
Mitigating Anomalies in Parallel

Branch-and-Bound Based Algorithms

for Mixed-Integer Nonlinear Optimization

Prashant Palkar1(B) and Ashutosh Mahajan2

1 Institute of Mathematics, University of Augsburg, 86159 Augsburg, Germany
prashant.palkar@math.uni-augsburg.de

2 Industrial Engineering and Operations Research, IIT Bombay,
Powai, Mumbai 400076, India

amahajan@iitb.ac.in

http://www.ieor.iitb.ac.in/ppalkar

Abstract. We address detrimental anomalies in parallel versions of two
state-of-the-art algorithms for convex mixed-integer nonlinear programs
(MINLPs): nonlinear branch-and-bound (NLP-BB) and the LP/NLP
based branch-and-bound (QG). A detrimental anomaly is when a paral-
lel algorithm performs worse than its sequential counterpart. Unambigu-
ous node selection functions have been developed in the past to avoid
these anomalies. We extend this notion of unambiguity to subroutines for
branching and generating linearization cuts. We implement the proposed
unambiguous branching and cut generation strategies alongside unam-
biguous node selection in NLP-BB and QG in the open-source MINLP
solver Minotaur. Our computational experiments on convex instances
from the MINLPLib library show that detrimental anomalies can be
reduced to a great extent in practical algorithms. We also compare these
algorithms with opportunistic parallel versions. Our results highlight
that opportunistic versions perform better in terms of wall clock times,
while the deterministic versions avoid detrimental anomalies with theo-
retically established guarantees and also provide reproducible results, a
feature that is desirable while developing parallel algorithms. We recom-
mend settings in Minotaur that yield opportunistic or deterministic runs
for the parallel NLP-BB and QG algorithms.

Keywords: Mixed-integer nonlinear programming · Parallel
branch-and-bound · Anomalies · LP/NLP based branch-and-bound

1 Introduction

Mixed-Integer Nonlinear Programs (MINLPs) are discrete optimization prob-
lems that involve integer-constrained decision variables and nonlinear functions.
An MINLP can be mathematically expressed as

minimize
x

cTx (P)

subject to g(x) ≤ b,

x ∈ X , xj ∈ Z ∀j ∈ I,

c The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
I. Ljubić et al. (Eds.): ISCO 2022, LNCS 13526, pp. 143–156, 2022.
https://doi.org/10.1007/978-3-031-18530-4_11



144 P. Palkar and A. Mahajan

where the set I contains the indices of integer-constrained variables, the con-
straint functions g : Rn → R

m are assumed to be nonlinear and twice continu-
ously dierentiable, and the set X is non-empty and compact. MINLPs arise in
many important real-life applications [2,4,16], however, they are dicult to solve
as their special cases such as MILPs belong to the class of NP-hard problems [8].

State-of-the-art algorithms for MINLPs are based on branch-and-bound (BB)
framework. It partitions the search space recursively into smaller and usually
disjoint regions until a solution is found, or no further partitioning is possible.
BB starts by solving a relaxation that is easier to solve and whose solution
provides a valid lower bound on the optimal value (say z∗) of (P). Then the
search-space is branched to create smaller subproblems. If a solution to any of
the subproblems is feasible for (P), its objective value provides an upper bound
on z∗. This partitioning continues until the lower bound and the upper bound
on z∗ coincide. This setup can be analyzed as a tree-search where the tree-
nodes denote the subproblems and the edges denote the branches that divide a
subproblem.

The BB framework is naturally suitable for parallel processing due to the
presence of independent subproblems. The performance of a parallel BB algo-
rithm depends on the way it has been implemented on a software platform.
Dierent MILP and MINLP solvers use distinctive data structures, classes, sub-
solvers, etc., which make each implementation/solver unique in its own way.
Several studies have addressed the practical aspects of parallel BB algorithms
[3,6,7,14,18]. Theoretical analysis of parallel BB algorithms has also been per-
formed earlier [9–11,13]. Some of these studies focus on the unpredictable per-
formance of parallel branch-and-bound algorithms with respect to the number
of processors used. These phenomena are referred to as “anomalies”. We focus
on reducing “detrimental anomalies” that may arise due to two subroutines in
BB for convex MINLPs: selecting a branching candidate, and adding lineariza-
tion inequalities at a node. While the issue of node-selection has been studied
in the past [10,11], these two aspects have not been addressed to the best of
our knowledge. We concentrate on two well-known BB based algorithms for con-
vex MINLPs: NLP-BB and LP/NLP based BB, also called QG (an acronym for
Quesada and Grosmann [15] who proposed this algorithm).

