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Abstract
Tight reformulations of combinatorial optimization problems like Convex Mixed-Integer Nonlinear
Programs (MINLPs) enable one to solve these problems faster by obtaining tight bounds on optimal
value. We consider two techniques for reformulation: perspective reformulation and separability
detection. We develop routines for automatic detection of problem structures suitable for these
reformulations, and implement new extensions. Since detecting all “on-off” sets for perspective
reformulation in a problem can be as hard as solving the original problem, we develop heuristic
methods to automatically identify them. The LP/NLP branch-and-bound method is strengthened
via “perspective cuts” derived from these automatic routines. We also provide methods to generate
tight perspective cuts at different nodes in the branch-and-bound tree. The second structure, i.e.,
separability of nonlinear functions, is detected by means of the computational graph of the function.
Our routines have been implemented in the open-source Minotaur solver for general convex MINLPs.
Computational results show an improvement of up to 45% in the solution time and the size of
the branch-and-bound tree for convex instances from benchmark library MINLPLib. On instances
where reformulation using function separability induces structures that are amenable to perspective
reformulation, we observe an improvement of up to 88% in the solution time.
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1 Introduction

We study convex MINLPs that are optimization problems of the form

minimize
x

cT x

subject to gi(x) ≤ 0, i = 1, . . . , m,

xi ∈ Z, i ∈ I.

 (P)

Here, variables with indices in set I are restricted to take only integer values and constraint
functions gi : Rn → R, i = 1, . . . , m are convex and twice continuously differentiable. Convex
MINLPs arise in a several real-world applications and are also solved as subproblems in
nonconvex MINLPs [19, 22], and mixed-integer PDE constrained optimization problems [25].
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In a branch-and-bound framework for solving a convex MINLP (P), iteratively tightened
relaxations of the problem are solved to obtain lower bounds on optimal objective value, Z∗.
Since tight relaxations often give good bounds, one seeks to generate tight relaxations at
different nodes in a tree-search. Reformulation of the problem is one of the ways to tighten
relaxations. In this work, we consider two useful reformulations (i) Perspective Reformulation
(PR) [9, 13] (ii) and a reformulation using the “separability” property of functions in nonlinear
constraints.

It is shown in [9, 13] that, for some special disjunctive sets (“on-off” sets) convex hull
description can be given in the space of the original variables using the perspective function.
Problems to which PR can be applied occur in many applications, and they are shown to
be solved better in terms of solution time and branch-and-bound tree size by using PR
[2, 8, 13]. Although PR is useful, a bottleneck in its implementation is detecting the on-off
sets in a given problem. Moreover, the reformulation involves a nonlinear constraint that
can cause numerical difficulty due to possible division by zero. Depending on how this
nonlinear constraint is handled, there are different ways to solve the reformulated problem
[10, 12, 13]. We first introduce structures (in the form of collections of constraints) that
indicate disjunctions suitable for PR, and then provide computationally economical ways to
automatically detect these structures in a problem. More specifically, we present some new
structures that imply “semi-continuous” variables, an important component in defining on-off
sets. To obtain tight linear inequalities that outer-approximate the perspective reformulation,
we propose novel line search approaches.

In the context of outer-approximation based algorithms, it is demonstrated in [17, 27] that,
if a convex function is decomposed into its convex sub-expressions then outer-approximating
these decomposed components separately gives better approximation of the original function
than outer-approximating the original function directly. Exploiting separability in functions
defining nonlinear convex constraints allows such a decomposition. The effectiveness of
exploiting separability in specific models is further demonstrated in [14], where such algorithms
are shown to require orders of magnitude fewer cuts to converge using separability. We
implement routines to automatically detect separable functions using their “computational
graphs” that are available in some solvers to store nonlinear functions.

All presented methods have been implemented within the open-source solver Minotaur2 [20].
Our computational experiments show the improved performance of Minotaur on convex
instances in MINLPLib [5] achieved by these reformulation techniques. To the best of
our knowledge, PR has only recently been implemented in SCIP [3] for both convex and
nonconvex problems. Also, a reformulation based on separability exists in the convex MINLP
solver SHOT [18].

The rest of the paper is organized as follows. In Section 2 and Section 3, we present the
perspective reformulation and the separability based reformulation, respectively, and their
impact on the performance of a branch-and-cut algorithm in Minotaur. The combined effect
of these reformulations is reported in Section 4. Section 5 presents our conclusions.

2 Available at http://github.com/minotaur-solver/minotaur

http://github.com/minotaur-solver/minotaur
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2 Perspective Reformulation

A disjunctive set of the form (S){
(x, z) ∈ Rn × {0, 1}

∣∣∣∣ x ∈ Γ0, if z = 0
x ∈ Γ1, if z = 1

}
, (S)

where Γ0 is a singleton set and Γ1 is a bounded convex set, is called an “on-off” set. The
roles of z = 0 and z = 1 in (S) can be swapped without losing generality. The binary variable
z “controls” variables x in the sense that when z = 0, x takes a fixed value x̂ ∈ Rn, and
z = 1 implies that x lies in a compact convex set. Such variables x are called semi-continuous
variables [9, 10] and they appear in many real-world applications [11, 15, 29].

The convex hull of an “on-off” set can be represented using a function f̌ in the space of
original variables [7]. Given a function f(x) : Rn → R, f̌(x, λ) : Rn+1 → R is defined as

f̌(x, λ) =


λf

(x − (1 − λ)x̂
λ

)
, if λ > 0,

0, if λ = 0,

∞, otherwise,

(PF )

where x̂ is some fixed vector. It can be easily shown that if f is convex, then f̌ is also convex.
When x̂ = 0, the function f̌ is well known as the perspective function of f . Two sets that
conform to the form (S) are as follows.
1. This set referred to as (S1), equals Γ0 ∪ Γ1 with

Γ0 := {(x, z) ∈ Rp × {0, 1} : x = x̂, z = 0}
Γ1 := {(x, z) ∈ Rp × {0, 1} : gi(x) ≤ 0, A(x, z) ≤ a, z = 1}

}
(S1)

2. This set, referred to as (S2), is defined as Γ0 ∪ Γ1, with

Γ0 := {(x, v, z) ∈ Rp+q × {0, 1} : x = x̂, dT v ≤ 0, z = 0}.

Γ1 := {(x, v, z) ∈ Rp+q × {0, 1} : gi(x) + dT v ≤ 0, A(x, z) ≤ a, z = 1}.

}
(S2)

Even though (S2) is not an on-off set by definition, its convex hull can still be described
by a perspective function like an on-off set in the space of original variables.

In both sets x̂ is a fixed vector, gi is a convex nonlinear function, and Γ1 is a compact convex
set. In the first set Γ0 is a singleton and in the second it is a halfspace. The polyhedral set
defined by A(x, z) ≤ a is compact (A and a are a matrix and a vector of the corresponding
dimension) and contains (x̂, 0), enforcing the on-off relation between x and z. The convex
hulls (conv(.)) of these sets (Lemmas 1–2) can be shown to lie in the space of the original
variables x and z [13].

▶ Lemma 1. conv(S1) = closure(S̃1), where

S̃1 =
{

(x, z) ∈ Rp+1 :zgi

(x − (1 − z)x̂
z

)
≤ 0,

A(x − (1 − z)x̂) ≤ az, 0 < z ≤ 1
}

.

▶ Lemma 2. conv(S2) = closure(S̃2), where

S̃2 =
{

(x, v, z) ∈ Rp+q+1 : zgi

(x − (1 − z)x̂
z

)
+ dT v ≤ 0,

A(x − (1 − z)x̂) ≤ az, 0 < z ≤ 1
}

.

