
ARGONNE NATIONAL LABORATORY

9700 South Cass Avenue

Argonne, Illinois 60439

Presolving Mixed-Integer Linear Programs

Ashutosh Mahajan

Mathematics and Computer Science Division

Preprint ANL/MCS-P1752-0510

December 7, 2010

This work was supported by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department

of Energy, under Contract DE-AC02-06CH11357.

Contents

1 Introduction 1

2 Basic Presolving 2

2.1 Simple Rearrangements and Substitutions . 2

2.2 Granularity . 3

2.3 Constraint and Variable Duplication . 4

2.4 Constraint Domination . 4

2.5 Bound Improvement . 5

2.6 Dual/Reduced-Cost Improvement . 6

3 Advanced Presolving 7

3.1 Fixing Variables . 7

3.2 Improving Coefficients . 7

3.3 Deriving Implications . 8

3.4 Probing on Constraints . 10

4 Identifying Structure 10

5 Postsolve 11

6 Concluding Remarks 11

ii

iii

Presolving Mixed Integer Linear Programs ∗

Ashutosh Mahajan†

December 7, 2010

Abstract

We survey the techniques used for presolving Mixed-integer linear programs (MILPs). Pre-

solving is an important component of all modern MILP solvers. It is used for simplifying a

given instance, for detecting any obvious problems or errors, and for identifying structures

and characteristics that are useful for solving an instance.

Keywords: Integer programming, presolving, preprocessing

AMS-MSC2000: 65K05, 90C11

1 Introduction

Presolving or preprocessing techniques constitute a broad class of methods used to transform a

given instance of a Mixed-integer linear program (MILP) or to collect certain useful information

about it. The main aim of presolving techniques is to simplify the given instance for solving by

the more sophisticated and often time-consuming algorithms such as cutting-plane or branch-

and-bound algorithms. Almost all modern solvers, both free (for instance, Achterberg, 2009;

Forrest, 2010; Nemhauser et al., 1994; Ralphs et al., 2010) and commercial (for instance, FICO,

2009; Gurobi, 2009; IBM, 2009), deploy these in one way or the other. Bixby et al. (2000) claim

that presolving alone speeds the solution times on benchmark instances by a factor of 2. Another

important function of a presolver is to analyze the structure of the instance and collect information

that will be useful when the problem is solved.

Presolving is also useful for the purpose of modeling as it can be used to check the instance

for obvious errors. It can, for instance, inform the user whether certain constraints or bounds

on variables make the instance infeasible or whether certain variables will have arbitrarily high

values (unbounded) in a solution. Such information can help the user improve the description of

the instance and correct errors. It can also sometimes tell the user whether the values used in the

model may cause numerical problems for the subsequent algorithms used by the solver. As such,

∗Preprint ANL/MCS-P1752-0510
†Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439,

mahajan@mcs.anl.gov.

1

2 Ashutosh Mahajan

some presolving is also performed by software such as AMPL (Fourer et al., 2003) that is used for

creating MILP instances.

In this survey, we describe the various techniques used for basic and advanced presolving.

Throughout the discussion, we assume that the original MILP is of the form

min
n
∑

j=1

cjxj

s.t.
n
∑

j=1

aijxj ≤ bi, i = 1, . . . ,m, (P)

lj ≤ xj ≤ uj , j = 1, 2, . . . , n,

xj ∈ Z, j ∈ I,

where m ∈ N, n ∈ N, c ∈ Qn, A ∈ Qm×n, l ∈ Qn, u ∈ Qn, I ⊆ {1, 2, . . . , n} are given as inputs. We

will explicitly clarify whenever a technique applies to any equality constraints (
∑n

j=1
aij = bi) and

not to the inequalities in (P). Some techniques for presolving MILPs are the same as those used for

presolving linear programs (LPs). We also describe these techniques here because they are a start-

ing point for more advanced techniques for presolving MILPs. Most of the presolving techniques

presented here are derived from the work of Andersen and Andersen (1995), Brearley and Mitra

(1975), Guignard and Spielberg (1981), and Savelsbergh (1994). Details of implementing the tech-

niques in an MILP solver can be found in the work of Suhl and Szymanski (1994), and Achterberg

(2007).

