
ON THE COMPLEXITY OF SELECTING DISJUNCTIONS IN

INTEGER PROGRAMMING

ASHUTOSH MAHAJAN∗ AND TED RALPHS †

Abstract. The imposition of general disjunctions of the form “πx ≤ π0 ∨ πx ≥ π0 + 1”, where

π, π0 are integer valued, is a fundamental operation in both the branch-and-bound and cutting-plane

algorithms for solving mixed integer linear programs. Such disjunctions can be used for branching

at each iteration of the branch-and-bound algorithm or to generate split inequalities for the cutting-

plane algorithm. We first consider the problem of selecting a general disjunction and show that

the problem of selecting an optimal such disjunction, according to specific criteria described herein,

is NP-hard. We further show that the problem remains NP-hard even for binary programs or

when considering certain restricted classes of disjunctions. We observe that the problem of deciding

whether a given inequality is a split inequality can be reduced to one of the above problems, which

leads to a proof that the problem is NP-complete.
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1. Introduction. In this paper, we study the computational complexity of the
problem of selecting “optimal” general disjunctions in the branch-and-bound and
cutting-plane algorithms for solving mixed integer linear programs (MILPs). The
motivation for studying the complexity of these problems is that the solution of such
problems may be useful in selecting disjunctions for branching or for generating valid
inequalities. For instance, these problems can, in principle, be solved at each node
of the branch-and-bound tree to select an “optimal” disjunction for partitioning the
feasible region of that node. In an earlier paper [Mahajan and Ralphs, 2009], we
showed by means of several experiments that the number of nodes in the branch-
and-bound tree can be reduced significantly (by a factor of more than two for 75%
of instances in the test) by employing such selection procedures. However, the time
required to solve these problems, when formulated as straightforward optimization
problems, using a generic solver, is prohibitively large. In this paper, we show that
these problems in fact lie in the complexity class NP-hard, even for binary MILPs
and even when certain restrictions are imposed on the structure of the disjunctions.

Before defining the problem of selecting an optimal disjunction, it is important
to understand the role of disjunctions in the branch-and-bound and cutting-plane
algorithms. Consider the mathematical program

min cx

s.t. Ax ≥ b (1.1)

x ∈ Zd × Rn−d,

where b ∈ Qm, c ∈ Qn, A ∈ Qm×n are inputs and where the variables with indices
1, 2, . . . , d are constrained to be integer-valued. A particular case of the MILP (1.1)
is when n = d, i.e., when all variables are constrained to be integers. Such an MILP
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is also known simply as an integer program (IP).

min cx

s.t. Ax ≥ b (IP)

x ∈ Zn.

We will henceforth work with this particular case for notational convenience. The
complexity results for the more general mixed integer case follow from our results.
We now briefly describe the branch-and-bound and the cutting-plane algorithms, em-
phasizing the role played by disjunctions in both. Both these methods start by solving
a linear programming (LP) relaxation of (IP):

min
x∈P

cx, (1.2)

where P = {x ∈ Rn | Ax ≥ b}. If the solution x∗ ∈ P to the LP relaxation is a member
of Zn, then x∗ is an optimal solution for (IP) and we are done. Otherwise, we need to
refine our search by tightening the relaxation. How this search is undertaken in each
algorithm is described next.

Branch-and-Bound Algorithms.. In an LP-based branch-and-bound algorithm for
solving (IP), if x∗ /∈ Zn, we determine a disjunction (usually binary) that is satisfied by
all solutions to (IP) but not satisfied by x∗. Such a disjunction, referred to henceforth
as a valid disjunction, divides the feasible region of (IP) into (usually disjoint) subsets.
The algorithm can then be applied recursively until exhaustion to the subproblems
associated with the subsets obtained after such a disjunction is imposed. For a more
complete and formal description, see [Nemhauser and Wolsey, 1988]. Note that we use
the term subproblem to refer to the restriction of the original instance (IP) resulting
from the imposition of one or more branching disjunctions. These subproblems should
not be confused with the associated problem of selecting a branching disjunction,
which is formulated in the following sections.

A disjunction of the form “xi ≤ k ∨ xi ≥ k + 1” for any 1 ≤ i ≤ n, k ∈ Z is
always valid for (IP). Such a disjunction will be called a variable disjunction. Most
implementations of branch-and-bound use only variable disjunctions for branching.
More generally, however, any π ∈ Zn, π0 ∈ Z yields a disjunction “πx ≤ π0 ∨ πx ≥
π0 + 1”. Such a disjunction, referred to henceforth as a general disjunction and
denoted by the ordered pair (π, π0), is also always valid. Since the set of general
disjunctions includes all variable disjunctions, selecting a disjunction from this larger
set should, in principle, be more effective. In this paper, we study the complexity of
the problem of selecting an “optimal” general disjunction from this set. Since such
general disjunctions can also be used to generate valid inequalities for cutting-plane
algorithms, we describe these algorithms next.

Cutting-Plane Algorithms.. If the solution x∗ ∈ P to the LP relaxation is not a
member of Zn, then we can also determine a valid inequality, (α, β) ∈ Rn+1, such
that αx∗ < β. An inequality (α, β) ∈ Rn+1 is said to be valid for problem (IP) if
αx ≥ β for any x ∈ P ∩Zn. When such a valid inequality is violated by some solution
to the LP relaxation, it is also known as a cutting plane. After such a cutting plane
has been added to the LP relaxation of (IP), we can now solve the tighter relaxation
again. When this process is applied iteratively, it is called a cutting-plane algorithm.

The first cutting-plane algorithm was proposed by Gomory [1958]. Since then,
many different classes of valid inequalities have been discovered. The most general
amongst them is the class of split inequalities which are inequalities obtained from
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the application of general disjunctions. Given a problem (IP) any inequality (α, β) ∈
Rn+1 is called an elementary split inequality [Cook et al., 1990] if, for some general
disjunction (π, π0) ∈ Zn+1, (α, β) is valid for both sets: {x ∈ P | πx ≤ π0} and
{x ∈ P | πx ≥ π0 + 1}. In his survey, Cornuéjols [2008] points out that most classes
of valid inequalities for solving general integer programs are particular cases of split
inequalities.

Previous Work.. In its simplest form, the efficiency of both the branch-and-bound
and cutting-plane algorithms depends primarily on the number of iterations, i.e., the
number of LP relaxations solved. The goal of selecting a disjunction can thus be
viewed as that of minimizing the total number of iterations. Despite the close rela-
tionship between the branch-and-bound and cutting-plane algorithms, the question of
which disjunctions to employ in each of the two algorithms has been studied largely in
isolation. A disjunction for branching is usually evaluated by computing or estimating
its effect on the objective function value of the LP relaxations of the subproblems.
On the other hand, valid inequalities are usually selected on the basis of the violation
of the current LP solution. Two notable exceptions are the computational studies
of Karamanov and Cornuéjols [2007] and Cornuéjols et al. [2008] for selecting those
disjunctions for branching that could be used for generating specific valid inequalities.