SEA 2022
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In sets (S1) and (S2), x are semi-continuous variables. Given a convex MINLP, to find
if xi is a semi-continuous variable controlled by z, where z ∈ {0, 1}, two MINLPs have
to be solved to check if xi can be fixed to x̂i. In these two MINLPs, z is fixed to 0 and
the objective functions are max xi and min xi, respectively (the rest remains same as the
original problem). If the optimal value of these two MINLPs is equal to x̂i, then it implies
z = 0 fixes xi to x̂i. Since detecting semi-continuous variables in a given problem requires
solving MINLPs (which can be as difficult as solving the original problem), there is a trade-off
between the number of (S1) and (S2) sets detected and the time spent in detecting them.
A less time-consuming alternative is to heuristically find collections of constraints during
presolve, that indicate semi-continuous variables and binary variables controlling them. Some
such collections ((C1), (C2), and (C3)) are presented below, and our computational study
show that these collections appear as small blocks in many optimization problems. The
techniques to detect them are similar to probing for MILPs [24]. Henceforth, x̂ indicates the
fixed value that semi-continuous variables x takes when the corresponding binary variable
has value 0.

1. Linear inequalities in at most two variables of the form,

l1z + l0(1 − z) ≤ x ≤ u1z + u0(1 − z),
z ∈ {0, 1}, x ∈ R,

}
(C1)

where l0, l1, u0, u1 ∈ R and lj ≤ uj , j = 0, 1. If l0 = u0, then x is a semi-continuous
variable controlled by z. Similarly, if l1 = u1, then (1 − z) controls x. A simple example
of (C1) that appears in many problems is, lz ≤ x ≤ uz, z ∈ {0, 1}, x ∈ R.

2. Single constraint with an indicator

aT x + d1z ≤ d2,

l ≤ x ≤ u,

z ∈ {0, 1},

 (C2)

where d1 and d2 are scalars, and l, u ∈ Rp with li ≤ ui, ∀i, with the additional property
that if ai > 0, then li = 0, and if ai < 0, then ui = 0.

a. If d2 = 0 and d1 < 0, every component of x is semi-continuous variable controlled by z

such that x̂ = 0. If d2 = 0 and d1 > 0, z = 1 is infeasible and therefore, z can be fixed
to 0.

b. When d1 = d2, x is semi-continuous variable controlled by 1−z and x̂ = 0. Additionally,
if d1 < 0, then z = 0 becomes infeasible and z can be fixed to 1. A simple example of
this case is

∑p
i=1 zi ≤ 1, z ∈ {0, 1}p where any (1 − zi) controls all the other variables.

3. (C1) or (C2) with an extra equality constraint

dT x + d3x̃ = d4,

x̃ ∈ R, x ∈ C1 or C2,

}
(C3)

where d ∈ Rp, and d3 and d4 are any scalars. If x is controlled by z or (1−z) (x̂ being the

corresponding fixed value of x), then so is x̃ if l̃ ≤ d4 − dT x̂

d3
≤ ũ, where l̃ and ũ are lower

and upper bounds respectively on x̃, otherwise, z can be fixed to 1 or 0, respectively.
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Out of 374 convex MINLP instances in MINLPLib, 274 instances have at least one binary
variable remaining after Minotaur’s presolve routine. Table 9 in Appendix B reports the
number of instances out of these 274 with above mentioned collections. Out of these 274
instance, 220 have at least one of these three collections, and set of these instances is referred
to as TSc, which is used for detecting sets amenable to PR. Details of instances in test set
TSc are presented in the Table 6 in Appendix A. Note that these are the instances that
have semi-continuous variables, and some of them may not be suitable for the perspective
reformulation.

2.1 Structures Amenable to Perspective Reformulation
Given the problem (P), following structures conform with sets of the form (S1) or (S2), and
thus, are amenable to perspective reformulation.
1. A constraint in which all variables in the nonlinear function are semi-continuous, that is,

gi(x) ≤ 0,

(x, z) ∈ C̄,

}
(PS1)

where C̄ is a union of at least one of C1 or C2 or C3. This structure conforms with (S1).
2. A constraint in which all variables in only the nonlinear part of the function are semi-

continuous. Let g̃i and gi denote nonlinear and linear parts of function gi in disjoint set
of variables x̃ and x, respectively. If z exists in the constraint, it should be considered a
part of g̃i. This structure conforms with set (S2).

g̃i(x̃) + gi(x) ≤ 0,

(x̃, z) ∈ C̄,

}
(PS2)

The PR amenable structure specified in [3] is of form (PS2), with semi-continuous variables
recognized by the constraints (C1). A reformulation of the problem that results by replacing
structures (PS1) and (PS2) by their convex hull description (as mentioned in Lemma 1 and
Lemma 2, respectively) is referred to as perspective reformulation of the problem.

2.2 Detecting Structures (PS1) and (PS2)
Given a problem (P), we have a straightforward two-phase algorithm for detecting nonlinear
constraints amenable to PR. In the first phase, the algorithm iterates through linear in-
equalities to find blocks of constraints (C1) and (C2). Then it iterates through all the linear
equalities to detect (C3). The outcome of the first phase is either a set of semi-continuous
variables (and binary variables controlling them) or an indication that there is none. If
there are semi-continuous variables, then in the second phase, the algorithm iterates through
nonlinear constraints and checks if it has form required for (PS1) or (PS2). In case a
nonlinear constraint conforms to either of the forms, it is declared amenable to PR.

Our computational results show that 104 instances (all mixed-binary nonlinear programs)
in the test set TSc have structures amenable to PR. We refer to the set of these 104 instances
as TSpr and Table 7 in Appendix A reports more details of these instances. Out of these,
103 instances have all PR amenable constraints of type (PS1), and instance synthes3 has
one constraint each of type (PS1) and (PS2). Moreover, we found that all instances (except
synthes2 and synthes3) in TSpr have all nonlinear constraints amenable to PR.

As this algorithm iterates through linear constraints for finding semi-continuous variables,
it might take more time on instances with a large number of linear constraints. In our

SEA 2022
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experiments, the time taken to detect these structures (including detection of semi-continuous
variables) in any instance in the set TSpr is negligible (less than half a second).

2.3 Solving Perspective Reformulation
We solve the reformulated problem using perspective cuts in the LP/NLP based branch-and-
bound method [23]. This method, also known as the QG algorithm, is based on a branch-
and-cut framework and is a state-of-art method for convex MINLPs. It is implemented and
practically enhanced in many MINLP solvers [1, 4, 16, 21, 26].

Perspective cuts (PCs) are outer-approximation cuts to constraints after PR is applied to
them [13]. For the nonlinear constraint in structure (PS1), the outer-approximation cut at

(x′, z′) and
(x′

z′ , 1
)

are the same and is given by

x⊤s + z
(

gi

(x′

z′

)
+ s

(
x̂ − x′

z′

))
≤ s⊤x̂, s ∈ ∂xgi

(x′

z′

)
. (1)

Adding infinitely many PCs to the defining function in a PR amenable structure gives its
convex hull. Also, note that all PCs pass through the point (x̂, 0). Similarly, a PC for a
reformulated constraint in (PS2), a perspective cut is given by

x̃⊤s + z
(

g̃i

( x̃′

z′

)
+ s̃

(
ˆ̃x − x̃′

z′

))
+ gi(x) ≤ sT ˆ̃x, s ∈ ∂x̃g̃i

(x′

z′

)
. (2)

In QG, cuts (gradient inequalities) are added at nodes where associated linear programs
yield integer optimal solutions. Traditionally, the solution to the continuous relaxation
of the root node, say (x0, z0), is used to create the initial linear relaxation by linearizing
the nonlinear constraints at (x0, z0). Here, z0 represents the vector of binary variables
associated with semi-continuous variables appearing in the structures amenable to PR. These
linearizations to the constraints active at (x0, z0) are supporting for P c (the feasible region
of the continuous relaxation of problem), but not necessarily for P r (the feasible region of
the continuous relaxation of the perspective reformulated problem). This scenario arises
when some z0

i ∈ (0, 1) satisfies the original nonlinear constraint but not the reformulated
constraint. Moreover, this can also happen at other nodes in the branch-and-bound tree.

We found that in 68 instances in TSpr, at least one reformulated nonlinear constraint
is violated at (x0, z0) and 20 of them have more than 50% of the reformulated constraints
violated. This observation motivated us to generate tight PCs for the reformulated problem
at a point (x′, z′) that is not in P r. We study the problem of generating perspective cuts at
such a point (x′, z′) under the following two cases.