The outline of the paper is as follows. Section 3 presents the opportunistic
parallel extensions of NLP-BB and QG in Minotaur1 [12]. In Sect. 4, we dene
unambiguous branching functions and show how a parallel NLP-BB algorithm
without detrimental anomalies can be implemented using unambiguous algorith-
mic components (referred to as “nondetrimental” NLP-BB). Section 5 presents
unambiguous functions for generating linearization cuts and a nondetrimental
QG algorithm. Section 6 shows the computational performance of the opportunis-
tic and the nondetrimental algorithms and Sect. 7 presents the conclusions.

1 Available at http://github.com/minotaur-solver/minotaur.



Mitigating Anomalies in Parallel Branch-and-Bound Algorithms for MINLP 145

2 Anomalies in Parallel Algorithms

Existence of anomalies in parallel tree-search based algorithms is shown in [9]
and sucient conditions to avoid detrimental anomalies caused by ambiguous
node selection are proposed in [10]. These results are based on the concept of an
“iteration” in a parallel BB algorithm, which we now dene.

Denition 1 (Iteration). An iteration is one cycle of all operations such as

node-presolving, node-processing, branching, adding cuts, checking stopping con-

ditions, inserting new nodes in the memory, etc., that a set of processors perform

simultaneously.

Instead of the wall clock time, the number of iterations taken by a parallel algo-
rithm is suited for our analysis because it does not vary based on the hardware,
software implementation and factors like the computational load on a system
at a point in time. Let k denote the number of processors, and T (k, 0) be the
number of iterations taken, where 0 indicates that we seek an exact optimal
solution (see [10] for an analysis when solutions with a predened tolerance are
acceptable). We make the following assumptions.

Assumption 1. The processors operate “synchronously” i.e., at most k open

nodes are selected and solved simultaneously in an iteration.

Assumption 1 restricts a processor from starting a new cycle of operations until
all the other processors have also nished their part in the iteration. Due to
this synchronization, the processors that nish earlier incur a waiting time. This
waiting for synchronization makes the procedure reproducible, but possibly at a
cost of longer running time.

Assumption 2. All the subsolvers used within the algorithm are deterministic.

The term “deterministic” in Assumption 2 means that the same solution would
be obtained using the subsolvers if the same initial conditions are provided to
them. Typically, an LP or an NLP subsolver is used in most MINLP algorithms.
Assumption 2 holds for certain LP and NLP solvers subject to the use of su-
ciently small tolerance values.

Denition 2 [10]. A behavior exhibited by a parallel tree-search algorithm using

k processors is a detrimental anomaly if T (k, 0) > T (1, 0).

A depiction of a detrimental anomaly is shown in Figs. 1–2 where a parallel
algorithm (k = 2) performs worse than the sequential algorithm (depicted as k =
1). Table 1 lists the nodes that are processed in each iteration by each processor
for both the cases. The number of iterations required when two processors are
used (5 iterations) is more than that for the sequential algorithm (3 iterations).
As mentioned in [10], one of the main reasons for detrimental anomalies is the
ambiguous selection of nodes in the sequential and the parallel versions. One can
observe in Table 1 that while the sequential algorithm processes node labeled 4



146 P. Palkar and A. Mahajan

Fig. 1. A sequential branch-and-bound tree
(k = 1). The algorithm processes nodes
0, 1, 4 respectively and then terminates.

Table 1. Nodes solved in dierent iter-
ations of the sequential (k = 1) and the
parallel algorithm (k = 2).

