of valid inequalities are required to close the

gap between upper and lower bounds of the MIP when using our criterion as compared

to the existing criterion of maximum violation. That such disjunctions can improve the

performance of branch-and-cut algorithms drastically is clear from our experiments. How-

ever, we still do not know of any good heuristics that may be employed to identify these

disjunctions. We believe that developing heuristic methods for this problem is a rich and

fruitful line of research.

Another interesting direction for future research towards finding good general dis-

junctions quickly is to consider only restricted subsets, much like variable disjunctions,

but more flexible. The experiments using disjunctions with two variables were a step in

this direction. Our elimination procedure improves the time taken to enumerate all such
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disjunctions by one to two orders of magnitude. We think that with a few more such

simple refinements and enhancements one can significantly improve the performance of

the available state-of-the-art MIP solvers.

A natural question that arises in any implementation of branch-and-cut algorithm

is that of deciding whether to branch or generate valid inequalities. The most popular

technique is that of keep generating valid inequalities until some stopping criteria are met

at which point, the solvers resort to branch-and-bound. The commonly used conditions for

stopping are no further improvement in bound, the number of simplex iterations used to

solve the LP, distance of the new optimal solution from that of the previous iteration etc.

However, such criteria can often severely affect the performance by either branching too

early or too late. Moreover, valid inequalities may again become useful in later iterations

of branch-and-bound. This especially is important when the size of the branch-and-bound

tree gets large as is often the case for difficult instances. In this thesis, we took a small

step towards answering this question by comparing branching against generation of valid

inequalities from the same disjunctions. While the experiment gave some good insight on

this problem, it will seemingly take substantial theoretical and experimental research to

settle this question.
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Appendix A

Instances

Table A.1: Number of constraints, variables, integer variables, binary variables and non-
zero coefficients in the 177 instances used in experiments.

Instance Constraints Variables Integer Binary Non-Zeros
10teams 230 2025 1800 1800 12150

30 05 100 12050 10772 10771 10771 45889
30 95 100 12526 10976 10975 10975 46640
30 95 98 12471 10990 10989 10989 46387

a1c1s1 3312 3648 192 192 10178
A2C1S1 3312 3648 192 192 10178

acc0 1737 1620 1620 1620 7290
acc1 2286 1620 1620 1620 12978
acc2 2520 1620 1620 1620 15327
acc3 3249 1620 1620 1620 16785
acc4 3285 1620 1620 1620 17073
acc5 3052 1339 1339 1339 16134

aflow30a 479 842 421 421 2091
aflow40b 1442 2728 1364 1364 6783

air03 124 10757 10757 10757 91028
air04 823 8904 8904 8904 72965
air05 426 7195 7195 7195 52121

arki001 1048 1388 538 415 20439
atlanta-ip 21732 48738 46773 46667 257532

B1C1S1 3904 3872 288 288 11408
B2C1S1 3904 3872 288 288 11408
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Instance Constraints Variables Integer Binary Non-Zeros
bc1 1913 1751 252 252 276842

bell3a 123 133 71 39 347
bell5 91 104 58 30 266

berlin 5 8 0 1532 1083 794 794 4507
bg512142 1307 792 240 240 3953

biella1 1203 7328 6110 6110 71489
bienst1 576 505 28 28 2184
bienst2 576 505 35 35 2184

binkar10 1 1026 2298 170 170 4496
blend2 274 353 264 231 1409

blp-ar98 1128 16021 15806 15806 200601
blp-ic97 923 9845 9753 9753 118149
blp-ic98 717 13640 13550 13550 191947
blp-ir98 486 6097 6031 6031 79152
cap6000 2176 6000 6000 6000 48243