Liberatore [2000] showed in the context of Satisfiability Problems (SATs) that
the problem of finding optimal variable disjunction (according to the criteria of min-
imizing the overall size of the search tree) for the branch-and-bound algorithm is
NP-hard. Since SATs are reducible, in polynomial time, to IPs, a similar result may
be expected for the case of IPs. In light of this observation, the problem of select-
ing an optimal general branching disjunction appears to be difficult. The approach
taken by most solution procedures, and the one we shall take here, is then to evaluate
candidate branching disjunctions by assessing their effect using more myopic criteria.
Unfortunately, we show that the selection problems are NP-hard even when these
criteria are used.

The primary criterion for selecting (for branch-and-bound) variable disjunctions
studied in the literature so far is that of bound improvement. Both Linderoth and
Savelsbergh [1999] and Achterberg et al. [2005] showed empirically that selecting a
variable disjunction that leads to the maximum increase in the bound of the sub-
problems can reduce the number of subproblems required to solve the problem. Some
other heuristic procedures to select variable disjunctions have been studied by, among
others, Patel and Chinneck [2007] and Gilpin and Sandholm [2007].

On the other hand, the criteria for selecting general disjunctions for branching
have primarily been limited to “width” of the feasible region associated with the LP
relaxation of the current subproblem. In their survey, Aardal and Eisenbrand [2004]
discussed the fact that when the dimension is fixed, polynomial time algorithms for
solving integer programs can be obtained by branching on general disjunctions ob-
tained by determining the so-called thin directions of the feasible region, i.e., disjunc-
tions along which the width of the feasible region is small. These polynomial time
algorithms are derived from the seminal work of Lenstra [H.W. Lenstra, 1983] and its
extensions. It has also been shown, for instance by Krishnamoorthy and Pataki [2006],
that certain specific problems can be solved “easily” if one branches on particular gen-
eral disjunctions. Some heuristics that may enhance the computational efficiency of
the branch-and-bound algorithm by branching on general disjunctions have also been
proposed recently. Fischetti and Lodi [2003] proposed a primal heuristic in which the
search space is constrained using a general disjunction. Owen and Mehrotra [2001]
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proposed a greedy heuristic to select a general disjunction for branching. Their criteria
for selection is also the improvement in the associated bound.

Caprara and Letchford [2003] addressed the computational complexity of the
problem of optimizing over the closure of elementary split inequalities and Balas and
Saxena [2008] performed computational experiments to optimize over this closure.
The elementary split closure of the problem (IP) is the feasible region obtained by
adding all possible elementary split inequalities to the description of the LP relaxation.
Cook et al. [1990] showed that this closure is polyhedral. Any inequality that is valid
for this closure is said to have split-rank one. Therefore, it follows from the result
of Caprara and Letchford [2003] that the problem of deciding if the split-rank of
a given inequality is one is NP-complete. In this paper, we will also show that
an inequality that has split-rank one may not be an elementary split inequality. We
further show, that despite this difference, the problem of deciding if a given inequality
is an elementary split inequality is also NP-complete.

The paper is structured as follows. In Section 2, we describe the criterion of
maximizing bound improvement for selecting general disjunctions and also state our
main result. We then discuss its relationship with the criterion of minimum width.
The proofs of computational complexity of the problems are provided in Section 3.
We then describe the implication of our results for two problems related to elementary
split inequalities in Section 4. Finally, in Section 5, we present conclusions.

2. Selecting General Disjunctions. The complexity of the problem of finding
a valid inequality that is most violated by a given vector has been studied previously
for many classes of inequalities, including split inequalities. From the standpoint of
formal complexity, the problem of selecting disjunctions for branching has received
relatively less attention, yet there is a strong connection between the two problems
in the case of split inequalities. In fact, as we discuss below, the problem of selecting
a disjunction that maximizes the resulting bound improvement is equivalent to that
of selecting an elementary split inequality by the same criterion. In what follows,
we thus do not distinguish between the two cases, referring instead to the generic
disjunction selection problem. We show how this problem relates to that of minimizing
the width of a polytope and expand on the idea that the criterion of maximizing bound
improvement leads to a unified view of the problem of selecting general disjunctions.
Below, we formalize this problem and study its complexity in the next section.

2.1. Maximizing Bound Improvement. Consider the integer program (IP)
and assume that the associated polyhedron P is nonempty. Let (π̂, π̂0) ∈ Zn+1 be
a given general disjunction. Then the LPs associated with the subproblems created
after branching are

z∗L = min cx
s.t. Ax ≥ b

π̂x ≤ π̂0

and
z∗R = min cx
s.t. Ax ≥ b

π̂x ≥ π̂0 + 1.
(2.1)

The lower bound obtained for (IP) after solving these two LPs is zlb = min{z∗L, z
∗
R}.

We can also generate an elementary split inequality, say (α̂, β̂) ∈ Rn+1, using the same

disjunction. The lower bound obtained after adding (α̂, β̂) to the LP relaxation is

zlc = min cx

Ax ≥ b (2.2)

α̂x ≥ β̂.
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The following proposition shows that the lower bound achieved by branching on a
given disjunction is the same as the lower bound that may be achieved by generating
elementary split inequalities from the same disjunction.

Proposition 2.1. Given (IP) and a valid disjunction (π̂, π̂0) ∈ Zn+1. Let zlb be
the lower bound obtained after branching on (π̂, π̂0). Then

1. there exists an elementary split inequality that can be obtained from (π̂, π̂0)
such that the lower bound obtained by adding it to the LP relaxation of (IP)
is zlb , and

2. the LP solution value after adding any elementary split inequality obtained
from (π̂, π̂0) to the LP relaxation of (IP) is at most zlb .

Proof. Clearly, cx ≥ zlb is satisfied by all points of the sets {x ∈ P | π̂x ≤ π̂0}
and {x ∈ P | π̂x ≥ π̂0 + 1}. Therefore, (c, zlb) is a valid elementary split inequality
that when added to the LP relaxation makes the objective function value zlb .

Now consider any elementary split inequality, say (α̂, β̂), derived from disjunction

(π̂, π̂0), and let zlc = min{cx | x ∈ P, α̂x ≥ β̂}. From the definition of an elementary

split inequality, min{α̂x | x ∈ P, π̂x ≤ π̂0} ≥ β̂ and thus the set {x ∈ P | π̂x ≤

π̂0} ⊆ {x ∈ P | α̂x ≥ β̂}. Hence, min{cx | x ∈ P, π̂x ≤ π̂0} ≥ zlc . Similarly,
min{cx | x ∈ P, π̂x ≥ π̂0 + 1} ≥ zlc and hence zlb ≥ zlc .