Node processed

k = 1 k = 2

Iter thread0 thread0 thread1

1 0 0 –

2 1 1 2

3 4 9 10

4 – 11 12

5 – 13 14

Fig. 2. A BB tree explored using two threads (k = 2). Two nodes are solved in parallel
in each iteration except in the rst iteration. thread0 solves the yellow colored nodes
and thread1 solves the red ones. The algorithm terminates after node 14 is processed.

in Iteration 3, the parallel algorithm selects nodes 9 and 10 (and not 4) and ends
up processing six other nodes (in three more iterations).

Sucient conditions on node selection functions to avoid detrimental anoma-
lies are as follows.

Denition 3 [10]. Given a set of open nodes P, a heuristic node selection func-

tion h(·) is referred to as unambiguous if it satises the following two properties.

1. h(Pi) = h(Pj), for any Pi, Pj ∈ P, Pi = Pj

2. h(Pi) ≤ h(Pj), if Pj is a descendant of Pi.

All nodes encountered while moving down the tree starting from a node are
referred to as the “descendants” of that node. Similarly, the nodes encountered
while moving up the tree starting from a node are called its “ancestor” nodes.
The function h maps nodes in P to real values. A node with a lower heuristic
function value has a higher priority for getting selected.



Mitigating Anomalies in Parallel Branch-and-Bound Algorithms for MINLP 147

Theorem 1 [10]. If h is unambiguous, then T (k, 0) ≤ T (1, 0).

Although Figs. 1–2 demonstrate how ambiguity in node selection cause detri-
mental anomalies, ambiguity in other components of BB can also give rise to
detrimental anomalies. In fact, the tree might evolve dierently in presence of an
ambiguous algorithmic component such as branching, cut generation or primal
heuristics when using dierent number of processors. State-of-the-art branching
rules decide upon a branching disjunction using the scores calculated based on
the information obtained from the nodes already processed in the BB tree. Con-
sidering the BB trees shown in Figs. 1–2, Table 2 demonstrates how an ambiguous
branching decision occurs if all available information is used for branching at the
node labeled 4. The column “br. info.” mentions the set of nodes processed. It
can be seen in Iteration 3 that the sequential (k = 1) and parallel (k = 2) algo-
rithms have access to dierent information sets and are likely to select a dierent
branching disjunction at the node labeled 4, which will result in dierent child
nodes, hence dierent BB trees.

Table 2. Ambiguous branching resulting in generation of dissimilar nodes

k = 1 k = 2

thread0 thread0 thread1

Iteration node br. info. node br. info. node br. info.

1 0 – 0 – – –

2 1 {0} 1 {0} 2 {0}

3 4 {0,1} 4 {0,1,2} 3 {0,1,2}

In [13, Assump. (A1)], the authors assume that the branching scheme at a
node Pi depends only on the information obtained along the path from Pi to
the root node. However, their analysis does not include unambiguous branching
functions. In this work, we explicitly dene functions for unambiguous branch-
ing and unambiguous cut generation. We compare the performance of parallel
nondetrimental algorithms obtained using these functions with parallel “oppor-
tunistic” algorithms in Minotaur.

3 Opportunistic Parallel Branch-and-Bound in Minotaur

The parallel implementation of NLP-BB in Minotaur uses classes available in its
MINLP framework. A single pool of open nodes (P) is maintained by the class
TreeManager to be processed simultaneously by k threads (one corresponding
to each of the k processors) until P is empty. In the beginning, the rst thread
solves the root relaxation and creates two child subproblems (if not pruned). An
idle thread then requests a node (if any) from TreeManager for processing. Each
thread sends the child nodes generated after branching to the TreeManager that
are added to P. Node-level parallel extensions of NLP-BB and QG have been



148 P. Palkar and A. Mahajan

implemented in Minotaur [17, Sec. 4.1 and Sec. 4.3] that use OpenMP for loops
that induce synchronization at the end of the loop. This section mentions new
node-level parallel extensions of the NLP-BB and the QG algorithms that process
multiple tree-nodes simultaneously in a more “opportunistic” way compared to
the shared-memory parallel algorithms presented in [17, Sec. 4.1 and Sec. 4.3].
Here, we use the term opportunistic in two respects. First, the threads attempt
to get a new open node from P as soon as they nish a cycle without waiting
for the other threads. Second, this algorithm is “not deterministic” in terms of
reproducibility of results.