1. (x′, z′) ∈ P c and (x′, z′) /∈ P r: This happens when (x0, z0) does not lie in P r.
2. (x′, z′) /∈ P c and (x′, z′) /∈ P r: This can happen at nodes other than root node yielding

fractional optimal solutions.
Given such a point (x′, z′) /∈ P r, we propose the following two methods that find another
point (x′′, z′′) in P r (or at least at the boundary of the violated constraint) such that the
linearizations at (x′′, z′′) cut off (x′, z′).
1. SimLS Method: This is a simple line search that considers each violated constraint and

search for a point that satisfies the reformulated constraint at equality. That is, given

z′
igi

(x′ − (1 − z′
i)x̂

z′
i

)
> 0,
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this method finds a point (x′′, z′′) such that zi
′′gi

(
x′′−(1−zi

′′)x̂
zi

′′

)
= 0. Given the point

(x′, z′) ∈ P c, if (x′, 1) ∈ P r, then (x′′, z′′) is such that x′′ = x′ and z′′
i = (1 − λ)z′

i + λ for
some λ ∈ (0, 1].
Also, if (x̂, 1) ∈ P c (and thus, in P r), then for every (x′, z′) ∈ P c, (x′, 1) ∈ P c (and thus,
in P r). Verifying (x̂, 1) ∈ P c amounts to evaluating whether the nonlinear constraint
satisfies at (x′, 1). Also, for the structure (PS1), if the associated binary variable does
not exist in the defining nonlinear constraint, then (x̂, 1) ∈ P c.
We found that in 98 instances in TSpr, (x̂, 1) belongs to P c for all the PR amenable
constraints and in 50 of them, the binary variables controlling the semi-continuous
variables do not appear in the constraint functions. The 6 instances in which this
condition is not satisfied for any of the PR amenable constraints are of the type clay*.

2. CenLS Method: This method performs a line search between the given point and (xC , zC)
(an approximation of the center of P c) to obtain a point (x′′, z′′) at the boundary. The
point (xC , zC) is obtained by solving the following nonlinear problem (NLPI), in which all
the nonlinear inequalities in the original problem are modified using an auxiliary variable,
ν, which also forms the objective of (NLPI). All the linear constraints remain unchanged.
Let the optimal solution of (NLPI) be (ν̃, x̃, z̃). If ν̃ < 0, then we set (xC , zC) = (x̃, z̃). If
ν̃ = 0, then no point in the feasible region of the original problem exists at which all the
nonlinear constraints are inactive. In this case, we terminate the method. If (NLPI) is
unbounded, then we add ν to the linear inequalities in the same way as the nonlinear
constraints and then re-solve.

minimize
x,ν

ν

subject to gi(x) ≤ ν, i ∈ M,

ν ≤ 0.

 (NLPI)

If (xC , zC) is obtained, then it lies in P r.

The following two sections present the computational experiments that compare the
default implementation of QG in Minotaur, referred to as qg, to qg with PCs on overall
solution time and size of the tree (in terms of the number of nodes processed). All the
computational experiments have been carried out on a system with two 64-bit Intel(R)
Xeon(R) E5-2670 v2, 2.50GHz CPUs having 10 cores each and sharing 128GB RAM. Our
schemes are available in the development version of Minotaur3. All codes are complied with
GCC-4.9.2 compiler. IPOPT-3.12 with MA27 linear-systems solver is used as the NLP solver.
CPLEX-12.8 has been used as the LP solver. We have set a time limit of one hour for all
our experiments and reported all the solution times in seconds.

2.3.1 Adding Perspective Cuts at Root Node
First we add PCs only at the root node with the following three settings.

1. root_reg: adds PCs to PR amenable constraints violated at (x0, z0).
2. root_cenls: adds PCs to violated PR amenable using CenLS method in addition to PCs

from root_reg.
3. root_bothls: adds additional PCs using SimLS method, wherever applicable, in addition

to PCs from root_reg and root_cenls.

3 Available at http://github.com/minotaur-solver/minotaur
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In these experiments, we commonly add the following cuts:
1. PCs to PR constraints at corresponding points (x̂, 0), where z = 0 implies x = x̂.
2. If the perspective reformulated constraint is inactive at (x0, z0) and (x0, 1) does not lie

in P r, then we find a point on the boundary by moving along the direction −ez (which is
always feasible), a vector whose components associated with z are -1 and the rest are 0.

Table 1 and Table 2 show a comparison of default qg and qg with settings s ∈ {root_reg,
root_cenls, root_bothls} for instances in test set TSpr. These results show the distribution of
performance across instances with varying difficulty. Each row corresponds to an experimental
setting (s). Each row in Table 1 (Top) corresponds to the results of instances solved by qg
and qg with setting s, and in Table 1 (Bottom), Table 2, it corresponds to instances that
are solved by both, but where at least one of the methods takes more than 10, 100, and 500
seconds, respectively. The first column under the headings “time” and “nodes” shows the
shifted geometric mean (SGM) of these measures reported by the reference solver (qg in
this case) for the instances solved by both. The second column under these headings show
the relative SGM (“rel.”) under the setting s for the same instances. The relative SGM
of a measure is computed as the ratio of the SGM value of the proposed scheme (here, qg
under setting s) to the SGM value of the reference solver (qg). If this ratio, say r, is less
than one, it implies that the proposed solver has performed better than the reference solver.
More specifically, the proposed solver has shown an improvement over the reference solver
with a factor (1 − r) on the considered performance measure. One instance (rsyn0830m04m)
on which qg reached the time limit took 56.22s with the setting root_reg, 53.93s with
root_cenls, and 47.17s with root_bothls.

Table 1 (Top) Comparison of qg and qg with
setting s on 103 instances that are solved by both
the methods. (Bottom) Performance on 26 in-
stances for qg and qg with first two settings, and
25 instances with root_bothls that are solved
by both methods, but at least one method took
more than 10 seconds.

time nodes
setting (s) qg rel. qg rel.
root_reg 8.60 0.67 505.44 0.69
root_cenls 8.60 0.63 505.44 0.69
root_bothls 8.60 0.57 505.44 0.59

time nodes
setting (s) qg rel. qg rel.
root_reg 67.23 0.48 14956.08 0.41
root_cenls 67.23 0.43 14956.08 0.41
root_bothls 72.39 0.34 17005.06 0.29

Table 2 (Top) Comparison of qg and qg
with setting s on 9 instances that are solved
by both the methods but at least one method
took more than 100 seconds. (Bottom) Sim-
ilar comparison on 2 instances that are solved
by both the methods, but at least one method
took more than 500 seconds.

time nodes
qg rel. qg rel.

294.93 0.28 55751.27 0.24
294.93 0.24 55751.27 0.26
294.93 0.19 55751.27 0.19

time nodes
qg rel. qg rel.

1249.47 0.10 595448.0 0.09
1249.47 0.10 595448.0 0.09
1249.47 0.05 595448.0 0.04

Our computational results show improvements in both the considered measures under all
three settings. The highest improvement is reported by qg with root_bothls. Overall, it
improved the solution time and tree size by about 43.19% and 41.45%, respectively. Even
higher improvements (about 81% and 95%, respectively) are observed for instances in with
default qg took more than 100 seconds and 500 seconds, respectively.
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Figure 1 Performance profiles comparing solution times of qg and qg with root_reg, root_cenls,
root_bothls (on left), and qg and qg with root_bothls, other_reg, other_cenls (on right).

Furthermore, we use performance profiles [6] that graphically demonstrate the relative
performance of different solvers for a particular performance measure over a given set of
instances.

Figure 1 shows the performance profiles of qg and qg with settings root_reg, root_cenls,
root_bothls using the solution times of the instances in test set TSpr. It shows that on nearly
85% of these instances, root_cenls is not slower than the rest and it solved all instances
within 2 times of the best solvers among the considered ones. On the other hand, on 20% of
the instances qg took more than double the time taken by the fastest method.