We start by describing basic presolving techniques in Section 2 and then describe more ad-

vanced techniques in Section 3. We also discuss methods for detecting structure (Section 4), and

for postprocessing (Section 5).

2 Basic Presolving

Basic presolving methods are simple procedures that are directly applied to simplify (P). These

methods may be called many times as subroutines in more advanced methods. Hence, imple-

menting them efficiently is important.

2.1 Simple Rearrangements and Substitutions

Removing constraints and variables that are not necessary in the instance can reduce the amount of

memory required by a computer to solve the instance and also speed the calculations. Rearranging

the order of variables and constraints in the instance can speed several routines in the subsequent

preprocessing and solve methods.

Removing constraints If we have aij = 0 ∀j ∈ {1, 2, . . . , n} for some i ∈ {1, 2, . . . ,m} and if

bi ≥ 0, then the i−th constraint can be deleted. If for the same constraint bi < 0, then the instance

Presolving Mixed Integer Linear Programs 3

is infeasible because of this constraint. If we have a singleton row, namely, aik 6= 0, aij = 0 ∀j 6=

k, j ∈ {1, 2, . . . , n}, for some i ∈ {1, 2, . . . ,m} and some k ∈ {1, 2, . . . , n}, then the ith constraint

can be removed, and the bounds of variable xk can be tightened if necessary.

Removing variables If we have aij = 0 ∀i ∈ {1, 2, . . . ,m} for some j ∈ {1, 2, . . . , n}, then we

can fix the variable xj to lj if cj ≥ 0 or to uj if cj < 0. After fixing the variable, we may have

an additional constant term in the objective function. If we have a singleton column xj , and if

j 6∈ I , aij > 0, lj = −∞, uj = ∞, cj ≤ 0 then we can drop the constraint i and substitute

xj =
bi−

∑
k:k 6=j aikxk

aij
in the objective function. After the substitution, we have one less variable and

one less constraint. The number of nonzeros in A is also reduced. The number of nonzeros in the

objective function, however, may increase.

Rearrangements The variables and constraints of the instance can be rearranged depending on

how the methods of solving are implemented. For example, it may be beneficial to have all binary

variables stored in the end of the array of variables so that deleting them (in case we fix them) from

the sparse representation of the matrix A is faster. Similarly, the constraints can be rearranged so

that “constraints of interest” appear together in the arrays in which they are stored. If it is known

that an interior-point method will initially be used for solving the relaxation of (P), then rows and

columns may be rearranged so as to reduce the “fill in”. Rothberg and Hendrickson (1998) study

the effects of various such permutation techniques on interior-point methods.

2.2 Granularity

Given an instance of form (P) and a vector a ∈ Qn, we define granularity of a as

g(a) = min
x1,x2∈P







∣

∣

∣

∣

∣

∣

n
∑

j=1

aijx
1
j −

n
∑

j=1

aijx
2
j

∣

∣

∣

∣

∣

∣

:
n
∑

j=1

aijx
1
j 6=

n
∑

j=1

aijx
2
j







,

where P is the set of all points satisfying the constraints of (P). Granularity refers to the minimum

difference (greater than zero) between the values of activity that a constraint or objective func-

tion may have at two different feasible points. For a constraint that has only integer-constrained

variables, then granularity is at least the greatest common divisor (GCD) of all the coefficients. If

any of the coefficients in such a constraint are not integers, we can find a multiplier 10K , where

K ∈ Z+, to make all coefficients integers. The GCD can be divided by 10K to get granularity.

Hoffman and Padberg (1991) call this procedure Eucledean reduction. The problem can be de-

clared infeasible if there is an equality constraint whose right-hand side is not an integer multiple

of the of the GCD. For an inequality constraint i ∈ {1, 2, . . . ,m}, if bi is not an integer multiple

of the granularity g(ai), then bi can be reduced to the nearest multiple of gi less than bi. So the

constraint

3x1 + 6x2 − 3x3 ≤ 5.3

4 Ashutosh Mahajan

can be tightened to

3x1 + 6x2 − 3x3 ≤ 3,

if x1, x2, x3 ∈ Z. The bound tightening in this case is a special case of a Chvátal-Gomory inequality

introduced by Gomory (1958). Similarly, one can find the granularity of the objective vector c

when only integer-constrained variables have nonzero coefficients in the objective function. The

difference between upper bound obtained from a feasible solution and the optimal solution value

will always be at least g(c). If the difference between an upper bound and a lower bound falls

below the granularity, we can stop the branch-and-bound or cutting-plane algorithm and claim

that the optimal solution has been found.