Parallel NLP-BB. We refer to the opportunistic parallel extension of NLP-BB

in Minotaur as mcbnbOpp (here, the prex mc indicates multi-core). This algo-
rithm completely avoids the synchronization of threads after each iteration unlike
the algorithm in [17, Sec. 4.1] that has an implicit synchronization at the end of
OpenMP for loop. This means that if a thread nishes processing a node earlier
than the other threads, it will not wait.

Parallel QG. The parallelization scheme of opportunistic parallel extension of QG
(mcqgOpp) is similar to that of mcbnbOpp. The two major dissimilarities from
mcbnbOpp are that LPs (instead of NLPs) are solved at nodes, and linearization
cuts are generated at nodes that yield integer solutions by solving an NLP in
which integer variables are xed.

4 Reducing Detrimental Anomalies in Parallel NLP-BB

If none of the algorithmic components in NLP-BB induce ambiguity, the overall
algorithm would avoid detrimental anomalies. First, we focus on branching and
dene unambiguous branching functions.

4.1 Unambiguous Branching Functions

Typically, a node is constructed by adding a set of branching constraints to
its parent. We dene unambiguity (as in Denition 3) for branching functions
for creating simple variable disjunctions. This denition can be easily extended
to other branching functions. Variable disjunctions usually select a branching
variable from a set IC := {j ∈ I : x∗

j /∈ Z} of candidates at a node with an
optimal solution x∗.

Denition 4. Consider a node Pi ∈ P that has been processed and that is not

pruned. Let x∗ be the optimal solution of Pi and IC := {j ∈ I : x∗
j /∈ Z}. A

branching variable selection function ν(·) over IC at Pi is referred to as unam-

biguous if

– ν(·) uses information obtained only from Pi and its ancestors,

– ν(j) = ν(k) for j, k ∈ IC , j = k.



Mitigating Anomalies in Parallel Branch-and-Bound Algorithms for MINLP 149

Without loss of generality, the candidate with the highest function value can be
used for branching. We refer to a branching scheme as unambiguous if it uses an
unambiguous branching function.

The assumption that branching functions must be unambiguous is implicit in
the examples and results in [9,10]. However, for sophisticated branching schemes
used in state-of-the-art solvers, unambiguity cannot be assumed. Hence, we for-
mally prove that if an unambiguous branching function is used to branch at
a node, then “equivalent” child nodes would be created in both the sequential
and the parallel BB tree. We say that two nodes are equivalent if they repre-
sent the same subproblem. We state this result for simple variable branching.
Let φ1 and φk denote the BB tree explored by the sequential algorithm and the
parallel algorithm (using k processors), respectively. Consider a node Ps where
s ∈ N represents a label (a unique identier of a node in a BB tree). For the two
child nodes of Ps, we assign a label 2s to the left child node (generated using
the ≤ disjunction) and 2s+ 1 to the other child node. We refer to this labeling
mechanism as the 2s 2s+ 1 rule. The root node is assigned a label 1.

Proposition 1. Let the nodes in φ1 and φk be generated using an unambiguous

branching function and labeled using the 2s 2s+1 rule. Let P 1
s ∈ φ1 and P k

s ∈ φk

be two nodes with the same label s. Then P 1
s and P k

s are equivalent.

Proof. The equivalence of P 1
s and P k

s can be shown using equivalence of their
corresponding ancestor nodes upto the root node. The 2s 2s + 1 rule implies
that the labels of the ancestor nodes on the unique paths from the root node
(P1) to P 1

s and P k
s , respectively, are equal. Since, P1 is common to both φ1 and

φk, the branching disjunctions at the root node are equivalent by Assumption 2
and Denition 4. Hence, the ancestor nodes P 1

2 and P k
2 or P 1

3 and P k
3 are equiv-

alent. By Denition 4, ν(·) generates the branching disjunctions at these nodes
using scores obtained from only the current node and its ancestors, which are
equivalent. Similarly, the equivalence of P 1

s and P k
s is shown. 