Using the above mentioned equivalence we can now refer to the problems of
maximizing the lower bound using either branching or an elementary split inequality
together as a single problem of selecting general disjunctions.

Problem 1 (Greatest lower bound from a general disjunction). Given a math-
ematical program of the form (IP), find (π̂, π̂0) ∈ Zn+1 such that min{z∗L, z

∗
R} is

maximized, where z∗L, z
∗
R are as defined in (2.1).

Problem 1 is an optimization problem and the associated decision problem is as
follows.

Problem 2 (Lower bound from a general disjunction). Given a mathematical
program of the form (IP) and zl ∈ R, does there exist (π̂, π̂0) ∈ Zn+1 such that the
lower bound after imposing the disjunction is at least zl, i.e., min{z∗L, z

∗
R} ≥ zl?

A special case of Problem 2 is one where the relaxation is required to become
infeasible after the disjunction has been used. This means both problems in (2.1)
become infeasible after a disjunction (π̂, π̂0) has been used for branching or an ele-
mentary split inequality (0, 1), where 0 is an n-dimensional vector of all zeros, can be
derived imposing the disjunction.

Problem 3 (Disjunctive infeasibility). Given a mathematical program of the
form (IP), does there exist (π̂, π̂0) ∈ Zn+1 such that the feasible region of the LP
relaxation of (IP) after imposing the disjunction is empty?

The solution to Problem 3 does not depend upon the cost vector c because it
is only desired to prove that the problem (IP) is infeasible. The problem of finding
a desired disjunction (π̂, π̂0) can be formulated as follows. Assume again that P is
nonempty. Suppose (π̂, π̂0) is chosen such that both LPs (2.1) become infeasible.
Then consider the following problems:

ζ∗L = min π̂x
s.t. Ax ≥ b

and
ζ∗R = min−π̂x
s.t. Ax ≥ b.

(2.3)



6 A. MAHAJAN AND T. K. RALPHS

The dual of each of the above two programs can be written, respectively, as:

ζ∗L = max pb
s.t. pA = π̂

p ≥ 0
and

ζ∗R = max qb
s.t. qA = −π̂

q ≥ 0.
(2.4)

The programs (2.1) are infeasible if and only if ζ∗L > π̂0 and ζ∗R > −(π̂0 + 1). By
using this condition and combining the above two dual formulations, one can get the
desired formulation for giving an answer to Problem 3. More precisely, the LPs (2.1)
are infeasible if and only if the system

pA− π = 0

qA+ π = 0

pb− π0 > 0

qb+ π0 > −1 (2.5)

p ≥ 0

q ≥ 0

(π, π0) ∈ Zn+1,

has a feasible solution with π = π̂, π0 = π̂0. Hence, there is a disjunction that proves
infeasibility if and only if there is a solution to (2.5).

Once we have a formulation that may be solved in order to answer Problem 3,
we can extend it (by adding the constraint cx ≤ zl to the original set of constraints
Ax ≥ b and following the above steps) to address Problem 2 as well. One can also
answer Problem 1 by iterating this process over different values of zl. More details
about this procedure are described in Mahajan and Ralphs [2009].

The main result of this paper is that Problem 3 is NP-complete. We defer
the proof until Section 3, where we also present proofs for the complexity of other
restrictions of the problem. Problem 3 is equivalent to that of finding (π̂, π̂0) ∈ Zn+1

such that P ⊆ {x ∈ Rn | π̂0 < π̂x < π̂0+1}. If such a (π̂, π̂0) exists, then the “width”
P is less than one. In the next section, we study the problem of minimizing the width
of P and show that the general framework described above can be extended to that
problem as well.

2.2. Minimizing Width. Assuming that P is full dimensional, the width of P
in direction π ∈ Zn is maxx,y∈P(πx− πy), while the width of P is

w(P) = min
π

max
x,y∈P

(πx− πy), π ∈ Zn, π 6= 0.

A vector π that is obtained from the above optimization problem, along with a scalar
π0 = ⌊πx∗⌋, where x∗ is the optimal solution of the LP relaxation (1.2), can then be
used to determine a disjunction for branching. Sebő [1999] showed that the problem
of determining whether w(P) ≤ 1 is NP-complete, even when P is a simplex. It
is also known, from a result of Banaszczyk et al. [1999], that if P ∩ Zn is empty,

then w(P) ≤ Cn
3

2 , where C is a constant. Derpich and Vera [2006] approximate the
direction of the minimum width in order to assign priorities for branching on variables
and use this to select variable disjunctions.
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The width of P in a given direction π̂ can be obtained by solving the LP

max π̂x − π̂y

s.t. Ax ≥ b (2.6)

Ay ≥ b.

The dual associated with the LP (2.6) is

min − qb− pb

s.t. pA = π̂

qA = −π̂ (2.7)

p, q ≥ 0.

Therefore, the problem of finding w(P) can be written as

min − qb− pb

s.t. pA− π = 0

qA+ π = 0 (2.8)

π 6= 0

π ∈ Zn

p, q ≥ 0.

Since the disjunction (π, π0) is the same as the disjunction (−π,−π0−1), the condition
π 6= 0 can be replaced by the inequality

∑n

i=1
πi ≥ 1. Problem (2.8) can now be solved

as an IP.
Note that if there exists a (π̂, π̂0) ∈ Zn+1 that satisfies the formulation (2.5), then

w(P) < 1. However, the converse is not true. To see this, consider as an example
P = {x ∈ R2

+ | 3 ≤ 4x1 + 4x2 ≤ 5} and n = 2. Then, even though w(P) ≤ 1

2
< 1,

(IP) is still feasible. Comparing formulations (2.5) and (2.8), one can see that (2.5) is
more constrained than (2.8). As a result, there may be some benefit to using solutions
to the formulation (2.5) to generate branching disjunctions over those of (2.8). A
feasible solution to formulation (2.5) guarantees that the LP relaxations associated
with both subproblems created after branching are infeasible and therefore gives a
short proof of infeasibility, provided that such a short proof exists. Branching along
a direction of minimum width does not guarantee this. As an example, consider
an IP with feasible region {x ∈ Z2

+ | 7 ≤ 8x1 + 8x2 ≤ 9,−3 ≤ 4x1 − 4x2 ≤ 3}.
Branching on the disjunction x1 ≤ 0 ∨ x1 ≥ 1 immediately makes LP relaxation
of each subproblem infeasible while branching along a direction of minimum width
(w(P) = 0.25), x1 + x2 ≥ 2 ∨ x1 + x2 ≤ 1 results in two subproblems out of which
one still has a feasible LP relaxation and needs further processing. Krishnamoorthy
[2008] showed that, in general, branching along a direction of minimum width need
not result in a small branch-and-bound tree, even in higher dimensions.