CMS750 4 16381 11697 7196 7196 44903
core2536-691 2539 15293 15284 15284 177739
core2586-950 2589 13226 13215 13215 104678

core4284-1064 4287 21714 21705 21705 245121
core4872-1529 4875 24656 24645 24645 218762

dano3 3 3202 13873 69 69 79655
dano3 4 3202 13873 92 92 79655
dano3 5 3202 13873 115 115 79655

dano3mip 3202 13873 552 552 79655
danoint 664 521 56 56 3232

dc1c 1649 10039 8380 8380 121158
dc1l 1653 37297 35638 35638 448754

dcmulti 290 548 75 75 1315
dg012142 6310 2080 640 640 14795
disctom 399 10000 10000 10000 30000
dolom1 1803 11612 9720 9720 190413
dsbmip 1182 1886 192 160 7366

ds 656 67732 67732 67732 1024059
egout 98 141 55 55 282

enigma 21 100 100 100 289
fast0507 507 63009 63009 63009 409349

fiber 363 1298 1254 1254 2944
fixnet6 478 878 378 378 1756
flugpl 18 18 11 0 46

gen 780 870 150 144 2592
gesa2 1392 1224 408 240 5064
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Instance Constraints Variables Integer Binary Non-Zeros
gesa2 o 1248 1224 720 384 3672

gesa3 1368 1152 384 216 4944
gesa3 o 1224 1152 672 336 3624
glass4 396 322 302 302 1815

gt2 29 188 188 24 376
harp2 112 2993 2993 2993 5840

khb05250 101 1350 24 24 2700
l152lav 97 1989 1989 1989 9922

liu 2178 1156 1089 1089 10626
lrn 8491 7253 2455 2455 46123

lseu 28 89 89 89 309
m20-75-1 445 520 500 75 28270
m20-75-2 445 520 500 75 28270
m20-75-3 445 520 500 75 28270
m20-75-4 445 520 500 75 28270
m20-75-5 445 520 500 75 28270
manna81 6480 3321 3321 18 12960

markshare1 1 6 62 45 45 312
markshare1 6 62 50 50 312

markshare2 1 7 74 54 54 434
markshare2 7 74 60 60 434

mas74 13 151 150 150 1706
mas76 12 151 150 150 1640
misc03 96 160 159 159 2053
misc06 820 1808 112 112 5859
misc07 212 260 259 259 8619
mitre 2054 10724 10724 10724 39704
mkc 3411 5325 5323 5323 17038

mod008 6 319 319 319 1243
mod010 146 2655 2655 2655 11203
mod011 4480 10958 96 96 22254

modglob 291 422 98 98 968
momentum1 42680 5174 2349 2349 103198
momentum2 24237 3732 1809 1808 349695
momentum3 56822 13532 6599 6598 949495

msc98-ip 15850 21143 20290 20237 92918
mzzv11 9499 10240 10240 9989 134603

mzzv42z 10460 11717 11717 11482 151261
neos10 46793 23489 23489 23484 251197
neos11 2706 1220 900 900 9360
neos12 8317 3983 3136 3136 25781
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Instance Constraints Variables Integer Binary Non-Zeros
neos13 20852 1827 1815 1815 253842
neos1 5020 2112 2112 2112 21312

neos20 2446 1165 967 937 7428
neos21 1085 614 613 613 12503
neos22 5208 3240 454 454 12312
neos23 1568 477 232 232 4284
neos2 1103 2101 1040 1040 7326
neos3 1442 2747 1360 1360 9580
neos4 38577 22884 17172 17172 99930
neos5 63 63 53 53 2016

neos648910 1491 814 748 748 4121
neos6 1036 8786 8340 8340 251946
neos7 1994 1556 454 434 5304

neos818918 2450 2750 50 50 9730
neos823206 709 1830 1720 1720 6362

neos8 46324 23228 23228 23224 313180
neos9 31600 81408 2099 2099 244224
net12 14021 14115 1603 1603 80384

noswot 182 128 100 75 735
NSR8K 6284 38356 32040 32040 371608

nsrand ipx 735 6621 6620 6620 223261
nsrand-ipx 735 6621 6620 6620 223261

nug08 912 1632 1632 1632 7296
nw04 36 87482 87482 87482 636666

opt1217 64 769 768 768 1542
p0033 16 33 33 33 98
p0201 133 201 201 201 1923
p0282 241 282 282 282 1966
p0548 176 548 548 548 1711
p2756 755 2756 2756 2756 8937