Since k is arbitrary in Proposition 1, nodes with the same label are equiva-
lent irrespective of the number of threads used in the algorithm when an unam-
biguous branching rule is used. It can be easily veried that some well-known
branching strategies are naturally based on unambiguous branching functions.
For example, the lexicographic branching scheme (lex) that selects the variable
with the smallest subscript in IC satises Denition 4. Also, strong branching
(str), which involves partly or fully solving an LP/NLP subproblem satises
Denition 4 if a deterministic LP/NLP subsolver is used and if the objective
values obtained are all distinct. However, while lex is known to result in large
BB trees, str is considered expensive due to the requirement of solving many
LPs/NLPs. Thus, we present an unambiguous variant of a practically eective
branching scheme called the reliability branching [1].

4.2 Unambiguous Reliability Branching Scheme

Reliability branching (rel) is a hybrid scheme that attempts to combine the ben-
ets of str and the pseudocost branching scheme; see [1] for a detailed description



150 P. Palkar and A. Mahajan

of these schemes. rel updates the pseudocost scores of variables when they are
used for branching as the BB tree evolves. However, as shown in Table 2, using
information from all the processed nodes could result in ambiguous branching.
Hence, we present a scheme that uses limited information available in the BB

tree in a way that avoids ambiguities.

ancestRel Branching

An unambiguous version of rel can be obtained by using pseudocosts only
from a node Pi and its ancestors.

Since ancestRel uses some node-processing information generated in the tree,
it possibly provides better branching decisions compared to simple unambiguous
branching schemes like lex.

A variable xj with the maximum branching score is chosen for branching.
Any ties between candidates with the same score are broken lexicographically.

Corollary 1. The ancestRel branching strategy with the lexicographic tie-

breaking rule is unambiguous.

Proof. Since, the pseudocosts from only the ancestor nodes are used to calculate
scores, the selected branching candidate is independent of the number of pro-
cessors used to generate this tree by Proposition 1. Also, the set of branching
candidates, IC , at a node Pi is not ambiguous because the NLP subsolver used
is deterministic, and the lexicographic tie-breaking rule ensures that a unique
branching candidate is chosen. Hence, the conditions of Denition 4 are satised
by ancestRel. 

Compared to sharedRel branching rule in [17] that is ambiguous, the imple-
mentation of ancestRel incurs a storage overhead because at each node, it stores
a list of variables used for branching at its ancestors, their pseudocosts, the
number of times they are branched, and the iteration when they are last strong-
branched. Parameters like the number of variables on which strong branching
must be applied and the limit on the number of NLP/LP iterations for strong
branching are as per default settings of Minotaur.

4.3 A Hybrid Unambiguous Node Selection Strategy

Node selection strategies like depth-rst, width-rst or best-rst along with tie-
breaking rules have been shown to be unambiguous [10,13]. State-of-the-art
solvers generally use hybrid node selection mechanisms to mitigate the draw-
backs and combine the advantages of the above mentioned search strategies. We
show that one such hybrid strategy called the best-then-dive strategy coupled
with a tie-breaking rule is unambiguous. This strategy rst selects a node with
the best lower bound, and then keeps diving (processing one of the two imme-
diate child nodes) until a node is pruned.



Mitigating Anomalies in Parallel Branch-and-Bound Algorithms for MINLP 151

Let Pi be a node that has been processed and branched, and has an optimal
value ẑ. Assume that Pj is the child node preferred for diving, we assign the
following heuristic function values to the child nodes of Pi:

h(Pj) =

{

−∞, if Pj is the preferred child of Pi,
ẑ, otherwise.

In case a node gets pruned, an open node with the lowest lower bound value
is selected. Very often, multiple such nodes exist, for which an unambiguous
tie-breaking mechanism is required.

Proposition 2. The best-then-dive node selection strategy with the 2s 2s + 1
tie-breaking rule is unambiguous.

We omit the proof as it is easy to show that both the conditions of Denition 3
are met by this strategy.

4.4 Nondetrimental NLP-BB

We denote by mcbnbDeter, the parallel extension of NLP-BB in Minotaur that
uses the following unambiguous components.