Even though there are some similarities in the formulations (2.5) and (2.8), it is
not easy to reduce the problem of finding w(P) to Problem 3. Therefore, we use a
different approach to address the complexity of the latter.

3. Complexity of Selecting General Disjunctions. In this section, we begin
by showing that Problem 3 lies in the complexity class NP . For the case when (π, π0)
is restricted to variable disjunctions only, Problem 3 can be solved in time polynomial
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in the size of the input by solving the two LPs associated with each of the n possible
variable disjunctions. The following proofs show that the problem becomes difficult
in the case of general disjunctions. We show that Problem 3 is NP-complete by
reducing the well known number-partitioning problem to Problem 3. We then show
that the problem remains NP-complete even when several common restrictions are
introduced. We start with the following lemma.

Lemma 3.1. If (π̂, π̂0, p̂, q̂) is a feasible solution to (2.5), then π̂0 < p̂b ≤ −q̂b <
π̂0 + 1.

Proof. The first and last inequalities come directly from the formulation (2.5).
Let ζ∗L = minx{π̂x | Ax ≥ b}, ζ∗R = maxx{π̂x | Ax ≥ b}. Then ζ∗L ≤ ζ∗R. Also,
p = p̂ and q = q̂ are feasible solutions to the dual programs (2.4). By using weak
duality on the associated LPs (2.3), we get that ζ∗L ≥ p̂b and ζ∗R ≤ −q̂b. Thus,
π̂0 < p̂b ≤ ζ∗L ≤ ζ∗R ≤ −q̂b < π̂0 + 1.

We now show that Problem 3 is in the complexity class NP . If the matrices A, b
have integer entries only, then we claim that constraints p < 1, where 1 is the vector
of all ones, may be added to (2.5) without any loss of generality. In order to see this,
suppose the formulation (2.5) has a feasible solution with p = p̂, q = q̂, π = π̂, π0 = π̂0.
Further suppose that p̂i ≥ 1 for some i, 1 ≤ i ≤ m. Then p = p̂ − ei, q = q̂ + ei, π =
π̂ − ai, π0 = π̂0 − bi is also a feasible solution. Here, ei is the ith unit vector and
ai the ith row of the matrix A. This process can be applied repeatedly until p is
component-wise less than 1. If we assume that p < 1, then |pb| ∈ [0,

∑m

i=1
|bi|).

Also, using (2.5), |πj | ∈ [0,
∑m

i=1
|aij |), j = 1, . . . , n. Using Lemma 3.1, this implies

|π0| ≤ |pb| ≤
∑m

i=1
|bi|. So, if the system (2.5) is feasible, then a feasible solution may

be expressed in size that is polynomial in the size of the input. Also, given a (π̂, π̂0),
one can determine whether a disjunction on (π̂, π̂0) will make the LPs (2.1) infeasible
in time that is polynomial in the size of the input by solving the two linear programs.
This shows that Problem 3 lies in the complexity class NP.

Before further addressing the complexity of Problem 3, we consider the same
problem applied to a system of linear Diophantine equations in place of the system
of form (IP). Suppose we are given a system of linear Diophantine equations of the
form,

Ax = b

x ∈ Zn. (3.1)

Such equations can be solved in time polynomial in the size of the input [Nemhauser
and Wolsey, 1988, pg. 191]. A branching disjunction (π̂, π̂0) that can make the asso-
ciated LP relaxations of (3.1) infeasible can be shown, by using the approach above,
to satisfy (along with a suitable p̂, q̂) the system

pA = π,

−qA = π,

pb > π0, (3.2)

−qb < 1 + π0, and

(π, π0) ∈ Zn+1.

We claim that the system (3.2) can be solved in time polynomial in the size of the
input. The system of Diophantine equations (3.1) is infeasible if and only if there
exists a λ such that λA ∈ Zm and λb 6∈ Z [Nemhauser and Wolsey, 1988, pg. 191].
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Further, if (3.1) is infeasible, then such a λ can be found in polynomial time. In such
a case, p = −q = λ, π = λA, π0 = ⌊λb⌋ is a feasible solution to (3.2). Conversely,
suppose that (3.1) has a feasible solution x0. Such a feasible solution can be found in
polynomial time. Then for any (π, π0) ∈ Zn+1, πx0 = pAx0 = pb and πx0 = −qAx0 =
−qb. Since πx0 ∈ Z, there is no π0 ∈ Z such that π0 > πx0 and π0 < πx0+1. Thus, in
this case, the existence of the solution x0 is sufficient to show that (3.2) is infeasible.
So a feasible solution for the system (3.2) can be found or it can be shown that no
such solution exists in time polynomial in the size of the input.

Now consider the problem (IP) again. We just have shown that the problem
of finding λ ∈ Rm such that λA ∈ Zn, λb 6∈ Z is polynomially solvable. Existence
of such a λ is a necessary condition for the feasibility of a given program of the
form (2.5). To see this, suppose p = p̂, π = π̂, π0 = π̂0 are feasible for (2.5) and
substitute λ = p̂. Then λA = π̂ ∈ Zn, but π̂0 < λb < π̂0 + 1. Existence of such
a λ is not, however, sufficient for feasibility of (2.5). For instance, consider the set:
P ∩ Z2 = {x ∈ Z2|3x1 + 6x2 ≥ 2} and λ = 1

3
. Clearly λA ∈ Z2, λb 6∈ Z. Still, P ∩ Zn

has at least one feasible point (1, 0). This provides a hint that Problem 3 may not be
solvable in polynomial time.

We now show that Problem 3 is NP-complete by reducing the well-known number
partitioning problem to Problem 3. The Number Partitioning Problem PARTITION
is defined as follows

Problem 4 (PARTITION , [Garey and Johnson, 1979]). Given a finite set S
and a size ai ∈ Z+ for each i ∈ S. Is there a subset K ⊆ S such that

∑

i∈K ai =
∑

i∈S\K ai?
Proposition 3.2. Problem 3 is NP-complete.
Proof. The proof is a modification of the approach used by Sebő [1999] for the

problem of finding width of the LP relaxation. Consider Problem 4 defined above,
which is known to be NP-complete. Let n ∈ N, S = {1, 2, . . . , (n−1)}, ai ∈ Z+, i ∈ S
be inputs for Problem 4. Let s = 1

2

∑

i∈S ai. An instance of Problem 4 can be
answered “yes” if and only if there exists a set K ⊆ {1, 2, . . . , n − 1} such that
∑

i∈K ai = s. Since multiplying each ai by 4 results in a problem equivalent to
Problem 4, it is assumed, without loss of generality, that s ∈ Z+, s ≥ 2. Problem 4 can
be reduced to Problem 3 as follows. Consider the simplex Ps of points v

i, i = 1 . . . n+1
in n dimensions, with the coordinates of vi defined as

vij =







































1

2n
if j 6= i, i = 1, 2, . . . , n,

1

2n
+ 1

2
if j = i, i = 1, 2, . . . , n,

aj if i = n+ 1, j = 1, 2, . . . , n− 1,

− 1

2

∑n−1

k=1
ak + 1

2
if i = n+ 1, j = n.