pk1 45 86 55 55 915
pp08aCUTS 246 240 64 64 839

pp08a 136 240 64 64 480
prod1 208 250 149 149 5350
prod2 211 301 200 200 10501

protfold 2112 1835 1835 1835 23491
qap10 1820 4150 4150 4150 18200

qiu 1192 840 48 48 3432
qnet1 503 1541 1417 1288 4622

qnet1 o 456 1541 1417 1288 4214
rail507 509 63019 63009 63009 468878
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Instance Constraints Variables Integer Binary Non-Zeros
railway 8 1 0 2527 1796 1177 1177 7098

ran10x26 296 520 260 260 1040
ran12x21 285 504 252 252 1008
ran13x13 195 338 169 169 676

rd-rplusc-21 125899 622 457 457 852384
rentacar 6803 9557 55 55 41842

rgn 24 180 100 100 460
roll3000 2295 1166 738 246 29386

rout 291 556 315 300 2431
set1ch 492 712 240 240 1412

seymour1 4944 1372 451 451 33549
seymour 4944 1372 1372 1372 33549

siena1 2220 13741 11775 11775 258915
sp97ar 1761 14101 14101 14101 290968
sp97ic 1033 12497 12497 12497 316629
sp98ar 1435 15085 15085 15085 426148
sp98ic 825 10894 10894 10894 316317

stein27 118 27 27 27 378
stein45 331 45 45 45 1034

stp3d 159488 204880 204880 204880 662128
swath2 884 6805 2406 2406 34965
swath3 884 6805 2706 2706 34965
swath 884 6805 6724 6724 34965
t1717 551 73885 73885 73885 325689

timtab1 171 397 171 64 829
timtab2 294 675 294 113 1482
tr12-30 750 1080 360 360 2508
trento1 1265 7687 6415 6415 93571
UMTS 4465 2947 2874 2802 23016

usAbbrv.8.25 70 3291 2312 1681 1681 9628
van 27331 12481 192 192 487296

vpm1 234 378 168 168 749
vpm2 234 378 168 168 917
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Table A.2: Number of LPs solved and time taken when using Algorithm 3.1 (1) and Algo-
rithm 3.2 (2) in the root node.

Instance #LPs-1 #LPs-2 time-1 (s) time-2 (s)
10teams 971450 1237 19783.60 64.90
aflow30a 50254 324 87.10 0.97

bell3a 64 981 0.02 0.42
blend2 4572 46 4.21 0.15
egout 1172 396 0.28 0.09
fiber 182468 306 152.83 0.52

flugpl 20 18 0.00 0.00
gen 9646 193 14.69 0.33

gesa2 32824 1494 73.92 3.86
gesa2 o 56928 1503 106.81 3.51

gt2 22 18 0.01 0.01
harp2 333636 347 308.46 1.63

khb05250 1102 353 0.68 0.27
l152lav 415000 244 1187.71 2.43

lseu 3668 56 0.57 0.02
mod008 6330 25 1.47 0.01

neos6 4107750 722 >25000 116.42
nug08 840 1066 193.88 132.38
nw04 527586 1056 24939.63 88.35
p0548 60968 1635 32.97 1.54

pp08aCUTS 7540 1986 9.81 3.21
qnet1 162756 148 355.70 0.90

qnet1 o 22 21 0.15 0.11
ran10x26 12184 95 7.53 0.11
ran12x21 16550 133 10.05 0.18
ran13x13 11498 150 5.11 0.11

rout 36322 296 86.23 1.42
stein45 2660 836 8.22 2.34
vpm1 10764 118 3.31 0.06
vpm2 17542 540 8.96 0.42
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Table A.3: Number of valid C-G inequalities generated using two criteria: maximum viola-
tion (denoted as vio) and maximum improvement in bound (denoted as imp) and the gap
closed by them.