2.3 Constraint and Variable Duplication

Sometimes an instance may have duplicate constraints that are exact copies of each other. At other

times, we may have constraints that are identical except for a scalar multiple. The obvious benefit

of detecting such constraints is that we can reduce the memory needed for storing and solving the

instance. It also helps improve the numerical stability of solution of the associated LP relaxations.

Bixby and Wagner (1987), and Tomlin and Welch (1986) describe efficient ways to detect from a

column-ordered format of A, whether two constraints are identical except for scalar multiples.

When constraints with duplicate entries are found, we can, based on the values of the right hand

sides and the scalar multiples, declare the problem infeasible or delete one of the constraints or

combine the two constraints into one.

Similarly, we can detect whether two columns are alike except for a scalar multiple. However,

the possible integrality constraint on one or both of these variables can make any substitution

complicated. If Aj = αAi and if cj = αci for some i, j ∈ {1, 2, . . . , n} \ I, α ∈ Q, then we can

replace the two columns Ai, Aj by a single column Ak that is identical to Ai. The lower and upper

bounds of the new variable xk are lk = li + αlj , uk = ui + αuj if α > 0 and lk = li + αuj , uk =

ui + αlj otherwise. If one or both variables are integer constrained, we can use the substitution

xk = xi + αxj if we can find feasible values of xi, xj for each xk ∈ [lk, uk]. We can also add a

constraint xk = xi + αxj to avoid such complications.

2.4 Constraint Domination

One way to identify a redundant constraint is to check whether it can be termwise dominated

by another constraint. If bk ≥ bi for i, k ∈ {1, 2, . . . ,m}, each variable in constraints i, k is either

non-negative or non-positive, akj ≤ aij for j such that xj is non-negative and akj ≥ aij for j such

that xj is non-positive, then constraint k can be deleted because it is redundant in the presence of

constraint i and the bounds on variables.

Presolving Mixed Integer Linear Programs 5

2.5 Bound Improvement

Bound improvement is one of the most important steps of presolving. If we can improve the

bounds on variables or reduce bi, then we can tighten the LP relaxation of (P). The tightest bounds

on a constraint can be obtained (Savelsbergh, 1994) by solving the following problems,

Li = min

n
∑

j=1

aTi x

s.t. Aix ≤ bi, (2.1)

lj ≤ xj ≤ uj , j = 1, 2, . . . , n

xj ∈ Z, j ∈ I,

and

Ui = max

n
∑

j=1

aTi x

s.t. Aix ≤ bi, (2.2)

lj ≤ xj ≤ uj , j = 1, 2, . . . , n

xj ∈ Z, j ∈ I,

where the set of constraints Aix ≤ bi is obtained by deleting the ith constraint
∑n

j=1
aijxj ≤ bi

from (P). However, solving the bound improvement problems (2.1) or (2.2) can be as difficult as

solving (P). Thus, there is a trade-off between the quality of a good bound and the time spent in

finding it. The most common method of tightening the bound is to calculate bounds on Li and Ui:

L̂i =
∑

j:aij>0

aijlj +
∑

j:aij<0

aijuj ,

Ûi =
∑

j:aij>0

aijuj +
∑

j:aij<0

aijlj . (2.3)

Both L̂i, Ûi can be calculated in O(nz) steps, by visiting each nonzero coefficient of the Amatrix.

Clearly L̂i ≤ Li ≤ Ui ≤ Ûi. If bi < Li, then the instance is infeasible. If bi = Li, then all

variables appearing in the constraint are forced to a bound: xj = lj if aij > 0 and xj = uj if

aij < 0. This constraint can then be deleted. If bi ≥ Ui, then the constraint can be deleted because

it is redundant.