So, v1 = ( 1

2n
+ 1

2
, 1

2n
, 1

2n
, . . . , 1

2n
), v2 = ( 1

2
, 1

2
+ 1

2n
, 1

2n
, . . . , 1

2n
), . . . , vn = ( 1

2
, 1

2
, . . . , 1

2n
+

1

2
), vn+1 = (a1, a2, . . . , an−1,−s + 1

2
). We will show that the desired subset K exists

if and only if there exists (π̂, π̂0) ∈ Zn+1, such that Ps ⊆ {x | π̂0 < π̂x < π̂0 + 1}.
Suppose the desired subset K exists, i.e., K is a set such that

∑

i∈K ai = s. Let
π̂i = 1, i ∈ K, π̂n = 1, π̂i = 0, i 6∈ K ∪ {n}, π̂0 = 0. Then, 0 < π̂vi < 1, i = 1, 2, . . . , n.
Also, vn+1π̂ = 1

2
. Since all vertices of Ps satisfy the condition π̂0 < π̂x < π̂0 + 1,

Ps ⊆ {x | π̂0 < π̂x < π̂0 + 1}. (π̂, π̂0) is then the required disjunction.
Conversely, suppose there exists some (π̂, π̂0) ∈ Zn+1 such that Ps ⊆ {x | π̂0 <
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π̂x < π̂0 + 1}. Then, π̂0 < π̂vi < π̂0 + 1, i = 1, 2, . . . , (n+ 1) and |π̂(vi − vk)| < 1, i =
1, 2, . . . , n, k = 1, 2, . . . , n. Substituting the coordinates of vi and vk, one gets that
| π̂i−π̂k

2
| < 1. Since π̂i, π̂k ∈ Z, this means that |π̂i − π̂k| ≤ 1 for each pair (i, k) ∈

{1, 2, . . . , n}2. So, π̂i ∈ {t, t + 1}, i = 1, 2, . . . , n for some t ∈ Z. Since disjunction
(π̂, π̂0) is equivalent to disjunction (−π̂,−π̂0 − 1), it can be assumed without loss of
generality that t ≥ 0. Let K = {i | π̂i = t + 1}. Substituting the coordinates of v1

and π̂ into the inequalities π̂0 < v1π̂ < π̂0 + 1, one gets

π̂0 <

n
∑

i=1

v1i π̂i < π̂0 + 1

⇒ π̂0 <

n
∑

i=1

π̂i

2n
+

π̂1

2
< π̂0 + 1

⇒ π̂0 <
t

2
+

∑

i∈K

1

2n
+

π̂1

2
< π̂0 + 1.

Since π̂1

2
∈ { t

2
, t+1

2
}, the only integer value of π̂0 that satisfies the above condition is

π̂0 = t. Thus π̂ ∈ {t, t+ 1}n, π̂0 = t. Also, K = φ would mean that π̂0 < t < π̂0 + 1.
This is not possible for any integers t, π̂0. Hence K is not empty. The condition
π̂0 < π̂vn+1 < π̂0 implies:

π̂0<

n
∑

i=1

vn+1
i π̂i < π̂0 + 1

⇒ π̂0<
n−1
∑

i=1

π̂ia
i − π̂ns+

π̂n

2
< π̂0 + 1

⇒ t < t

n−1
∑

i=1

ai +
∑

i∈K

ai − π̂ns+
π̂n

2
< t+ 1

⇒ t < 2ts+
∑

i∈K

ai − π̂ns+
π̂n

2
< t+ 1.

Now there are two cases. Suppose π̂n = t. Then the above condition implies that
t < ts+

∑

i∈K ai + t
2
< t+ 1. This is not possible because s ≥ 2 and K 6= φ. Thus,

π̂n must equal t+ 1. In this case, the above condition becomes:

t < 2ts+
∑

i∈K

ai − ts− s+
t+ 1

2
< t+ 1

⇒ t < (t− 1)s+
∑

i∈K

ai +
t+ 1

2
< t+ 1.

Since s ≥ 2 and K 6= φ, the only value that t may assume is t = 0. That means
0 <

∑

i∈K ai − s + 1

2
< 1. Thus

∑

i∈K ai = s and K is the required subset for
Problem 4.

Thus, given a simplex Ps, the problem of finding (π̂, π̂0) ∈ Zn+1 is NP-complete.
Since Ps is a simplex, its description can be transformed into form (IP) in time
polynomial in the size of the description of Ps. This completes the required proof.

Even though the above proof did not assume any restrictions on values of (π̂, π̂0),
the reduction from Problem 4 imposed the conditions π̂ ∈ {0, 1}n. This shows that
several restrictions of Problem 3 are also NP-complete. Some of these are listed below
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Proposition 3.3. The following restrictions of Problem 3 are NP-complete.
1. Given a mathematical program of the form (IP), does there exist (π̂, π̂0) ∈

{0, 1}n+1 such that both the subproblems (2.1) created after branching on
(π̂, π̂0) are infeasible.

2. Given a mathematical program of the form (IP), does there exist π̂ ∈ {0, 1}n

such that both the subproblems (2.1) created after branching on (π̂, 0) are
infeasible.

3. Given a mathematical program of the form (IP), does there exist π̂ ∈ {0, 1}n,
π̂0 ∈ Z such that both the subproblems (2.1) created after branching on (π̂, π̂0)
are infeasible.

4. Given a mathematical program of the form (IP), does there exist π̂ ∈ Zn
+ such

that both the subproblems (2.1) created after branching on (π̂, 0) are infeasible.
5. Given a mathematical program of the form (IP), does there exist π̂ ∈ Zn such

that both the subproblems (2.1) created after branching on (π̂, 0) are infeasible.
6. Given a mathematical program of the form (IP), does there exist π̂ ∈ {0, 1,−1}n,

π̂0 ∈ Z such that both the subproblems (2.1) created after branching on (π̂, π̂0)
are infeasible. (This problem is mentioned because Owen and Mehrotra [2001]
developed a greedy heuristic for the optimization version of this problem, with-
out addressing the complexity of the problem).

Proof. The proof of each of the above propositions follows directly from the proof
of Proposition 3.2 above.