2.3.2 Adding Perspective Cuts at Other Nodes
Next, we generate PCs at other nodes yielding integer feasible solutions in addition to the
root node. The nodes that we have selected for generating perspective cuts are the same
as in default qg (the ones yielding integer optimal LP solution). But using the fixed-NLP
solution as in QG algorithm may not produce tight inequalities for the reformulated problem
for the same reason as mentioned for the case of the root node. Here, we employ CenLS
method for finding points for generating tighter perspective cuts. Let (x′, z′) be an integer
solution of the fixed-NLP at any node. If the fixed-NLP is infeasible, (x′, z′) is a solution
to the feasibility problem. When the fixed-NLP is optimal, a reformulated constraint is
always feasible. However, some constraints could be inactive. In the test set TSpr, in 6
instances, at least one reformulated nonlinear constraint is violated at some node yielding an
integer optimal solution. In 10 instances, at least one reformulated constraint is inactive at
the fixed-NLP optimal solution. Thus, keeping the best setting at the root node, following
computational experiments have been performed for adding PCs at integer optimal nodes.

other_reg: This setting generates perspective cuts to every nonlinear constraint in the
reformulated problem at (x′, z′) if z′ ̸= 0.
other_cenls: This setting employs CenLS method for generating perspective cuts.

We have experimented other_cenls method with and without adding constraints for inactive
perspective amenable constraints in the same manner as in the root node. We found better
results by not adding additional constraints for inactive constraints and thus report the same.
Table 3 and Table 4 summarize the results of qg with these settings in comparison to the
default qg on instances in the test set TSpr.

Our computational results show improvements in both the considered measures under all
the three settings. The highest improvement is reported by qg with other_cenls. Overall,
it improved the solution time and the tree size by about 47.40% and 44.62%, respectively,
but even higher improvements (around 82% and 95% for both the measures) are observed
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Table 3 (Top) Comparison of qg and qg with
setting s on 103 instances that are solved by
both the methods. (Bottom) Performance on
instances (25 for qg and qg with first two set-
tings, and 26 with other_cenls) that are solved
by both but at least one method took more than
10 seconds.

time nodes
setting (s) qg rel. qg rel.
root_bothls 8.60 0.57 505.44 0.59
other_reg 8.60 0.53 505.44 0.56
other_cenls 8.60 0.53 505.44 0.55

time nodes
setting (s) qg rel. qg rel.
root_bothls 72.39 0.34 17005.06 0.29
other_reg 72.39 0.30 17005.06 0.26
other_cenls 67.61 0.31 15645.84 0.27

Table 4 (Top) Comparison of qg and qg
with setting s on 9 instances that are solved
by both the methods but at least one method
took more than 100 seconds. (Bottom) Sim-
ilar comparison on 2 instances that are solved
by both the methods, but at least one method
took more than 500 seconds.

time nodes
qg rel. qg rel.

294.93 0.19 55751.27 0.19
294.93 0.18 55751.27 0.17
294.93 0.19 55751.27 0.17

time nodes
qg rel. qg rel.

1249.47 0.05 595448.0 0.04
1249.47 0.06 595448.0 0.05
1249.47 0.06 595448.0 0.05

for instances in with default qg took more than 100 seconds and 500 seconds, respectively.
Figure 1 shows the performance profiles of qg and qg with settings root_bothls, other_reg,
other_cenls using the solution times of the instances in test set TSpr.

One can also add the perspective cuts at the fractional nodes in the tree. However, since
we compare with traditional QG, we limit our PR related computational experiments to the
root node and the nodes yielding integer optimal solutions only.

3 Reformulation Based on Function Separability

A function f : Rn → R is called “group separable” or separable if there exist functions
f i : Rni → R, i = 1, . . . , m, such that

f(x) =
m∑

i=1
f i(xi), (3)

where f i and f j for i ̸= j have no variables in common [28]. That is, f can be written as
a sum of functions with a disjoint set of variables. A function is said to be fully separable
if every f i is a univariate function and partially separable if some f i are not univariate
functions.

▶ Proposition 3. If f as defined in (3) is convex, then every f i(xi), i = 1, . . . , m is also
convex.

Given a nonlinear separable constraint of the form
∑m

i=1 f i(xi) ≤ b, where b ∈ R is a scalar,
using function separability it can be reformulated as∑m

i=1 γ̃i ≤ b,

f i(xi) ≤ γ̃i, i = 1, . . . , m,

γ̃i ∈ R, i = 1, . . . , m.

 (SepCon)

Proposition 3 ensures that the reformulated problem is also a convex MINLP.
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To detect separability of a nonlinear function, we use its computational graph (CG) that
represents the function as a directed acyclic graph for computational purposes. A CG of a
nonlinear function f is constructed as a combination of unary, binary, or other operations
carried out on the input variables, constants, and intermediate variables, which themselves
are created using these operations.

A node in a CG represents either a variable, a constant, or an operation. An edge eij from
node i to node j implies that i is a parent of j, or j is an operand of operation represented
by i. A node with no child is called an independent (or leaf) node and it represents either a
constant or a variable. Other nodes are called dependent nodes. A node that represents a
binary operation has two child nodes. A node representing a unary operation has only one
child. Let Eo

i and Et
i denote the sets of edges originating from a node i and terminating

at node i, respectively. Node i with Et
i = ∅ is called the root node and is unique in a CG.

If Eo
i = ∅ then i is a leaf node. For an edge eij , let No

ij and N t
ij represent the origin and

terminal nodes, respectively. In our implementation, a node representing a constant can have
only one parent.

Computational Subgraph

We use a notion of computational subgraph (CSG) in finding separable parts in the CG of a
nonlinear function. Let Gf (C, E) be a CG of a nonlinear function f where C and E refer to
the sets of nodes and edges in the CG, respectively. A graph Gs

f (V, F ) is called a subgraph
of Gf (C, E) if the following conditions hold.
1. V ⊆ C and F ⊆ E.
2. For each v ∈ V , Eo

v ∈ F , and for each eij ∈ F, N t
ij ∈ V and No

ij ∈ V .
3. A node with no parent node in V should not represent operations +, −, or unary minus.
4. Gs

f (V, F ) is connected.
A subgraph can have more than one node with no parent. Every CG is also its CSG. We
define “maximal subgraph” as a CSG that is not a part of any CSG other than the original
CG. Figure 2 shows the CG of a separable function and its maximal subgraphs.

+

e +

+ ∧ ∧

x1 x2 2 x3 4

e

+ ∧

x1 x2 2

∧

x3 4

Figure 2 Computational graph of f = ex1+x2 + x2
2 + x3

4 (left) and its two maximal subgraphs.

Let f be a separable function (which cannot be further simplified symbolically) and let
Gf be its CG.

▶ Proposition 4. The number of maximal subgraphs in Gf is equal to the number of separable
parts f and vice-versa.

▶ Proposition 5. f is not separable if and only if Gf has only one maximal subgraph.
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3.1 Detection of Function Separability
Given a nonlinear convex function f : Rn → R and its CG Gf , checking whether f is not
separable is easier than checking otherwise. We start with employing simple rules to check if
a function is not separable. If a function does not follow these rules, we use more extensive
checking for separability.

Let r be the root node of Gf . Function f is not considered separable if any of the
following conditions is met:
1. r represents a unary operation like log, exp, sin, cos,

√
(.), etc., other than unary minus.

2. r represents the binary operation × and both its children represent a nonconstant
expression.

3. r represents the binary operation ÷ and its right child (divisor) represents a nonconstant
expression.

If r represents the operation × with any of its children representing a constant, we compute
the tree rooted at the nonconstant node and check again. Similarly, if r represents ÷ with
the right child representing a constant, we further analyze the graph rooted at its left child.

If a function does not satisfy the above conditions, Gf is iteratively searched for its
maximal subgraphs. If there is only one maximal subgraph, the function is not separable.
Otherwise, it is separable into as many parts as the number of maximal subgraphs.

3.2 Some Implementation Details
As our algorithm for detecting separability relies on the CG of the function, we prefer
to express the function as explicitly as possible. Different separable expressions (in an
explicit form) that can be identified by our algorithms include (1) a × (

∑m
i=1 f i(xi)) (2)∑m

i=1 ai × f i(xi) (3)
∑m

i=1
f i(xi)

ai
, where a, ai, b ∈ R, ∀i = 1, . . . , m. However, if an

expression can be simplified symbolically, e.g.,
√

(x2
1 + x2

2)2, then the proposed algorithm
cannot recognize it as separable, even if it is technically a separable function.