Similarly, we can improve the bounds on variables. The tightest lower and upper bounds for

the variable xk can be obtained by solving the following:

Lk = minxk

s.t. Ax ≤ b, (2.4)

lj ≤ xj ≤ uj , j = 1, 2, . . . , n

xj ∈ Z, j ∈ I,

6 Ashutosh Mahajan

and

Uk = maxxk

s.t. Ax ≤ b, (2.5)

lj ≤ xj ≤ uj , j = 1, 2, . . . , n

xj ∈ Z, j ∈ I.

Again, solving the problems (2.4) and (2.5) can be as difficult as the original problem (P). A similar

trade-off then occurs on the quality of the bound and the time spent in obtaining it. The bounds

Li and Ui on constraints can also be used to improve the bounds on variables. If aij > 0, then let

Ûik =
bi

aik
−

Li − aiklk

aik
.

Clearly, Ûik (≥ Uk) is an upper bound on the feasible values of xk. If Uk < uk (or Ûk < uk), then

update the bound on variable xk to Uk. If Uk < lk, then the problem is infeasible. If Uk = lk, then

the variable xk can be fixed to the value lk. Similarly, if aik < 0, then let

L̂ik =
bi

aik
−

Ui − aiklk

aik
.

Then L̂ik(≤ Lk) is also a lower bound on feasible values of xk. If Lk < lk, then update the lower

bound on variable xk to Lik. If Lik > uk, then the problem is infeasible. If Lik = uk, then the

variable xk can be fixed to the value uk. Once Li and Ui (or their bounds L̂i, Ûi) are known, then

the bounds L̂, Û can be calculated in O(nz) steps.

If the bounds are tightened using the complete models (2.1) and (2.2), then constraint domina-

tion is just a special case of bound tightening. This is no longer true, however, when the bounds

are estimated from each row. In the latter case, we need onlyO(nz) calculations, where nz denotes

the number of nonzeros in the Amatrix.

If the bounds of a variable xj are implied by a constraint, then the variable can be declared

“free”, and we can try substituting the variable out as described in Section 2.1.

2.6 Dual/Reduced-Cost Improvement

If, for a variable xj , j ∈ {1, 2, . . . , n}, aij ≥ 0 ∀i ∈ {1, 2, . . . ,m}, and cj ≥ 0, then the variable xj can

be fixed to its lower bound lj . Similarly, if aij ≤ 0 ∀i ∈ {1, 2, . . . ,m} and cj ≤ 0, then the variable

xj can be fixed to its upper bound uj .

Sometimes, an upper bound on the optimal value of solution of (P) is known (it may be pro-

vided by the user or may be obtained from some heuristics) before presolving. In such a case,

we have an additional inequality
∑n

j=1
cjxj ≤ zu, where zu is the best-known upper bound. The

basic presolving techniques applicable to other constraints can be applied to this constraint as

well. Valid inequalities of the form
∑n

j=1
ĉjxj ≥ zl, where zl ∈ Q, can also be obtained by linear

combinations of the objective function with other constraints. Such inequalities are automatically

Presolving Mixed Integer Linear Programs 7

obtained from the reduced costs calculated by the simplex method. When both zl and zu are avail-

able as described above, we can do bound tightening on variables to obtain tighter bounds. This

is equivalent to the reduced-cost fixing method described by Balas and Martin (1980).

3 Advanced Presolving

Advanced presolving procedures try to modify the problem and then call basic preprocessing

procedures repeatedly to derive more information about the effects of such changes. Such proce-

dures are also called probing. Unlike basic preprocessing techniques, probing may be expensive

because one can probe on many possible changes or on combinations of several changes. The sim-

plest changes are the changes of bounds on binary variables. We can fix such a variable to zero or

1 and then probe on the reduced problem.

3.1 Fixing Variables

When probing on a binary variable, say xi, we first fix xi to zero by changing its upper bound.

We then perform basic preprocessing on the modified problem. If the modified problem can be

shown to be infeasible, then xi can be fixed to one in the original problem. Similarly, if the problem

becomes infeasible on setting xi to one, we can fix xi to zero. If the problem is infeasible on setting

xi to one and zero both, we can declare that the problem is infeasible.