If Q is a polytope, then the fact that Q ⊆ {x | π̂0 < π̂x < π̂0 + 1}, for some
(π̂, π̂0) ∈ Zn+1, is sufficient to show that w(Q) < 1. The proof provided above settles
the question of complexity of finding such a sufficient condition. If a program of
form (IP) has only binary variables, i.e., it is of the form:

min cx

s.t. Ax ≥ b (Pb)

x ∈ {0, 1}n,

then the width of the associated polyhedron Pb is trivially at most one. The following
proposition shows that the problem of deciding whether there exists a disjunction
(π̂, π̂0) that will prove the infeasibility of a binary program is also NP-complete.

Problem 5 (Disjunctive infeasibility for binary programs). Given a mathemat-
ical program of the form (Pb), does there exist a disjunction (π̂, π̂0) ∈ Zn+1, that
proves infeasibility? Problem 5 is a special case of Problem 3 and hence the proof of
NP−completeness of the latter follows from that of the former. However, we address
the complexity of Problem 5 separately because the proof is easier to understand
having seen that of Problem 3.

Proposition 3.4. Problem 5 is NP-complete.
Proof. The proof is similar to that of Proposition 3.2. Let n ∈ Z+, S =

{1, 2, . . . , (n − 1)}, ai ∈ Z+, i ∈ S be inputs for an instance of Problem 4. We need
to modify our previous transformation because coordinates of the feasible region of
P can only lie in [0, 1], while ai ∈ Z+, i ∈ S. Let M =

∑

i∈S ai and m = 1

M
. If each

ai, i ∈ S is divided by M , then the problem 4 can be transformed into an equivalent

problem as follows. Let ãi(= ai

M
) ∈ Q+, i ∈ S so that

∑

i∈S ãi = 1. The answer to an
instance of Problem 4 is “yes” if and only if there exists a set K ⊆ {1, 2, . . . , n − 1}
such that

∑

i∈K ãi = 1

2
. Since each ãi is an integer multiple of 1

M
, there is no K ⊆ S

such that
∑

i∈K ãi ∈ [ 1
2
− 1

2M
, 1

2
) or

∑

i∈K ai ∈ ( 1
2
, 1

2
+ 1

2M
]. This observation will be

useful later.
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Problem 4 can now be reduced to Problem 5 as follows. Let ǫ = 1

2M
= m

2
.

Consider the convex hull, Ps, of points v
i, i = 1 . . . n + 3 in n + 1 dimensions, where

the coordinates of vi are defined as

vij =























































































































1

2n
if j 6= i, j 6= n, j 6= n+ 1, i = 1, 2, . . . , n− 1

1

2n
+ 1

2
if j = i, i = 1, 2, . . . , n− 1

0 if j = n, n+ 1, i = 1, 2, . . . , n− 1

ãj if j = 1, 2, . . . , n− 1, i = n
1 if j = n, n+ 1, i = n

ãj if j = 1, 2, . . . , n− 1, i = n+ 1
1

2
− ǫ if j = n, i = n+ 1

0 if j = n+ 1, i = n+ 1

ãj if j = 1, 2, . . . , n− 1, i = n+ 2
0 if j = n, i = n+ 2
1

2
− ǫ if j = n, i = n+ 2

1

2
if j = n, i = n+ 3

0 if j 6= n, i = n+ 3

This means v1 = ( 1

2n
+ 1

2
, 1

2n
, 1

2n
, . . . , 0, 0), v2 = ( 1

2n
, 1

2n
+ 1

2
, 1

2n
, 1

2n
, . . . , 0, 0) etc.

vn−1 = ( 1

2n
, . . . , 1

2n
+ 1

2
, 0, 0), vn = (ã1, ã2, . . . , ãn−1, 1, 1), v

n+1 = (ã1, . . . , ãn−1,
1

2
−

ǫ, 0), vn+2 = (ã1, . . . , ãn−1, 0,
1

2
− ǫ), vn+3 = (0, 0, . . . , 0, 1

2
, 0). Clearly, Ps ⊆ {x ∈

Rn+1 | 0 ≤ xi ≤ 1, i = 1, 2, . . . , n}. It will now be shown that a K ⊆ S such that
∑

i∈K ãi = 1

2
exists if and only if there exists (π̂, π̂0) ∈ Zn+1, such that Ps ⊆ {x |

π̂0 < π̂x < π̂0 + 1}. Suppose K ⊆ S such that
∑

i∈K ãi = 1

2
. Let π̂i = 1, i ∈ K,

π̂n = 1, π̂n+1 = −1, π̂i = 0, i 6∈ K ∪ {n, n + 1}, π̂0 = 0. Then, 0 < π̂vi < 1, i =
1, 2, . . . , n + 3. Since all vertices of Ps satisfy the condition π̂0 < π̂x < π̂0 + 1,
Ps ⊆ {x | π̂0 < π̂x < π̂0 + 1}. (π̂, π̂0) is then the required disjunction.

Conversely, suppose there exists some (π̂, π̂0) ∈ Zn+1 such that Ps ⊆ {x | π̂0 <
π̂x < π̂0 + 1}. Then, π̂0 < π̂vi < π̂0 + 1, i = 1, 2, . . . , (n + 3). This also means that
|π̂(vi− vk)| < 1, i = 1, 2, . . . , n− 1, k = 1, 2, . . . , n− 1. Substituting the coordinates of
vi and vk, one gets: | π̂i−π̂k

2
| < 1. Because π̂i, π̂k ∈ Z, this means that |π̂i− π̂k| ≤ 1 for

each pair (i, k) ∈ {1, 2, . . . , n− 1}2. This means that π̂i ∈ {t, t+1}, i = 1, 2, . . . , n− 1
for some t ∈ Z. Let K = {i ∈ S | πi = t+ 1}. Substituting the coordinates of v1 and
π̂ into the inequalities π̂0 < v1π̂ < π̂0 + 1, one gets:

π̂0 <

n+1
∑

i=1

π̂i

2n
+

π̂1

2
< π̂0 + 1

⇒ π̂0 <
t

2
+

∑

i∈K

1

2n
+

π̂1

2
< π̂0 + 1.