In some instances of MINLPLib, we found that different separable constraints have
common separable parts (f i). Our implementation reuses variables corresponding to different
separable parts in different constraint expressions, thus avoids creating an extra variable and
an additional constraint. For example, the set of constraints of the form

a1f1(x1) + a2f2(x2) ≤ b1, d1f1(x1) + d2f3(x3) ≤ b2,

is reformulated as

a1γ1 + a2γ2 ≤ b1, d1γ1 + d2γ3 ≤ b2,

f1(x1) ≤ γ1, f2(x2) ≤ γ2, f3(x3) ≤ γ3.

In Minotaur, we carry out separability detection before the presolving step. We have
found that 126 instances have at least one separable nonlinear function (either in constraint
or objective) out of 374 convex instances in MINLPLib. Out of 126 such instances, 79 have
separability only in the nonlinear objective function. In 45 of the remaining 47 instances,
all the nonlinear constraints are separable, and 2 have 40% of the nonlinear constraints
with separability property. Also, 108 out of these 126 instances have at least one integer
constrained variable. These 108 instances constitute our test set, TSsep for analyzing the
impact of exploiting separability in QG. More details on these instances are provided in the
Table 8 in Appendix A. Using the same performance measures as before, Table 5 reports a
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comparison of default qg and qg with separability based reformulation (denoted qgsep) on
instances in test set TSsep. The time required by the proposed routine to detect function
separability is a very small fraction of the total solution time in all instances of the test set.
Overall, we achieve about 40% improvement in the solution time and the tree size; even

Table 5 Comparison of qg and qgsep on instances in T Ssep. The second column indicates the
number of instances solved by both methods, where at least one method took more than the number
of seconds indicated in the first column.

time nodes
time # of inst. qg rel. qg rel.
>= 0 76 13.68 0.60 700.04 0.50
>= 10 26 94.54 0.42 5902.23 0.32
>= 100 11 714.61 0.20 24311.92 0.28
>= 500 7 1900.22 0.12 54480.5 0.26

better improvements are obtained for difficult instances. Using this reformulation, 8 instances
that reached the time limit earlier with qg could be solved. Figure 3 in Appendix B shows
the performance profiles of qg and qgsep using the solution times of the instances in test set
TSsep.

4 Combined Effects of the Two Reformulations

Reformulation using separability sometimes results in structures amenable to PR. For example,
consider the following uncapacitated facility location problem.

minimize
x, z, η

η

subject to
∑

i∈F cizi +
∑

i∈F,j∈C tijx2
ij ≤ η,

0 ≤ xij ≤ zi, i ∈ F , j ∈ C,∑
i∈F xij = 1, j ∈ C,

xij ≥ 0, zi ∈ {0, 1}, i ∈ F , j ∈ C.


(UFL1)

The function in the nonlinear constraint is separable and on reformulating (UFL1), we get

minimize
x, z, η

η

subject to
∑

i∈F cizi +
∑

i∈F,j∈C tijγij ≤ η,

x2
ij ≤ γij , i ∈ F , j ∈ C,

0 ≤ xij ≤ zi, i ∈ F , j ∈ C,∑
i∈F xij = 1, j ∈ C,

xij ≥ 0, zi ∈ {0, 1}, i ∈ F , j ∈ C.


(UFL2)

(UFL2) now has structures of the form (PS2) and thus, becomes amenable to PR.
Our results show that 26 instance in TSsep become amenable to PR after separability

based reformulation. These instances comprise test set TSps and are reported in Table 8
in Appendix A. Results on TSps using qg, qgsep, and qgprsep (qg with both separability
and perspective reformulations) are reported in Table 10 and Table 11, respectively, in
Appendix B. Overall, there is a significant improvement of about 88% in both the solution
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time and the tree size, and 4 more instances that reached the time limit with even separability
based reformulation could now be solved. Figure 3 in Appendix B shows the performance
profiles of qg, qgsep, and qgprsep using the solution times of the instances in test set TSps.

5 Conclusions

Our study concludes that perspective reformulation and exploitation of separability of
nonlinear constraint functions help generate better polyhedral-approximations of the feasible
region. This is observed even when these reformulations are deployed using automatic
routines that detect corresponding structures heuristically. We see improvement in both the
solution time and the size of the tree in the branch-and-cut framework of the QG method on
our test instances. The improvements are even higher for difficult instances and for those
that became amenable to PR after separability based reformulation. We believe that such
automatic routines can also reduce the effort required to model convex MINLPs.
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A Description of Test Sets

Table 6 Description of instances with collections (C1), (C2), and (C3). First column shows
instance name and the entries (bv, tv, fv, b0, b1, b01, v0, v1, v01) in the second column are: bv denotes
the number of binary variables, tv indicates the total number of variables, fv reports the number of
binary variables that are fixed as part of structure identification, b0 and b1 represent the number
of binary variables z and 1 − z, respectively, controlling at least one other variable, b01 denotes
number of binary variables z such that both z and 1 − z control another variable, v0 and v1 report
the number of variables controlled by a binary variable z and 1 − z respectively, v01 is the number
of variables controlled by a binary variable z and also 1 − z.

Instance (bv, tv, fv, b0, b1, b01, v0, v1, v01)
alan (4, 4, 0, 4, 0, 0, 4, 0, 0)
batch0812 (60, 60, 28, 0, 32, 0, 0, 70, 0)
batchdes (9, 9, 1, 0, 8, 0, 0, 12, 0)
batch (24, 24, 2, 0, 22, 0, 0, 30, 0)
batchs101006m (120, 120, 0, 0, 120, 0, 0, 140, 0)
batchs121208m (191, 191, 0, 0, 191, 0, 0, 215, 0)
batchs151208m (188, 188, 0, 0, 188, 0, 0, 212, 0)
batchs201210m (225, 225, 0, 0, 225, 0, 0, 249, 0)
clay0203h (18, 18, 0, 0, 0, 18, 60, 12, 6)
clay0203m (18, 18, 0, 0, 12, 6, 0, 12, 6)
clay0204h (32, 32, 0, 0, 0, 32, 112, 24, 8)
clay0204m (32, 32, 0, 0, 24, 8, 0, 24, 8)
clay0205h (50, 50, 0, 0, 0, 50, 180, 40, 10)
clay0205m (50, 50, 0, 0, 40, 10, 0, 40, 10)
clay0303h (21, 21, 0, 0, 0, 21, 66, 21, 0)
clay0303m (21, 21, 0, 0, 21, 0, 0, 21, 0)
clay0304h (36, 36, 0, 0, 0, 36, 120, 36, 0)
clay0304m (36, 36, 0, 0, 36, 0, 0, 36, 0)
clay0305h (55, 55, 0, 0, 0, 55, 190, 55, 0)
clay0305m (55, 55, 0, 0, 55, 0, 0, 55, 0)
color_lab2_4x0 (28920, 28920, 0, 0, 28680, 240, 28680, 240, 0)
color_lab6b_4x20 (27730, 27730, 0, 0, 27495, 235, 27495, 235, 0)
enpro48pb (92, 92, 0, 0, 92, 0, 0, 108, 0)
enpro56pb (73, 73, 0, 0, 73, 0, 0, 85, 0)
fac1 (6, 6, 0, 2, 0, 4, 16, 0, 4)
fac2 (12, 12, 0, 3, 0, 9, 54, 0, 9)
fac3 (12, 12, 0, 3, 0, 9, 54, 0, 9)
flay02h (4, 4, 0, 0, 0, 4, 32, 4, 0)
flay02m (4, 4, 0, 0, 4, 0, 0, 4, 0)
flay03h (12, 12, 0, 0, 0, 12, 96, 12, 0)
flay03m (12, 12, 0, 0, 12, 0, 0, 12, 0)
flay04h (24, 24, 0, 0, 0, 24, 192, 24, 0)
flay04m (24, 24, 0, 0, 24, 0, 0, 24, 0)
flay05h (40, 40, 0, 0, 0, 40, 320, 40, 0)
flay05m (40, 40, 0, 0, 40, 0, 0, 40, 0)
flay06h (60, 60, 0, 0, 0, 60, 480, 60, 0)
flay06m (60, 60, 0, 0, 60, 0, 0, 60, 0)
gams01 (110, 110, 0, 0, 100, 0, 0, 100, 0)
hybriddynamic_fixed (1, 1, 0, 0, 0, 1, 8, 0, 2)
ibs2 (1500, 1500, 0, 0, 0, 1500, 1500, 1500, 0)
meanvarx (12, 12, 0, 2, 0, 10, 12, 10, 0)
meanvarxsc (22, 22, 0, 12, 0, 10, 12, 10, 0)
netmod_dol1 (462, 462, 0, 0, 0, 462, 1524, 462, 0)
netmod_dol2 (455, 455, 0, 0, 79, 367, 973, 440, 6)
netmod_kar1 (136, 136, 0, 0, 15, 121, 255, 136, 0)
netmod_kar2 (136, 136, 0, 0, 15, 121, 255, 136, 0)
pedigree_ex1058 (49386, 49386, 0, 112, 48387, 865, 48387, 112, 865)
pedigree_ex485_2 (7136, 7136, 0, 110, 6710, 294, 6710, 110, 294)