3.2 Improving Coefficients

If a constraint i,
∑n

j=1
aijxj ≤ bi is redundant when a binary variable xk is set to zero, then we can

improve the coefficient aik of xk in this constraint using the approach of Crowder et al. (1983). We

first observe that changing aik does not make any difference when xk = 0. When xk is set to 1, the

original constraint is equivalent to
∑n

j=1
aijxj − δ0xk ≤ bi − δ0, for any δ0 ∈ R. We would like to

have as high a value of δ0 as possible, while still keeping the constraint redundant at xk = 0. This

value of δ0 can be obtained by solving the following problem:

δ0 = bi −max
Q

n
∑

j=1

aijxj ,

where Q is the set of values of x such that

Aix ≤ bi,

xk = 0,

lj ≤ xj ≤ uj , j = 1, 2, . . . , n

xj ∈ Z, j ∈ I.

8 Ashutosh Mahajan

Again, the problem of finding the optimal value of δ0 can be as hard as solving the original prob-

lem (P). A more easily computable bound,

δ̂0 = bi −
∑

j:j 6=k,aij>0

aijuj −
∑

j:j 6=k,aij<0

aijlj ,

can be used instead.

Similarly, if the constraint i,
∑n

j=1
aijxj ≤ bi is redundant when a binary variable xk is set to 1,

we can replace the constraint by
∑n

j=1
aijxj + δ1xk ≤ bi, with

δ1 = bi −max
Q

n
∑

j=1

aijxj ,

where Q is the set of values of x such that

Aix ≤ bi,

xk = 1,

lj ≤ xj ≤ uj , j = 1, 2, . . . , n

xj ∈ Z, j ∈ I.

As above, we can use a bound that is computationally easier to calculate,

δ̂1 = bi − aik −
∑

j:j 6=k,aij>0

aijuj −
∑

j:j 6=k,aij<0

aijlj .

3.3 Deriving Implications

Implications are relations that the variable values of any optimal feasible solution must satisfy.

One such implication can be found by fixing two binary variables, say, xi, xj , where i, j ∈ I to

zero. If the modified problem is shown to be infeasible, then we know that all solutions must

satisfy the inequality xi + xj ≥ 1. An equivalent way of looking at this implication is that, if we

fix xi to zero, then xj is constrained to be 1. A more general case is when fixing xi to zero implies

xj = vj , k ∈ {1, 2, . . . , n}, where vj ∈ R. Then the following two inequalities are valid for (P):

xj ≤ vj + (uj − vj)xi

xj ≥ vj − (vj − lj)xi.

Similarly, if by fixing xi to 1, we can fix xj to some vj ∈ R, then we can write

xi = 1 ⇒ xj = vj ⇐⇒

{

xj ≤ uj − (uj − vj)xi,

xj ≥ lj + (vj − lj)xi.

When xj is also binary, we can use the above procedure, to obtain the following implications:

xi = 0 ⇒ xj = 0 ⇐⇒ xi − xj ≥ 0,

xi = 0 ⇒ xj = 1 ⇐⇒ xi + xj ≥ 1,

xi = 1 ⇒ xj = 0 ⇐⇒ xi + xj ≤ 1,

xi = 1 ⇒ xj = 1 ⇐⇒ xi − xj ≤ 0.

Presolving Mixed Integer Linear Programs 9

Deriving such implications is useful not only for preprocessing but also for other techniques

such as primal heuristics, branching, and generating valid inequalities, that are subsequently used

in solving (P). The number of such implications can, however, be very large for certain types of

problems. For example, if we have a set partitioning constraint of the form

∑

i∈S

xi = 1,

where xi is binary for i ∈ S, then the number of valid implications with only two variables would

be O(|S|2). Thus it is important to implement methods to store and retrieve them quickly. Several

implications can also be combined to fix variables, to delete constraints, and to derive new impli-

cations, e.g., if we have implications x1 = 0 ⇒ x2 = 0, and x1 = 1 ⇒ x2 = 0, then we can fix

x2 at 0. Similarly, if a constraint is redundant when x1 = 0 and also when x1 = 1, then we can

delete that constraint. The algorithms for deriving such new information from an existing list of

implications can be studied with the help of what is called a conflict graph.