% gap closed # generatedInstance
(vio) (imp) (vio) (imp)

10teams 0.00 0.00 0 0
30 05 100 0.00 0.00 0 0
30 95 100 100.00 100.00 0 0
30 95 98 0.00 0.00 0 0
A2C1S1 7.98 4.14 143 2
B1C1S1 13.97 10.83 376 2
B2C1S1 11.72 10.76 344 2

CMS750 4 0.00 0.00 0 0
NSR8K 0.00 0.00 0 0
UMTS 0.00 0.00 0 0
a1c1s1 8.58 4.02 149 2

acc0 100.00 100.00 15 0
acc1 100.00 100.00 15 0
acc2 100.00 100.00 15 0
acc3 100.00 100.00 1 0
acc4 100.00 100.00 0 0
acc5 100.00 100.00 0 0

aflow30a 5.72 13.82 17 2
aflow40b 1.25 3.43 15 2

air03 0.00 0.00 1 0
air04 0.00 0.00 0 0
air05 0.00 0.00 0 0

arki001 0.00 0.00 15 0
atlanta-ip 0.00 0.00 0 0

bc1 96.77 60.37 61 3
bell3a 35.38 27.38 679 4
bell5 0.26 83.25 7 3

berlin 5 8 0 0.00 0.00 12 0
bg512142 0.00 0.00 0 0

biella1 0.00 0.00 0 0
bienst1 0.00 0.00 0 0
bienst2 0.00 0.00 0 0

binkar10 1 1.95 0.00 15 0
blend2 2.60 0.00 15 1

blp-ar98 0.00 0.00 1 0
blp-ic97 0.00 0.00 0 0
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% gap closed # generatedInstance
(vio) (imp) (vio) (imp)

blp-ic98 0.00 0.00 3 0
blp-ir98 0.47 0.00 13 0
cap6000 0.00 0.00 0 0

core2536-691 0.00 0.00 0 0
core2586-950 0.00 0.00 0 0

core4284-1064 0.00 0.00 0 0
core4872-1529 0.00 0.00 0 0

dano3 3 0.01 0.01 0 0
dano3 4 0.00 0.00 0 0
dano3 5 0.00 0.00 0 0

dano3mip 0.00 0.00 0 0
danoint 0.00 0.00 0 0

dc1c 0.00 0.00 0 0
dc1l 0.00 0.00 0 0

dcmulti 19.68 33.10 15 4
dg012142 0.00 0.00 0 0
disctom 100.00 100.00 0 0
dolom1 0.00 0.00 0 0

ds 0.00 0.00 0 0
dsbmip 100.0 100.0 0 0

egout 49.79 60.48 394 18
enigma 100.00 100.00 22 0

fast0507 0.00 0.00 0 0
fiber 0.32 9.93 15 2

fixnet6 13.43 40.25 1476 6
flugpl 45.27 45.27 6 2

gen 3.92 14.78 15 2
gesa2 0.18 29.19 25 2

gesa2 o 0.32 1.79 39 2
gesa3 3.74 6.39 15 2

gesa3 o 0.00 3.74 15 2
glass4 0.00 0.00 0 0

gt2 2.90 90.87 44 5
harp2 0.00 0.00 0 0

khb05250 0.00 4.70 0 1
l152lav 0.00 0.00 0 0

liu 0.00 0.00 0 0
lrn 0.00 0.00 0 0

lseu 69.37 66.31 136 7
m20-75-1 0.24 0.53 162 2
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% gap closed # generatedInstance
(vio) (imp) (vio) (imp)

m20-75-2 0.35 0.47 199 2
m20-75-3 0.33 0.37 239 2
m20-75-4 0.24 0.44 142 2
m20-75-5 0.02 0.39 16 2
manna81 0.00 0.00 0 0

markshare1 0.00 0.00 0 0
markshare1 1 100.00 100.00 0 0

markshare2 0.00 0.00 0 0
markshare2 1 100.00 100.00 0 0

mas74 0.00 0.00 0 0
mas76 0.00 0.00 0 0
misc03 0.00 8.62 63 2
misc06 0.00 0.00 0 0
misc07 0.00 0.72 92 1
mitre 0.00 0.00 0 0
mkc 0.00 1.86 15 2