Instance (bv, tv, fv, b0, b1, b01, v0, v1, v01)
pedigree_ex485 (7136, 7136, 0, 110, 6710, 294, 6710, 110, 294)
pedigree_sim400 (11226, 11226, 0, 51, 11076, 99, 11076, 51, 99)
pedigree_sp_top4_250 (11694, 11694, 0, 243, 10981, 414, 10981, 243, 414)
pedigree_sp_top4_300 (5969, 5969, 0, 160, 5496, 244, 5496, 160, 244)
pedigree_sp_top4_350tr (3100, 3100, 0, 105, 2838, 145, 2838, 105, 145)
pedigree_sp_top5_200 (32120, 32120, 0, 336, 30862, 871, 30862, 336, 871)
pedigree_sp_top5_250 (17028, 17028, 0, 243, 16193, 536, 16193, 243, 536)
portfol_buyin (8, 8, 0, 8, 0, 0, 8, 0, 0)
portfol_card (8, 8, 0, 8, 0, 0, 8, 0, 0)
portfol_classical050_1 (50, 50, 0, 50, 0, 0, 50, 0, 0)
portfol_classical200_2 (200, 200, 0, 200, 0, 0, 200, 0, 0)
procurement2mot (60, 60, 0, 19, 3, 38, 77, 18, 23)
ravempb (53, 53, 0, 0, 53, 0, 0, 65, 0)
risk2bpb (12, 12, 0, 0, 12, 0, 0, 183, 0)
rsyn0805h (37, 37, 0, 3, 0, 34, 84, 32, 26)
rsyn0805m02h (148, 148, 0, 3, 0, 145, 171, 37, 166)
rsyn0805m02m (148, 148, 0, 3, 64, 81, 19, 53, 118)
rsyn0805m03h (222, 222, 0, 3, 0, 219, 255, 42, 264)
rsyn0805m03m (222, 222, 0, 3, 96, 123, 27, 66, 192)
rsyn0805m04h (296, 296, 0, 3, 0, 293, 339, 47, 362)
rsyn0805m04m (296, 296, 0, 3, 128, 165, 35, 79, 266)
rsyn0805m (37, 37, 0, 3, 32, 2, 8, 32, 2)
rsyn0810h (41, 41, 0, 3, 0, 38, 95, 34, 26)
rsyn0810m02h (166, 166, 0, 3, 0, 163, 187, 47, 182)
rsyn0810m02m (166, 166, 0, 3, 64, 99, 35, 63, 134)
rsyn0810m03h (249, 249, 0, 3, 0, 246, 278, 57, 289)
rsyn0810m03m (249, 249, 0, 3, 96, 150, 50, 81, 217)
rsyn0810m04h (332, 332, 0, 3, 0, 329, 369, 67, 396)
rsyn0810m04m (332, 332, 0, 3, 128, 201, 65, 99, 300)
rsyn0810m (41, 41, 0, 3, 32, 6, 19, 34, 2)
rsyn0815h (44, 44, 0, 3, 0, 41, 105, 35, 27)
rsyn0815m02h (182, 182, 0, 3, 0, 179, 204, 57, 197)
rsyn0815m02m (182, 182, 0, 3, 64, 115, 52, 73, 149)
rsyn0815m03h (273, 273, 0, 3, 0, 270, 303, 72, 312)
rsyn0815m03m (273, 273, 0, 3, 96, 174, 75, 96, 240)
rsyn0815m04h (364, 364, 0, 3, 0, 361, 402, 87, 427)
rsyn0815m04m (364, 364, 0, 3, 128, 233, 98, 119, 331)
rsyn0815m (44, 44, 0, 3, 32, 9, 29, 35, 3)
rsyn0820h (49, 49, 0, 3, 0, 46, 116, 35, 29)
rsyn0820m02h (202, 202, 0, 3, 0, 199, 223, 67, 214)
rsyn0820m02m (202, 202, 0, 3, 64, 135, 71, 83, 166)
rsyn0820m03h (303, 303, 0, 3, 0, 300, 330, 87, 339)
rsyn0820m03m (303, 303, 0, 3, 96, 204, 102, 111, 267)
rsyn0820m04h (404, 404, 0, 3, 0, 401, 437, 107, 464)
rsyn0820m04m (404, 404, 0, 3, 128, 273, 133, 139, 368)
rsyn0820m (49, 49, 0, 3, 32, 14, 40, 35, 5)
rsyn0830h (58, 58, 0, 6, 0, 52, 136, 37, 30)
rsyn0830m02h (240, 240, 0, 6, 0, 234, 259, 90, 243)
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Instance (bv, tv, fv, b0, b1, b01, v0, v1, v01)
rsyn0830m02m (240, 240, 0, 6, 64, 170, 107, 106, 195)
rsyn0830m03h (360, 360, 0, 6, 0, 354, 381, 120, 387)
rsyn0830m03m (360, 360, 0, 6, 96, 258, 153, 144, 315)
rsyn0830m04h (480, 480, 0, 6, 0, 474, 503, 150, 531)
rsyn0830m04m (480, 480, 0, 6, 128, 346, 199, 182, 435)
rsyn0830m (58, 58, 0, 6, 32, 20, 60, 37, 6)
rsyn0840h (66, 66, 0, 6, 0, 60, 157, 38, 33)
rsyn0840m02h (276, 276, 0, 6, 0, 270, 295, 110, 275)
rsyn0840m02m (276, 276, 0, 6, 64, 206, 143, 126, 227)
rsyn0840m03h (414, 414, 0, 6, 0, 408, 433, 150, 437)
rsyn0840m03m (414, 414, 0, 6, 96, 312, 205, 174, 365)
rsyn0840m04h (552, 552, 0, 6, 0, 546, 571, 190, 599)
rsyn0840m04m (552, 552, 0, 6, 128, 418, 267, 222, 503)
rsyn0840m (66, 66, 0, 6, 32, 28, 81, 38, 9)
slay04h (24, 24, 0, 0, 0, 24, 96, 24, 0)
slay04m (24, 24, 0, 0, 24, 0, 0, 24, 0)
slay05h (40, 40, 0, 0, 0, 40, 160, 40, 0)
slay05m (40, 40, 0, 0, 40, 0, 0, 40, 0)
slay06h (60, 60, 0, 0, 0, 60, 240, 60, 0)
slay06m (60, 60, 0, 0, 60, 0, 0, 60, 0)
slay07h (84, 84, 0, 0, 0, 84, 336, 84, 0)
slay07m (84, 84, 0, 0, 84, 0, 0, 84, 0)
slay08h (112, 112, 0, 0, 0, 112, 448, 112, 0)
slay08m (112, 112, 0, 0, 112, 0, 0, 112, 0)
slay09h (144, 144, 0, 0, 0, 144, 576, 144, 0)
slay09m (144, 144, 0, 0, 144, 0, 0, 144, 0)
slay10h (180, 180, 0, 0, 0, 180, 720, 180, 0)
slay10m (180, 180, 0, 0, 180, 0, 0, 180, 0)
squfl010-025 (10, 10, 0, 10, 0, 0, 250, 0, 0)
squfl010-040 (10, 10, 0, 10, 0, 0, 400, 0, 0)
squfl010-080 (10, 10, 0, 10, 0, 0, 800, 0, 0)
squfl015-060 (15, 15, 0, 15, 0, 0, 900, 0, 0)
squfl015-080 (15, 15, 0, 15, 0, 0, 1200, 0, 0)
squfl020-040 (20, 20, 0, 20, 0, 0, 800, 0, 0)
squfl020-050 (20, 20, 0, 20, 0, 0, 1000, 0, 0)
squfl020-150 (20, 20, 0, 20, 0, 0, 3000, 0, 0)
squfl025-025 (25, 25, 0, 25, 0, 0, 625, 0, 0)
squfl025-030 (25, 25, 0, 25, 0, 0, 750, 0, 0)
squfl025-040 (25, 25, 0, 25, 0, 0, 1000, 0, 0)
squfl030-100 (30, 30, 0, 30, 0, 0, 3000, 0, 0)
squfl030-150 (30, 30, 0, 30, 0, 0, 4500, 0, 0)
squfl040-080 (40, 40, 0, 40, 0, 0, 3200, 0, 0)
sssd08-04 (44, 44, 0, 0, 32, 12, 12, 44, 0)
sssd12-05 (75, 75, 0, 0, 60, 15, 15, 75, 0)
sssd15-04 (72, 72, 0, 0, 60, 12, 12, 72, 0)
sssd15-06 (108, 108, 0, 0, 90, 18, 18, 108, 0)
sssd15-08 (144, 144, 0, 0, 120, 24, 24, 144, 0)
sssd16-07 (133, 133, 0, 0, 112, 21, 21, 133, 0)
sssd18-06 (126, 126, 0, 0, 108, 18, 18, 126, 0)
sssd18-08 (168, 168, 0, 0, 144, 24, 24, 168, 0)
sssd20-04 (92, 92, 0, 0, 80, 12, 12, 92, 0)
sssd20-08 (184, 184, 0, 0, 160, 24, 24, 184, 0)
sssd22-08 (200, 200, 0, 0, 176, 24, 24, 200, 0)
sssd25-04 (112, 112, 0, 0, 100, 12, 12, 112, 0)
sssd25-08 (224, 224, 0, 0, 200, 24, 24, 224, 0)
st_miqp2 (2, 2, 0, 2, 0, 0, 2, 0, 0)
st_miqp4 (2, 2, 0, 2, 0, 0, 2, 0, 0)
stockcycle (432, 432, 0, 0, 432, 0, 0, 480, 0)
st_test3 (5, 5, 0, 3, 0, 0, 3, 0, 0)
syn05h (5, 5, 0, 3, 0, 2, 8, 0, 2)
syn05m02h (20, 20, 0, 3, 0, 17, 19, 13, 14)
syn05m02m (20, 20, 0, 3, 0, 17, 19, 13, 14)