1

2

3

1̄

2̄

3̄

Figure 1: An example

of a conflict graph

A conflict graph is a graph that shows what values of binary vari-

ables are not feasible (or optimal) for (P). The graph has two sets X, X̄

of k vertices each, where k is the number of binary variables. For each

binary variable xi in (P), we have a vertex each in X (denoted i), and in

X̄ (denoted ī). A vertex i ∈ X corresponding to variable xi is associated

with the implication “xi = 1”. Similarly, a vertex i ∈ X̄ is associated with

“xi = 0”. An edge between two vertices denotes a conflict, i.e., any opti-

mal solution of (P) can not have values associated with the two vertices

of any edge in the conflict graph. Figure 1 shows a conflict graph in three

variables. Three implications that create the edges are x1 = 1 ⇒ x2 = 1,

x3 = 1 ⇒ x2 = 1, and x3 = 1 ⇒ x1 = 0. The dark edges in the graph de-

note that either xi = 1 or xi = 0, and one of them necessarily holds. New

implications can now be derived by studying this graph, e.g., if there is a

vertex j with neighbors i, ī, then xj can be fixed to 0. We refer the readers

to the work of Savelsbergh (1994), and Atamtürk and Savelsbergh (2000)

for algorithms that can be used to derive such implications. The latter also describe data structures

for storing them efficiently. We now mention two more ways in which implications are useful for

improving a formulation.

Automatic disaggregation: Savelsbergh (1994) shows that, if we add the inequalities derived

from implications as above, then we automatically disaggregate each constraint of the form

∑

i∈S

xi ≤ Uxk,

where S ⊆ {1, 2, . . . , n}, k ∈ {1, 2, . . . , n}, and U ≤
∑

i∈S ui, into the inequalities

xi ≤ uixk, i ∈ S.

10 Ashutosh Mahajan

Elimination of variables: If fixing a binary variable xk to zero implies xi = ri for some i ∈

{1, 2, . . . , n} and fixing xk to one implies xi = si for some ri, si ∈ R, then we can substitute

xi = ri + (si − ri)xk.

The variable xi can now be eliminated from the problem without increasing the number of nonze-

ros in the Amatrix.

3.4 Probing on Constraints

Consider a clique inequality of the form

∑

i∈S+

xi −
∑

i∈S−

xi ≤ 1−
∣

∣S−
∣

∣ ,

where S+, S− ⊆ {1, 2, . . . , n}, and all xi are binary for i ∈ S+∪S−. The tuple {xi}, i ∈ S+∪S− can

assume only |S+∪S−|+1 values for any feasible point. Out of these, |S+∪S−| values correspond

to exactly one of xi, i ∈ S+ being 1 or exactly one of xi, i ∈ S− being zero. All these cases are

therefore considered automatically when probing on these variables. The only remaining case

that is feasible for this constraint is when xi = 0, ∀i ∈ S+ and xi = 1, ∀i ∈ S−. If the problem is

infeasible for this case, then the inequality can be tightened to an equality. If some other inequality

is redundant, then the coefficients can be tightened following the procedure in Section 3.2.

4 Identifying Structure

Many techniques for generating valid inequalities, branching and heuristics are applicable only for

particular types of constraints and variables. Yet others may be greatly improved if some special

structures are known to exist. Since such techniques are used repeatedlymany times in the branch-

and-bound or cutting-plane methods, it is important to detect upfront any useful structures in the

given MILP. Some of these structures are listed below.

• Special ordered sets of type 1 (SOS1) are of the form

∑

i∈S

xi = 1,

xk =
∑

i∈S

aixi,

xi ∈ {0, 1}, i ∈ S ⊆ {1, 2, . . . , n}.

These can be used for special branching rules (Beale and Tomlin, 1970).

• Set partitioning (
∑

i∈S xi = α, xi ∈ {0, 1}, i ∈ S), set covering (
∑

i∈S ≥ α), and set packing

inequalities (
∑

i∈S xi ≤ α) can be used for primal heuristics (Atamtürk et al., 1995) and for

generating valid inequalities (Balas and Padberg, 1976).