mod008 96.36 90.31 133 10
mod010 0.00 0.00 3 0
mod011 0.00 0.00 -1 0

modglob 0.00 0.00 0 0
momentum1 0.00 6.84 11 2
momentum2 0.00 0.00 0 0
momentum3 0.00 0.00 0 0

msc98-ip 0.00 0.00 0 0
mzzv11 0.00 0.00 0 0

mzzv42z 0.00 0.00 0 0
neos1 0.00 0.00 21 0

neos10 0.00 0.00 14 0
neos11 0.00 0.00 15 0
neos12 0.00 0.00 1 0
neos13 0.00 0.00 0 0
neos2 0.00 17.72 15 2

neos20 0.00 0.00 21 0
neos21 6.11 7.46 15 3
neos22 0.00 0.00 0 0
neos23 0.00 0.00 0 0
neos3 0.00 18.28 15 2
neos4 0.00 -0.00 0 1
neos5 4.17 4.17 1 1
neos6 100.00 100.00 1 0
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% gap closed # generatedInstance
(vio) (imp) (vio) (imp)

neos648910 0.00 0.00 33 0
neos7 0.00 0.00 0 0
neos8 0.00 0.00 1 0

neos818918 0.00 0.00 28 0
neos823206 0.00 15.52 17 3

neos9 0.00 0.00 0 0
net12 0.00 0.00 3 0

noswot 0.00 0.00 29 0
nsrand-ipx 2.53 0.30 15 1
nsrand ipx 2.11 0.95 15 1

nug08 0.00 0.00 0 0
nw04 0.00 0.00 0 0

opt1217 0.00 0.00 0 0
p0033 56.27 69.12 112 7
p0201 10.21 12.37 18 2
p0282 0.35 83.10 15 9
p0548 0.00 2.79 156 12
p2756 0.00 0.00 92 0

pk1 0.00 0.00 0 0
pp08a 3.96 3.98 55 4

pp08aCUTS 0.56 0.54 28 2
prod1 0.00 4.55 110 2
prod2 0.00 0.00 32 0

protfold 0.00 0.00 2 0
qap10 0.00 0.00 0 0

qiu 14.28 0.00 19 0
qnet1 1.61 0.85 14 1

qnet1 o 0.81 0.67 11 1
rail507 0.00 0.00 0 0

railway 8 1 0 0.00 0.00 1 0
ran10x26 3.28 6.18 15 3
ran12x21 2.72 6.35 15 3
ran13x13 8.28 14.17 27 4

rd-rplusc-21 0.00 0.00 20 0
rentacar 0.00 0.00 -1 0

rgn 0.00 0.00 0 0
roll3000 0.00 0.00 2 0

rout 0.00 4.91 16 2
set1ch 2.88 27.81 302 9

seymour 0.00 0.00 12 0
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% gap closed # generatedInstance
(vio) (imp) (vio) (imp)

seymour1 0.00 0.00 15 0
siena1 0.00 0.00 0 0
sp97ar 0.00 0.00 1 0
sp97ic 0.00 0.00 0 0
sp98ar 0.00 0.00 4 0
sp98ic 0.00 0.00 0 0

stein27 20.00 0.00 77 0
stein45 0.00 0.00 16 0

stp3d 0.00 0.00 0 0
swath 0.00 0.00 15 0

swath2 7.89 0.00 11 0
swath3 9.87 0.00 15 0
t1717 0.00 0.00 0 0

timtab1 0.00 7.66 54 0
timtab2 0.00 6.45 31 2
tr12-30 3.94 4.77 101 10
trento1 0.00 0.00 0 0

usAbbrv.8.25 70 0.00 0.00 26 0
van 2.65 0.00 13 0

vpm1 0.00 78.18 25 5
vpm2 31.88 33.75 178 5
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Table A.4: Number of valid split inequalities generated using two criteria: maximum viola-
tion (denoted as vio) and maximum improvement in bound (denoted as imp) and the gap
closed by them.