Instance (bv, tv, fv, b0, b1, b01, v0, v1, v01)
syn05m03h (30, 30, 0, 3, 0, 27, 27, 18, 24)
syn05m03m (30, 30, 0, 3, 0, 27, 27, 18, 24)
syn05m04h (40, 40, 0, 3, 0, 37, 35, 23, 34)
syn05m04m (40, 40, 0, 3, 0, 37, 35, 23, 34)
syn05m (5, 5, 0, 3, 0, 2, 8, 0, 2)
syn10h (9, 9, 0, 3, 0, 6, 19, 2, 2)
syn10m02h (38, 38, 0, 3, 0, 35, 35, 23, 30)
syn10m02m (38, 38, 0, 3, 0, 35, 35, 23, 30)
syn10m03h (57, 57, 0, 3, 0, 54, 50, 33, 49)
syn10m03m (57, 57, 0, 3, 0, 54, 50, 33, 49)
syn10m04h (76, 76, 0, 3, 0, 73, 65, 43, 68)
syn10m04m (76, 76, 0, 3, 0, 73, 65, 43, 68)
syn10m (9, 9, 0, 3, 0, 6, 19, 2, 2)
syn15h (12, 12, 0, 3, 0, 9, 29, 3, 3)
syn15m02h (54, 54, 0, 3, 0, 51, 52, 33, 45)
syn15m02m (54, 54, 0, 3, 0, 51, 52, 33, 45)
syn15m03h (81, 81, 0, 3, 0, 78, 75, 48, 72)
syn15m03m (81, 81, 0, 3, 0, 78, 75, 48, 72)
syn15m04h (108, 108, 0, 3, 0, 105, 98, 63, 99)
syn15m04m (108, 108, 0, 3, 0, 105, 98, 63, 99)
syn15m (12, 12, 0, 3, 0, 9, 29, 3, 3)
syn20h (17, 17, 0, 3, 0, 14, 40, 3, 5)
syn20m02h (74, 74, 0, 3, 0, 71, 71, 43, 62)
syn20m02m (74, 74, 0, 3, 0, 71, 71, 43, 62)
syn20m03h (111, 111, 0, 3, 0, 108, 102, 63, 99)
syn20m03m (111, 111, 0, 3, 0, 108, 102, 63, 99)
syn20m04h (148, 148, 0, 3, 0, 145, 133, 83, 136)
syn20m04m (148, 148, 0, 3, 0, 145, 133, 83, 136)
syn20m (17, 17, 0, 3, 0, 14, 40, 3, 5)
syn30h (26, 26, 0, 6, 0, 20, 60, 5, 6)
syn30m02h (112, 112, 0, 6, 0, 106, 107, 66, 91)
syn30m02m (112, 112, 0, 6, 0, 106, 107, 66, 91)
syn30m03h (168, 168, 0, 6, 0, 162, 153, 96, 147)
syn30m03m (168, 168, 0, 6, 0, 162, 153, 96, 147)
syn30m04h (224, 224, 0, 6, 0, 218, 199, 126, 203)
syn30m04m (224, 224, 0, 6, 0, 218, 199, 126, 203)
syn30m (26, 26, 0, 6, 0, 20, 60, 5, 6)
syn40h (34, 34, 0, 6, 0, 28, 81, 6, 9)
syn40m02h (148, 148, 0, 6, 0, 142, 143, 86, 123)
syn40m02m (148, 148, 0, 6, 0, 142, 143, 86, 123)
syn40m03h (222, 222, 0, 6, 0, 216, 205, 126, 197)
syn40m03m (222, 222, 0, 6, 0, 216, 205, 126, 197)
syn40m04h (296, 296, 0, 6, 0, 290, 267, 166, 271)
syn40m04m (296, 296, 0, 6, 0, 290, 267, 166, 271)
syn40m (34, 34, 0, 6, 0, 28, 81, 6, 9)
synthes1 (3, 3, 0, 0, 1, 1, 1, 2, 0)
synthes2 (5, 5, 0, 1, 1, 3, 3, 2, 2)
synthes3 (8, 8, 0, 3, 1, 4, 8, 3, 2)
tls12 (489, 489, 0, 12, 465, 12, 0, 504, 129)
tls2 (31, 31, 0, 2, 29, 0, 0, 18, 17)
tls4 (85, 85, 0, 4, 81, 0, 0, 76, 25)
tls5 (131, 131, 0, 5, 126, 0, 0, 125, 31)
tls6 (165, 165, 0, 6, 159, 0, 0, 156, 45)
tls7 (278, 278, 0, 7, 271, 0, 0, 266, 61)
unitcommit1 (427, 427, 0, 9, 235, 179, 310, 196, 83)
unitcommit_200_100_1_mod_8 (4380, 4380, 0, 3843, 0, 537, 13245, 398, 190)
unitcommit_200_100_2_mod_8 (4400, 4400, 0, 3969, 0, 431, 13148, 530, 230)
unitcommit_50_20_2_mod_8 (1093, 1093, 0, 991, 0, 102, 3259, 132, 58)
watercontamination0202 (7, 7, 0, 7, 0, 0, 521, 0, 0)
watercontamination0202r (7, 7, 0, 7, 0, 0, 188, 0, 0)
watercontamination0303 (14, 14, 0, 14, 0, 0, 1046, 0, 0)
watercontamination0303r (14, 14, 0, 14, 0, 0, 370, 0, 0)
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Table 7 Description of test set Tpr of 104 instances with structures, (P S1) and (P S2), amenable
to perspective reformulation in the Section 2. The entry in the first column is the instance name
and for each instance the entries in the second column are as follows: ts denotes total number of
nonlinear constraints, pc shows the number of PR amenable constraints, s1 and s2 report number of
constraints (out of pc) of type (S1) and (S2), respectively, and the last entry ub denotes the number
of unique variables associated with PR amenable constraints.