– best-then-dive node selection strategy with the 2s 2s+ 1 tie-breaking rule
– ancestRel branching strategy with the lexicographic tie-breaking rule
– a deterministic NLP solver.

In addition to the above, we require synchronization of threads at few stages
in the algorithm, for example, to avoid passing ambiguous initial conditions to
the subsolvers, as well as unambiguity of other algorithmic components. We
also disabled “guided diving” in Minotaur, which sometimes causes ambiguity
depending upon when the best solution is obtained during an iteration.

Theorem 2. The algorithm mcbnbDeter satises T (k, 0) ≤ T (1, 0) for k > 1.

Proof. The result follows from [10, Theorem 1] and the unambiguity of the node
selection function (Proposition 2) and the branching function (Corollary 1), and
due to the deterministic NLP solver (Assumption 2). 

5 Reducing Detrimental Anomalies in Parallel QG

In this section, we formally dene the notion of unambiguity for cutting planes,
an integral component of branch-and-cut based algorithms.

Denition 5. A vector valued function π(·) for generating linearization cuts at

a node Pi is referred to as unambiguous if π(·) depends only on the information

obtained from Pi and its ancestors.



152 P. Palkar and A. Mahajan

We consider the basic linearization cuts in QG, which are obtained using an
integer optimal solution x∗ obtained at a node Pi. An NLP is solved in which the
integer variables are xed to their values in x∗. Using a point x̂ returned from
the NLP solver, a linearization cut is obtained. The point x̂ is either an integer
feasible solution to (P) or a point from a feasibility problem [2, Sec. 3.2.1] that
minimizes some measure of constraint violation at this node. In traditional QG,
these linearizations are applied to all open nodes in P. However, we store and
apply these cuts only to the descendants of Pi to avoid generation of ambiguous
relaxations or nodes when using dierent number of threads. We refer to the
strategy that uses this cut generating function as cutGenQG.

Proposition 3. The cut generation strategy cutGenQG is unambiguous.

Proof. Since the integer feasible LP solution x∗ at a node is obtained from a
deterministic LP solver, the resulting xed NLP will not be ambiguous. This
ensures that the point x̂ returned from a deterministic NLP solver, and hence,
the cuts generated at Pi are not ambiguous. All descendants of Pi exhibit similar
behavior, hence, cutGenQG satises the conditions of Denition 5. 

Next, we denote by mcqgDeter, the parallel extension of QG in Minotaur
that uses the following unambiguous components.

– best-then-dive node selection strategy with the 2s 2s+ 1 tie-breaking rule
– ancestRel branching strategy with the lexicographic tie-breaking rule
– cutGenQG cutting plane strategy
– a deterministic NLP solver and a deterministic LP solver

Theorem 3. The algorithm mcqgDeter satises T (k, 0) ≤ T (1, 0) for k > 1.

Other linearization inequalities proposed in [17] for QG can also be included in
an unambiguous way in mcqgDeter. However, by restricting the application of
these cuts only to descendant nodes, the relaxations at other nodes would be
weaker than those in the traditional QG and might result in a larger BB tree.

Reproducibility of Results The use of unambiguous components in mcbnbDeter

and mcqgDeter results in a deterministic behavior of these algorithms. Repro-
ducibility in parallel algorithms is desired for performance analysis, debugging
during code development, etc. In Minotaur, we provide appropriate options that
synchronize various subroutines, and ensures unambiguity.

6 Computational Results

We have carried out our computational experiments on a server with two 64-bit
Intel(R) Xeon(R) E5-2670 v2, 2.50GHz CPUs with 10 cores each and sharing
128GB RAM. Our schemes are implemented in Minotaur2. The algorithms are
written in C++ and complied with GCC-4.9.2. We use OpenMP-4.0 provided by

2 Available at http://github.com/minotaur-solver/minotaur.



Mitigating Anomalies in Parallel Branch-and-Bound Algorithms for MINLP 153

GCC for our parallel constructs. IPOPT-3.12 with MA97 linear-systems solver
is used for solving NLPs and CPLEX-12.8 for solving LPs. We have disabled
hyperthreading to highlight the eect of explicit parallelism. We have used 374
convex instances from MINLPLib [5] (we refer to them as testset TS). A limit
of one hour on the wall clock time has been used for all our experiments.