Since π̂1

2
∈ { t

2
, t+1

2
}, the only integer value of π̂0 that satisfies the above condition is

π̂0 = t. Thus, π̂ ∈ {t, t+ 1}n, π̂0 = t. Also, K = φ would mean that π̂0 < t < π̂0 + 1.
This is not possible for any integers t, π̂0. Hence, K is not empty. The condition
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π̂0 < π̂vn < π̂0 + 1 implies:

π̂0 <

n−1
∑

i=1

π̂iã
i + π̂n + π̂n+1 < π̂0 + 1

⇒ t < t

n−1
∑

i=1

ãi +
∑

i∈K

ãi + π̂n + π̂n+1 < t+ 1

⇒ π̂n+1 = −π̂n

The condition π̂0 < π̂vn+1 < π̂0 + 1 implies:

t <

n−1
∑

i=1

π̂iã
i + π̂n(

1

2
− ǫ) < t+ 1

⇒ 0 <
∑

i∈K

ãi + π̂n(
1

2
− ǫ) < 1. (3.3)

The condition π̂0 < π̂vn+2 < π̂0 + 1 implies:

t < t+
∑

i∈K

ãi + π̂n+1(
1

2
− ǫ) < t+ 1

⇒ 0 <
∑

i∈K

ãi − π̂n(
1

2
− ǫ) < 1. (3.4)

Finally, the condition π̂0 < π̂vn+3 < π̂0 gives:

t <
π̂n

2
< t+ 1

⇒ π̂n = 2t+ 1.

Since the disjunction (π̂, π̂0) is the same as the disjunction (−π̂,−π̂0 − 1), we assume
without loss of generality that π̂n ≥ 0. The condition π̂n = 2t + 1 implies that
π̂n ≥ 1, t ≥ 0. These, along with the conditions K 6= φ,M > 3, and equation (3.3)
imply that π̂n = 1. This along with equations (3.3, 3.4) gives,

∑

i∈K

ãi <
1

2
+ ǫ and

∑

i∈K

ãi >
1

2
− ǫ.

These conditions, along with the choice of ǫ, imply respectively that
∑

i∈K ãi ≤ 1

2

and
∑

i∈K ãi ≥ 1

2
. Therefore,

∑

i∈K ãi = 1

2
and K is the desired subset of S.

To complete the proof, we show that a description of Ps in the form (Pb) can
be obtained in polynomial time from the finite list of points v1, v2, . . . , vn+2. Note
that the convex hull of v1, v2, . . . , vn+2 is a simplex in (n + 1) dimensions (say Q),
and can be expressed in form (Pb) in time polynomial in the size of the input as
follows. If the point vn+3 ∈ Q, then Ps = Q. Otherwise, delete from Q any such
inequalities that are violated by vn+3. Call this description P ′. Consider each of the
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1

2
(n+1)(n+2) hyperplanes passing through vn+3 and any n extreme points of Q. If all

of the extreme points of Q lie on one side of this hyperplane, add this to the description
P ′. Once all such hyperplanes are considered, the region P ′ is the same as Ps. This
process takes time polynomial in the size of the input and yields a description of Ps

in form (Pb). The proof is now complete. The proof provided above is not sufficient
to prove a similar result for the restriction of Problem 5 in which π ∈ {0, 1}n because
one of the components of the vector π in the proof above is restricted to the value
of −1. However, the following proof shows that the problem remains NP-complete
even in the presence of this restriction. The proof uses a reduction of the ONE-IN-
THREE-3SAT problem [Garey and Johnson, 1979; Schaefer, 1978], which is known
to be NP-complete, to this problem.

Problem 6 (ONE-IN-THREE-3SAT [Garey and Johnson, 1979]). Given a set
U of variables and a collection C of clauses over U such that each clause c ∈ C has
|c| = 3 and c does not contain a negated literal. Is there a truth assignment for U
such that each clause in C has exactly one true literal?

Problem 7 (Disjunctive infeasibility of binary programs using 0-1 hyperplanes).
Given a mathematical program of the form (Pb), does there exist π̂ ∈ {0, 1}n, π̂0 ∈ Z

such that the feasible region of each LP associated with the subproblems (2.1) created
after branching on (π̂, π̂0) (with additional constraints x ∈ [0, 1]n) is empty?

Proposition 3.5. Problem 7 is NP-complete.

Proof. We reduce Problem 6 to Problem 7 as follows. Associate variables π̂i, i =
1, 2, . . . , n − 1 with each variable ui in U (where n = |U | + 1). Let π̂i = 1 if ui is
assigned TRUE in a truth assignment and π̂i = 0 otherwise. Clearly, an instance
of Problem 6 has a required truth assignment if and only if π̂ satisfies the following
constraints,

∑

{i|ui∈c}

π̂i = 1, ∀c ∈ C

π̂i ∈ {0, 1}n (3.5)

Let Aπ̂ be the coefficient matrix associated with the above program (with elements
aij = 1 if and only if clause i contains variable uj , 0 otherwise). Further let 1 denote
a vector of all ones. If rank(Aπ̂) < rank(Aπ̂,1), then the system (3.5) is infeasible and
there does not exist any truth assignment for Problem 6. Also, any such infeasibility
can be detected in polynomial time by calculating the rank of the above matrices.
Hence, it may be assumed that rank(Aπ̂) = rank(Aπ̂,1). It may also be assumed that
the rows of Aπ̂ are linearly independent. Otherwise, one may drop a redundant row
from (3.5) (or equivalently, a redundant clause from Problem 6). Using these facts, one
can assume without loss of generality that |C| = rank(Aπ̂) = rank(Aπ̂,1) ≤ |U | = n.

Consider the convex hull Ps of m = |C| + 1 points: vi, i = 1, 2, . . .m ∈ Rn. Let
the coordinate j, vij , of each point vi assume a value 0 if aij = 0 and a value 1

2
if

aij = 1, i = 1, 2, . . . ,m − 1, j = 1, 2, . . . , n. Let vin = 0, i = 1, 2, . . . ,m − 1. Let vm

be chosen such that vmj = 0, j = 1, 2, . . . , n − 1, vmn = 1

2
. There exists a π̂ ∈ {0, 1}n

such that Ps ⊆ {x ∈ Rn | π̂0 < π̂x < π̂0 + 1} if and only if vi ∈ {x ∈ Rn | π̂0 <
π̂x < π̂0 + 1}, i = 1, 2, . . . ,m. This is true if and only if (π̂, π̂0) satisfy the following
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conditions

π0 <
1

2

∑

uj∈c

π̂j < π0 + 1, c ∈ C

π0 <
1

2
π̂n < π̂0 + 1,

or equivalently, if and only if (π̂, π̂0) satisfy the following conditions

∑

uj∈c

π̂j = 2π0 + 1, c ∈ C

π̂n = 2π̂0 + 1.

Since π̂ ∈ {0, 1}n, the above conditions are satisfied if and only if π̂0 = 0, π̂n = 1 and π̂
satisfies the system of equations (3.5). Hence, an instance of Problem 6 has a required
truth assignment if and only if Ps ⊆ {x | π̂0 < π̂x < π̂0 + 1} for some π̂ ∈ {0, 1}n.
Since it was assumed that the rows of Aπ̂ are linearly independent, the points vi are
also linearly independent. Hence, the dimension of Ps is exactly m − 1(= |C|). In
order to obtain a description of Ps in the standard form (IP), one has to find |C| facets
of Ps. This can be done by making |C| sets, each with |C| − 1 extreme points of Ps

and finding a plane that passes through these. This can be done in time polynomial
in the size of the input by solving |C| systems of equations, each in |C| − 1 variables.
These |C| facets can be used to describe Ps in standard form (IP). Thus, Problem 7
is NP-complete.