Presolving Mixed Integer Linear Programs 11

• Knapsack inequalities including 0-1 knapsack, mixed 0-1 knapsack, integer knapsack, and

mixed-integer knapsack inequalities (Atamtürk, 2005).

• Generalized upper bound constraints can be used to generate valid inequalities (Wolsey,

1990).

• Variable lower bound and upper bound constraints can also be used to generate valid in-

equalities (van Roy and Wolsey, 1987).

5 Postsolve

After an instance has been treated by a presolver and then solved, the user may ask for the solu-

tion and other problem characteristics. The presolver can change some instance substantially and

the solution of the transformed problem may be quite different from that of the original problem.

Hence the presolve routines are designed to save the changes that were made to the original in-

stance. Andersen and Andersen (1995) suggest keeping a “stack” of all the transformations that

were made by the presolver and reverting them in a last-in-first-out sequence. Sometimes, the

solution obtained by reverting the changes may not remain feasible for the specified tolerance val-

ues even though the presolved solution was feasible. In such cases, the user must either decrease

the tolerance limit or disable presolve.

6 Concluding Remarks

In this paper, we have surveyed many techniques for presolving. Some of these techniques are

simple, like removing empty constraints, and empty columns, identifying special structures and

rearranging constraints and variables. Some others are more powerful, like detecting duplicate

rows and columns. They require specialized algorithms to avoid spending excessive amount of

time. Then there are some methods like bound tightening, detecting infeasibility and identifying

redundant constraints which in theory can be as difficult as solving the original problem itself.

Heuristic methods are used to trade off the time spent in these problems against the benefits

of solving them. All of these methods usually consider only bounds on variables and a single

constraint. Advanced presolving methods can help simplifying the problems a lot but each probe

requires repeating basic presolving methods. Further, one needs to probe over many candidate

variables. In general, it is difficult to predict the optimal effort that should be put into eachmethod

of presolving. Most implementations of a presolver rely on several rules of thumb and the past

experiences with these methods.

A presolver is an important component of modern MILP solvers. It can substantially reduce

the time taken to solve MILPs. It is also useful for conveying to the user obvious problems with

the formulation of the instance. However, the percentage of time spent by a solver in presolve

routines is usually much smaller than the percentage of lines of code required to write a presolver.

12 Ashutosh Mahajan

Even though the techniques of presolving are simple, implementing them effectively for all types

of formulations and inputs can be a challenging activity.

Acknowledgments

The author gratefully acknowledges the anonymous referee for suggestions and recommenda-

tions that helped improve this survey, and also Gail Pieper for proofreading an earlier draft. This

work was supported by the Office of Advanced Scientific Computing Research, Office of Science,

U.S. Department of Energy, under Contract DE-AC02-06CH11357. This work was also supported

by the U.S. Department of Energy through grant DE-FG02-05ER25694.

References

Achterberg, T. (2007). Constraint integer programming. PhD thesis, Technical University of Berlin.

Achterberg, T. (2009). SCIP: solving constraint integer programs. Mathematical Programming Com-

putation, 1(1):1–49.

Andersen, E. and Andersen, K. (1995). Presolving in linear programming. Mathematical Program-

ming, 71:221–245.

Atamtürk, A. (2005). Cover and pack inequalities for (mixed) integer programming. Annals of

Operations Research, 139(1):21–38.

Atamtürk, A., Nemhauser, G. L., and Savelsbergh, M. W. P. (1995). A combined Lagrangian,

linear programming and implication heuristic for large-scale set partitioning problems. Journal

of Heuristics, 1:247–259.

Atamtürk, A. and Savelsbergh, M. W. P. (2000). Conflict graphs in solving integer programming

problems. European Journal of Operational Research, 121:40–55.

Balas, E. and Martin, C. (1980). Pivot and complement - a heuristic for 0-1 programming. Manage-

ment Science, 26(1):86–96.

Balas, E. and Padberg, M. W. (1976). Set partitioning: A survey. SIAM Review, 18(3):710–760.

Beale, E. M. L. and Tomlin, J. A. (1970). Special facilities in general mathematical programming

system for non-convex problems using ordered sets of variables. In Lawrence, J., editor, Pro-

ceedings of the Fifth International Conference on Operations Research, pages 447–454.