First, we briey mention the performance of opportunistic algorithms. mcbn-

bOppor16 could solve 29 additional instances compared to mcbnbOppor1 and
reduced the time taken by more than 60%. This performance is better compared
to the opportunistic schemes reported earlier in [17].

The “scalability graphs” [17] for mcbnbOppor are shown in Fig. 3. The plot
for mcbnbOppor1 is a base step function for which the peak value (about 0.71
here) indicates the fraction of instances solved usingmcbnbOppor1. The ordinate
corresponding to a value at, say 2−1, indicates the fraction of instances that
are solved by a multithreaded variant by a factor of two or more as compared
to mcbnbOppor1. For example, mcbnbOppor16 solves 40% of the instances at
least twice as fast as mcbnbOppor1. The rightmost values on the plots show the
fraction of instances that could be solved within the time limit.

mcbnbDeter can be run in Minotaur using the following options: –brancher
ancestRel –tb rule 2s 2s+1 –mcbnb deter mode 1. The scalability graphs in terms
of wall clock time are shown in Fig. 4. Overall, the performance of mcbnbOppor

is better thanmcbnbDeter in terms of wall clock time because the former exploits
parallelism in an opportunistic way. However, mcbnbDeter variants can provide
a guarantee to not be worse than mcbnbDeter1 and also be reproducible.

Fig. 3. Scalability graphs of wall clock
times taken by mcbnbOppor on TS.

Fig. 4. Scalability graphs of wall clock
times for mcbnbDeter without guided
diving.

We are able to avoid detrimental anomalies in mcbnbDeter using the above
mentioned options in Minotaur in terms of the number of iterations except
for seven instances. Disabling guiding diving (using --guided dive 0) elimi-
nates detrimental anomalies in three of these instances. The remaining instances
exhibit anomalies due to ambiguity induced by oating point precision in Mino-
taur and the subsolvers. Figure 4 and 7 demonstrate good scalability ofmcbnbDe-

ter both in terms of wall clock times and the number of iterations, respectively.



154 P. Palkar and A. Mahajan

Fig. 5. Scalability graphs of wall clock
times taken by mcqgOppor on TS.

Fig. 6. Scalability graphs of wall clock
times taken by mcqgDeter on TS.

Fig. 7. Scalability graphs of no. of iter-
ations for mcbnbDeter without guided
diving.

Fig. 8. Scalability graphs of number of
iterations taken by mcqgDeter on TS.

Figure 5 shows the scalability graphs for the opportunistic variants of mcqg .
mcqgOppor16 could solve about 40% of the instances in half the time compared
to mcqgOppor1. For dicult instances, improvement up to 88% is obtained, and
overall, 16 additional instances could be solved. mcqgDeter also scales well with
the number of threads in both wall clock times and the number of iterations as
shown in Fig. 6 and 8, respectively. For 41 instances,mcqgOppor exhibits anoma-
lous behavior in terms of wall clock time. We note that this list is longer compared
to that corresponding to mcbnbOppor. On the other hand, ve instances solved
by multithreaded mcqgDeter took more iterations than that by mcqgDeter1.
Again, this is because of the ambiguities induced by oating point precision in
Minotaur.

7 Conclusions and Future Directions

It is important to study anomalies in parallel branch-and-bound algorithms to
design better strategies in practice that can enhance scalability of parallel algo-
rithms. We addressed detrimental anomalies in two convex MINLP algorithms,



Mitigating Anomalies in Parallel Branch-and-Bound Algorithms for MINLP 155

NLP-BB and QG by extending the notion of unambiguity to functions for vari-
able branching and generating cuts. We also showed that these theoretical ideas
can translate to practically eective algorithmic components such as hybrid node
selection strategies like best-then-dive (instead of pure strategies like depth-rst,
best-rst, etc.), branching rules like ancestRel (instead of lexicographic branch-
ing rule), etc. Our computational experiments show that detrimental anomalies
can be eliminated to a great extent practically. Opportunistic versions perform
better in terms of wall clock times than the deterministic versions on average,
because deterministic versions tend to synchronize more and incur some extra
intervals of waiting time. However, deterministic versions can avoid detrimental
anomalies with guarantees and also provide reproducible results.