% gap closed # generatedInstance
(vio) (imp) (vio) (imp)

10teams 0.00 0.00 1 0
30 05 100 0.00 0.00 0 0
30 95 100 100.00 100.00 0 0
30 95 98 0.00 0.00 0 0
A2C1S1 0.04 0.05 1 0
B1C1S1 0.02 0.00 21 0
B2C1S1 0.00 0.00 64 0

CMS750 4 0.00 0.00 0 0
NSR8K 0.00 0.00 0 0
UMTS 0.00 0.00 0 0
a1c1s1 0.08 0.00 1 0

acc0 100.00 100.00 21 0
acc1 100.00 100.00 0 0
acc2 100.00 100.00 0 0
acc3 100.00 100.00 0 0
acc4 100.00 100.00 0 0
acc5 100.00 100.00 0 0

aflow30a 3.40 22.51 1305 160
aflow40b 0.22 0.00 22 0

air03 0.00 0.00 0 0
air04 0.00 0.00 0 0
air05 0.00 0.00 0 0

arki001 0.00 0.00 0 0
atlanta-ip 0.00 0.00 0 0

bc1 0.08 2.30 2 0
bell3a 6.97 49.32 659 663
bell5 0.29 0.00 708 0

berlin 5 8 0 0.00 0.00 208 0
bg512142 0.01 0.00 497 0

biella1 0.00 0.00 0 0
bienst1 0.00 0.00 1806 0
bienst2 0.00 0.00 1360 0

binkar10 1 0.17 0.00 34 0
blend2 0.00 0.00 194 0

blp-ar98 0.00 0.00 0 0
blp-ic97 0.00 0.00 0 0
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% gap closed # generatedInstance
(vio) (imp) (vio) (imp)

blp-ic98 0.00 0.00 0 0
blp-ir98 0.00 0.00 0 0
cap6000 0.00 0.00 0 0

core2536-691 0.00 0.00 0 0
core2586-950 0.00 0.00 0 0

core4284-1064 0.00 0.00 0 0
core4872-1529 0.00 0.00 0 0

dano3 3 0.01 0.01 0 0
dano3 4 0.00 0.00 0 0
dano3 5 0.00 0.00 0 0

dano3mip 0.00 0.00 0 0
danoint 0.18 0.00 861 0

dc1c 0.00 0.00 0 0
dc1l 0.00 0.00 0 0

dcmulti 1.43 12.57 1929 14
dg012142 0.00 0.00 0 0
disctom 100.00 100.00 0 0
dolom1 0.00 0.00 0 0

ds 0.00 0.00 0 0
dsbmip 100.10 100.10 -1 -1

egout 2.26 -1 27314 -1
enigma 100.00 100.00 60 0

fast0507 0.00 0.00 0 0
fiber 0.00 28.60 243 142

fixnet6 0.33 34.59 1519 111
flugpl 50.51 0.00 3129 0

gen 0.11 0.00 213 0
gesa2 0.04 8.40 617 63

gesa2 o 0.05 10.30 354 21
gesa3 0.54 0.00 427 0

gesa3 o 0.00 0.00 131 0
glass4 0.00 0.00 14 2

gt2 0.44 77.85 1917 90
harp2 0.00 0.00 0 0

khb05250 4.53 0.00 169 0
l152lav 0.17 0.00 7 0

liu 0.00 24.21 86 1
lrn 0.00 0.00 0 0

lseu 0.00 66.06 548 28
m20-75-1 0.02 0.02 265 4
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% gap closed # generatedInstance
(vio) (imp) (vio) (imp)

m20-75-2 0.05 0.01 347 0
m20-75-3 0.03 0.00 346 0
m20-75-4 0.04 2.11 322 5
m20-75-5 0.03 1.26 290 11
manna81 0.00 0.00 1 1420

markshare1 0.00 0.00 69 0
markshare1 1 100.00 100.00 63 0

markshare2 0.00 0.00 92 0
markshare2 1 100.00 100.00 78 0

mas74 0.00 0.00 0 0
mas76 0.00 0.00 0 0
misc03 0.00 10.75 77 210
misc06 0.00 0.00 26 0
misc07 0.00 0.71 83 21
mitre 0.00 0.00 0 0
mkc 0.00 0.00 0 0