The complexity results for Problem 1 follow directly from those for Problem 3.
In particular, Problem 1 is NP−hard and remains so even when the restrictions
described in Proposition 3.3 are applied and even for the case of binary programs.

4. Related Problems. We now show that one can directly deduce from Propo-
sition 3.2, the complexity of the following two problems associated with verifying
whether a given inequality is a split-inequality:

Problem 8. Given a mathematical program of the form (IP), is a given inequality
(α, β) an elementary split inequality?

Problem 9. Given a mathematical program of the form (IP) and zl ∈ R, does
there exist a single elementary split inequality for (IP) such that the LP relaxation
bound achieved after adding it is at least zl?

The above two problems may appear similar to the problem of separation from the
elementary split closure of (IP), a problem that has been shown to beNP-complete by
Caprara and Letchford [2003]. So we first start by distinguishing these problems. It
is obvious that all elementary split inequalities have split-rank at most one. Also, any
inequality that is a convex combination of two elementary split inequalities has split-
rank at most one. However, since two different disjunctions may have been used to
generate the two elementary split inequalities thus combined, the convex combination
of these inequalities may not necessarily be an elementary split inequality, even though
its rank is one. As an example, consider the following system

x1 ≤ 0.8

x2 ≤ 0.8 (4.1)

x ∈ Z2.
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The inequality x1 + x2 ≤ 0 has split-rank one with respect to (4.1) because it can
be obtained as a convex combination of the elementary split inequalities x1 ≤ 0 and
x2 ≤ 0. The inequality x1 + x2 ≤ 0 separates the points ( 1

2
, 0), (0, 1

2
), ( 1

2
, 1

2
), which

are in the associated polyhedron P, from the feasible region of (4.1). If this were
an elementary split inequality for P generated using a disjunction (π, π0), neither
of the three points ( 1

2
, 0), (0, 1

2
), ( 1

2
, 1

2
) should lie in the disjunctive subsets obtained

after applying the disjunction. So, (π, π0) should, at least, satisfy the following three
constraints:

π0 <
1

2
π1 < π0 + 1

π0 <
1

2
π2 < π0 + 1 (4.2)

π0 <
1

2
(π1 + π2) < π0 + 1

π0, π1, π2 ∈ Z.

Since the system (4.2) is infeasible, there is no such disjunction and hence x1+x2 ≤ 0
is not an elementary split inequality even though it is a convex combination of two
such inequalities.

The result of Caprara and Letchford [2003] shows that the problem of determining
whether a given point x may be separated from the elementary split closure of (IP) is
NP-complete. Using the equivalence of separation and optimization, it follows that
the problem of deciding whether a given inequality has split rank one or not is NP-
complete. This observation leads directly to the result that the following problem is
NP-complete.

Problem 10. Given a mathematical program of the form (IP) and zl ∈ R, does
there exist a set S of split inequalities of rank one associated with P such that the LP
relaxation bound achieved after adding all of the inequalities in S is at least zl?

However, the above result does not imply anything about the complexity of show-
ing that a given inequality is an elementary split inequality. We have already seen
that even if an inequality has split rank one, it may not be an elementary split in-
equality. We now show that the complexity of this problem follows directly from
Proposition 3.2.

Proposition 4.1. Problem 8 is NP-complete.

Proof. Consider the special case when α = 0, β = 1. Then αx ≥ β (or 0 ≥ 1) is a
split inequality for (IP) if and only if there exists a disjunction (π̂, π̂0) such that the
associated LPs (2.1) are infeasible. By Proposition 3.2, the problem of finding such
(π̂, π̂0) is NP-complete.

In contrast, consider the case of Chvátal-Gomory (C-G) inequalities. Given a
pure integer program (IP), a C-G inequality for (IP) is an inequality of the form

αx ≥ ⌈β⌉, (4.3)

where α ∈ Zn and αx ≥ β is a valid inequality for the feasible region P of the LP
relaxation. Eisenbrand [1999] showed that the problem of separating a given point
x from the elementary C-G closure of (IP) is NP-complete. Hence, the problem of
deciding whether a given inequality has C-G rank one or not is also, like for the case
of split inequalities, NP-complete. However, unlike split inequalities, we can decide
whether a given inequality (say αx ≥ δ, where α ∈ Zn, δ ∈ Z) is an elementary C-G
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inequality or not in polynomial time by solving the LP

min αx

Ax ≥ b. (4.4)

Then, αx ≥ δ is an elementary C-G inequality for (IP) if and only if the optimal
solution to (4.4) is strictly greater than δ − 1.

The above results seem somewhat surprising. On the one hand, the problem of
deciding whether the rank of a given inequality is one lies in the complexity class
NP-complete for the case of both C-G inequalities and split inequalities. On the
other hand, the problem of deciding whether a given inequality is an elementary C-G
inequality lies in complexity class P, while the same problem for a split inequality lies
in complexity class NP-complete.

Proposition 4.2. Problem 9 is NP-complete.
Proof. The proof follows directly from Proposition 3.2 and Proposition 2.1.

It is also well known that one can always find an elementary split inequality
(for instance, a Gomory mixed integer inequality) to separate a given basic feasible
solution of the LP relaxation, that is not feasible for the original problem, from the
elementary split closure in time polynomial in size of the input (see, for instance,
Cornuéjols [2008]). However, the above problem of maximizing the lower bound by
adding a valid split inequality remains NP−hard even if an optimal basic feasible
point of P is provided as an input because the desired inequality must separate the
set of all points that have lower objective values regardless of whether they are basic
feasible solutions.

5. Conclusions. In this paper, we showed that the problem of selecting a general
disjunction whose imposition causes the LP relaxation become infeasible (either for
branching or for generating an elementary split inequalities) is NP-complete. This
leads to two important results—that the problem of selecting a general disjunction
that maximizes the bound improvement (again, both by branching or generating an
elementary split inequality) of a given IP isNP-hard, and that the problem of deciding
whether a given inequality is an elementary split inequality is NP-complete. We also
showed that the first problem remains NP-hard even when several natural restrictions
are imposed on the disjunctions or when all integer-constrained variables in the IP are
binary. Only a few studies have exploited the relationship between disjunctions used
for generating split inequalities and for branching. We believe that this topic deserves
more attention. There is also a need to develop fast heuristics to solve the problem
of selecting good disjunctions so as to enhance the speed of branch-and-bound and
cutting-plane algorithms.
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