Bixby, R. E., Fenelon, M., Gu, Z., Rothberg, E., and Wunderling, R. (2000). MIP: Theory and

practice - closing the gap. In Powell, M. J. D. and Scholtes, S., editors, System Modelling and

Optimization: Methods, Theory, and Applications, pages 19–49. Kluwer Academic Publishers.

Presolving Mixed Integer Linear Programs 13

Bixby, R. E. and Wagner, D. (1987). A note on detecting simple redundancies in linear systems.

Operations Research Letters, 6(1):15–17.

Brearley, A. and Mitra, G. (1975). Analysis of mathematical programming problems prior to ap-

plying the Simplex algorithm. Mathematical Programming, 8:54–83.

Crowder, H., Johnson, E. L., and Padberg, M. (1983). Solving large scale zero-one linear program-

ming problems. Operations Research, 31(4):803–834.

FICO (2009). Xpress-Mosel user guide. Available online at http://optimization.fico.com.

Forrest, J. (2010). COIN-OR Branch and Cut. Available online at

https://projects.coin-or.org/Cbc.

Fourer, R., Gay, D., and Kernighan, B. (2003). AMPL: A Modelling Language for Mathematical Pro-

gramming. Brooks/Cole Publishing Company, Pacific Grove, CA.

Gomory, R. E. (1958). Outline of an algorithm for integer solutions to linear programs. Bulletin of

American Mathematical Society, 64:275–278.

Guignard, M. and Spielberg, K. (1981). Logical reduction methods in zero-one programming:

minimal preferred variables. Operations Research, 29(1):49–74.

Gurobi (2009). Gurobi optimizer reference manual. Available online at http://www.gurobi.com.

Hoffman, K. and Padberg, M. (1991). Improving LP-representations of zero-one linear programs

for branch-and-cut. ORSA Journal on Computing, 3(2):121–134.

IBM (2009). User’s manual for CPLEX V12.1. Available online at

http://ibm.com/software/integration/optimization/cplex/.

Nemhauser, G., Savelsbergh, M., and Sigismondi, G. (1994). MINTO, a Mixed INTeger Optimizer.

Operations Research Letters, 15(1):47–58.

Ralphs, T., Guzelsoy, M., and Mahajan, A. (2010). SYMPHONY 5.2.3 user’s manual. Available

online at https://projects.coin-or.org/SYMPHONY.

Rothberg, E. and Hendrickson, B. (1998). Sparse matrix ordering methods for interior point linear

programming. Informs Journal on Computing, 10(1):107–113.

Savelsbergh, M. W. P. (1994). Preprocessing and probing techniques for mixed integer program-

ming problems. ORSA Journal on Computing, 6:445–454.

Suhl, U. H. and Szymanski, R. (1994). Supernode processing of mixed-integer models. Computa-

tional optimization and applications, 3:317–331.

Tomlin, J. andWelch, J. (1986). Finding duplicate rows in a linear programming model. Operations

Research Letters, 5(1):7–11.

http://optimization.fico.com
https://projects.coin-or.org/Cbc
http://www.gurobi.com
http://ibm.com/software/integration/optimization/cplex/
https://projects.coin-or.org/SYMPHONY

14 Ashutosh Mahajan

van Roy, T. J. and Wolsey, L. A. (1987). Solving mixed integer programming problems using

automatic reformulation. Operations Research, 35(1):45–57.

Wolsey, L. A. (1990). Valid inequalities for 0-1 knapsacks and MIPs with generalized upper bound

constraints. Discrete Applied Mathematics, 29:251–261.

The submitted manuscript has been created by the UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”)

under Contract No. DE-AC02-06CH11357 with the U.S. Department of Energy. The U.S. Government retains for itself, and others

acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works,

distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

	Introduction
	Basic Presolving
	Simple Rearrangements and Substitutions
	Granularity
	Constraint and Variable Duplication
	Constraint Domination
	Bound Improvement
	Dual/Reduced-Cost Improvement

	Advanced Presolving
	Fixing Variables
	Improving Coefficients
	Deriving Implications
	Probing on Constraints

	Identifying Structure
	Postsolve
	Concluding Remarks