mod008 4.04 78.77 914 1134
mod010 0.00 0.00 0 0
mod011 0.00 0.00 -1 -1

modglob 1.26 0.00 1696 0
momentum1 0.00 0.00 0 0
momentum2 0.00 0.00 0 0
momentum3 0.00 0.00 0 0

msc98-ip 0.00 0.00 0 0
mzzv11 0.00 0.00 0 0

mzzv42z 0.00 0.00 0 0
neos1 0.00 0.00 2 0

neos10 0.00 0.00 0 0
neos11 0.00 0.00 21 0
neos12 0.00 0.00 0 0
neos13 0.00 0.00 0 0
neos2 0.00 8.48 55 21

neos20 0.00 0.00 21 0
neos21 0.00 31.40 935 462
neos22 0.00 0.00 252 0
neos23 0.00 0.00 3130 0
neos3 0.00 5.13 13 21
neos4 4.47 4.47 0 0
neos5 3.23 13.93 426 182
neos6 100.00 100.00 0 0
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% gap closed # generatedInstance
(vio) (imp) (vio) (imp)

neos648910 0.00 0.00 270 0
neos7 0.00 0.00 0 0
neos8 0.00 0.00 0 0

neos818918 0.00 0.00 22 8
neos823206 0.00 0.00 16 0

neos9 0.00 0.00 0 0
net12 0.00 1.21 0 0

noswot 0.00 0.00 3999 0
nsrand-ipx 0.00 0.00 0 0
nsrand ipx 0.00 0.00 0 0

nug08 0.00 0.00 0 0
nw04 0.00 0.00 0 0

opt1217 0.00 0.19 258 84
p0033 0.00 70.16 173 27
p0201 3.10 67.31 170 143
p0282 0.01 82.06 780 737
p0548 0.00 0.00 9 0
p2756 0.00 0.00 3 12

pk1 0.00 0.00 656 0
pp08a 2.77 28.73 5734 161

pp08aCUTS 1.09 13.34 5317 42
prod1 0.00 40.14 926 622
prod2 0.00 34.97 773 588

protfold 0.00 3.30 0 1
qap10 0.00 0.00 0 0

qiu 1.62 35.29 105 514
qnet1 0.02 21.08 13 21

qnet1 o 0.03 60.63 10 142
rail507 0.00 0.00 0 0

railway 8 1 0 0.00 0.00 52 21
ran10x26 1.25 25.12 692 98
ran12x21 0.97 14.28 1118 19
ran13x13 1.84 27.99 1185 265

rd-rplusc-21 0.00 0.00 0 0
rentacar 0.00 0.00 -1 -1

rgn 0.00 23.40 120 615
roll3000 0.00 0.00 0 0

rout 0.00 14.54 1015 105
set1ch 0.07 3.46 1575 43

seymour 0.00 0.00 88 0
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% gap closed # generatedInstance
(vio) (imp) (vio) (imp)

seymour1 0.00 0.00 158 0
siena1 0.00 0.00 0 0
sp97ar 0.00 0.00 0 0
sp97ic 0.00 0.00 0 0
sp98ar 0.00 0.00 0 0
sp98ic 0.00 0.00 0 0

stein27 0.00 0.00 705 0
stein45 0.00 0.00 666 0

stp3d 0.00 0.00 0 0
swath 0.00 0.00 0 0

swath2 0.00 0.00 0 0
swath3 0.00 0.00 0 0
t1717 0.00 0.00 0 0

timtab1 0.00 59.72 206 235
timtab2 0.00 26.68 234 177
tr12-30 0.13 0.10 324 2
trento1 0.00 0.00 0 0

usAbbrv.8.25 70 0.00 0.00 13 21
van 0.00 0.00 0 0

vpm1 0.00 78.18 251 10
vpm2 0.00 56.93 573 293
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