The analysis presented so far depends on the number of iterations. It remains
to be explored how unambiguity and speed can be achieved simultaneously.
Also, unambiguity can be extended to other MINLP algorithms like the MILP
based outer approximation. Another immediate extension of our work is to avoid
general k1-k2 anomalies in MINLP algorithms where k2 > k1 > 1 is the number
of processors used.

References

1. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Oper. Res. Lett.
33(1), 42–54 (2005)

2. Belotti, P., Kirches, C., Leyer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-
integer nonlinear optimization. Acta Numer 22, 1–131 (2013)

3. Berthold, T., Farmer, J., Heinz, S., Perregaard, M.: Parallelization of the FICO
Xpress-Optimizer. Optim. Methods Softw. 33(3), 518–529 (2018)

4. Boukouvala, F., Misener, R., Floudas, C.A.: Global optimization advances in
mixed-integer nonlinear programming, MINLP, and constrained derivative-free
optimization. CDFO. Eur. J. Oper. Res. 252(3), 701–727 (2016)

5. Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib - a collection of test models
for mixed-integer nonlinear programming. INFORMS J. Comput. 15(1), 114–119
(2003)

6. Crainic, T.G., Le Cun, B., Roucairol, C.: Parallel branch-and-bound algorithms.
Parallel Comb. Optim. 1, 1–28 (2006)

7. Hart, W.E., Phillips, C.A., Eckstein, J.: PEBBL: An object-oriented framework for
scalable parallel branch and bound. Technical report, Sandia National Laboratories
(SNLNM), Albuquerque, NM (United States) (2013)

8. Kannan, R., Monma, C.L.: On the computational complexity of integer program-
ming problems. In: Henn, R., Korte, B., Oettli, W. (eds.) Optimization and Opera-
tions Research. LNEMS, vol. 157, pp. 161–172. Springer, Berlin, Heidelberg (1978).
https://doi.org/10.1007/978-3-642-95322-4 17

9. Lai, T.H., Sahni, S.: Anomalies in parallel branch-and-bound algorithms. Commun.
ACM 27(6), 594–602 (1984)

10. Li, G.J., Wah, B.W.: Coping with anomalies in parallel branch-and-bound algo-
rithms. IEEE Trans. Comput. 100(6), 568–573 (1986)

11. Li, G.J., Wah, B.W.: Computational eciency of parallel combinatorial OR-tree
searches. IEEE Trans. Softw. Eng. 16(1), 13–31 (1990)



156 P. Palkar and A. Mahajan

12. Mahajan, A., Leyer, S., Linderoth, J., Luedtke, J., Munson, T.: Minotaur: a
mixed-integer nonlinear optimization toolkit. Math. Program. Comput. 13, 1–38
(2020)

13. Mans, B., Roucairol, C.: Performances of parallel branch and bound algorithms
with best-rst search. Discret. Appl. Math. 66(1), 57–74 (1996)

14. Menouer, T.: Solving combinatorial problems using a parallel framework. J. Parallel
Distrib. Comput. 112, 140–153 (2018)

15. Quesada, I., Grossmann, I.E.: An LP/NLP based branch and bound algorithm for
convex MINLP optimization problems. Comput. Chem. Eng. 16(10–11), 937–947
(1992)

16. Sahinidis, N.V.: Mixed-integer nonlinear programming 2018. Optim. Eng. 20(2),
301–306 (2019). https://doi.org/10.1007/s11081-019-09438-1

17. Sharma, M., Palkar, P., Mahajan, A.: Linearization and parallelization schemes
for convex mixed-integer nonlinear optimization. Comput. Optim. Appl. 81, 1–56
(2022)

18. Shinano, Y., Heinz, S., Vigerske, S., Winkler, M.: FiberSCIP - a shared memory
parallelization of SCIP. INFORMS J. Comput. 30(1), 11–30 (2017)