Instance (tc, pc, s1, s2)
clay0203h (24, 24, 24, 0)
clay0204h (32, 32, 32, 0)
clay0205h (40, 40, 40, 0)
clay0303h (36, 36, 36, 0)
clay0304h (48, 48, 48, 0)
clay0305h (60, 60, 60, 0)
rsyn0805h (3, 3, 3, 0)
rsyn0805m02h (6, 6, 6, 0)
rsyn0805m02m (6, 6, 6, 0)
rsyn0805m03h (9, 9, 9, 0)
rsyn0805m03m (9, 9, 9, 0)
rsyn0805m04h (12, 12, 12, 0)
rsyn0805m04m (12, 12, 12, 0)
rsyn0805m (3, 3, 3, 0)
rsyn0810h (6, 6, 6, 0)
rsyn0810m02h (12, 12, 12, 0)
rsyn0810m02m (12, 12, 12, 0)
rsyn0810m03h (18, 18, 18, 0)
rsyn0810m03m (18, 18, 18, 0)
rsyn0810m04h (24, 24, 24, 0)
rsyn0810m04m (24, 24, 24, 0)
rsyn0810m (6, 6, 6, 0)
rsyn0815h (11, 11, 11, 0)
rsyn0815m02h (22, 22, 22, 0)
rsyn0815m02m (22, 22, 22, 0)
rsyn0815m03h (33, 33, 33, 0)
rsyn0815m03m (33, 33, 33, 0)
rsyn0815m04h (44, 44, 44, 0)
rsyn0815m04m (44, 44, 44, 0)
rsyn0815m (11, 11, 11, 0)
rsyn0820h (14, 14, 14, 0)
rsyn0820m02h (28, 28, 28, 0)
rsyn0820m02m (28, 28, 28, 0)
rsyn0820m03h (42, 42, 42, 0)
rsyn0820m03m (42, 42, 42, 0)

Instance (tc, pc, s1, s2)
rsyn0820m04h (56, 56, 56, 0)
rsyn0820m04m (56, 56, 56, 0)
rsyn0820m (14, 14, 14, 0)
rsyn0830h (20, 20, 20, 0)
rsyn0830m02h (40, 40, 40, 0)
rsyn0830m02m (40, 40, 40, 0)
rsyn0830m03h (60, 60, 60, 0)
rsyn0830m03m (60, 60, 60, 0)
rsyn0830m04h (80, 80, 80, 0)
rsyn0830m04m (80, 80, 80, 0)
rsyn0830m (20, 20, 20, 0)
rsyn0840h (28, 28, 28, 0)
rsyn0840m02h (56, 56, 56, 0)
rsyn0840m02m (56, 56, 56, 0)
rsyn0840m03h (84, 84, 84, 0)
rsyn0840m03m (84, 84, 84, 0)
rsyn0840m04h (112, 112, 112, 0)
rsyn0840m04m (112, 112, 112, 0)
rsyn0840m (28, 28, 28, 0)
syn05h (3, 3, 3, 0)
syn05m02h (6, 6, 6, 0)
syn05m02m (6, 6, 6, 0)
syn05m03h (9, 9, 9, 0)
syn05m03m (9, 9, 9, 0)
syn05m04h (12, 12, 12, 0)
syn05m04m (12, 12, 12, 0)
syn05m (3, 3, 3, 0)
syn10h (6, 6, 6, 0)
syn10m02h (12, 12, 12, 0)
syn10m02m (12, 12, 12, 0)
syn10m03h (18, 18, 18, 0)
syn10m03m (18, 18, 18, 0)
syn10m04h (24, 24, 24, 0)
syn10m04m (24, 24, 24, 0)
syn10m (6, 6, 6, 0)

Instance (tc, pc, s1, s2)
syn15h (11, 11, 11, 0)
syn15m02h (22, 22, 22, 0)
syn15m02m (22, 22, 22, 0)
syn15m03h (33, 33, 33, 0)
syn15m03m (33, 33, 33, 0)
syn15m04h (44, 44, 44, 0)
syn15m04m (44, 44, 44, 0)
syn15m (11, 11, 11, 0)
syn20h (14, 14, 14, 0)
syn20m02h (28, 28, 28, 0)
syn20m02m (28, 28, 28, 0)
syn20m03h (42, 42, 42, 0)
syn20m03m (42, 42, 42, 0)
syn20m04h (56, 56, 56, 0)
syn20m04m (56, 56, 56, 0)
syn20m (14, 14, 14, 0)
syn30h (20, 20, 20, 0)
syn30m02h (40, 40, 40, 0)
syn30m02m (40, 40, 40, 0)
syn30m03h (60, 60, 60, 0)
syn30m03m (60, 60, 60, 0)
syn30m04h (80, 80, 80, 0)
syn30m04m (80, 80, 80, 0)
syn30m (20, 20, 20, 0)
syn40h (28, 28, 28, 0)
syn40m02h (56, 56, 56, 0)
syn40m02m (56, 56, 56, 0)
syn40m03h (84, 84, 84, 0)
syn40m03m (84, 84, 84, 0)
syn40m04h (112, 112, 112, 0)
syn40m04m (112, 112, 112, 0)
syn40m (28, 28, 28, 0)
synthes2 (3, 1, 1, 0)
synthes3 (4, 2, 1, 1)
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Table 8 Description of the instances in the test set T Ssep for separability based reformulation
in the Section 3. First column shows the instance name and the entries (nc, sp, os, us, rs) in the
second column are: nc and sc number of nonlinear constraints and number of separable nonlinear
constraints, respectively, os indicates whether objective function is separabe (1) or not (0), us is the
number of unique separable parts considering all separable constraints and objective function, rs is
the number of separable parts that are repeated. 26 instances also belonging to the test set T Sps

(that became amenable to perspective reformulation after the reformulation based on separability of
nonlinear constraints and objective) are highlighted in bold.

Instance (nc, sp, os, us, rs)
ball_mk2_10 (1, 1, 0, 10, 0)
ball_mk2_30 (1, 1, 0, 30, 0)
ball_mk3_10 (1, 1, 0, 10, 0)
ball_mk3_20 (1, 1, 0, 20, 0)
ball_mk3_30 (1, 1, 0, 30, 0)
ball_mk4_05 (1, 1, 0, 5, 0)
ball_mk4_10 (1, 1, 0, 10, 0)
ball_mk4_15 (1, 1, 0, 15, 0)
batch0812 (2, 2, 0, 20, 0)
batchdes (2, 2, 0, 5, 0)
batch (2, 2, 0, 11, 0)
batchs101006m (2, 2, 0, 29, 0)
batchs121208m (2, 2, 0, 35, 0)
batchs151208m (2, 2, 0, 38, 0)
batchs201210m (2, 2, 0, 43, 0)
clay0203m (24, 24, 0, 24, 24)
clay0204m (32, 32, 0, 32, 32)
clay0205m (40, 40, 0, 40, 40)
clay0303m (36, 36, 0, 36, 36)
clay0304m (48, 48, 0, 48, 48)
clay0305m (60, 60, 0, 60, 60)
enpro48pb (2, 2, 0, 13, 0)
enpro56pb (2, 2, 0, 12, 0)
ex1223a (5, 2, 0, 6, 0)
ex1223b (5, 5, 0, 12, 5)
ex1223 (5, 5, 0, 12, 5)
ex4 (26, 26, 0, 125, 2)
fac1 (1, 0, 1, 2, 0)
fac2 (1, 0, 1, 3, 0)
fac3 (1, 0, 1, 3, 0)
gams01 (111, 0, 1, 10, 0)
hybriddynamic_fixed (1, 0, 1, 11, 0)
immun (1, 0, 1, 6, 0)
netmod_dol1 (1, 0, 1, 6, 0)
netmod_dol2 (1, 0, 1, 6, 0)
netmod_kar1 (1, 0, 1, 4, 0)
netmod_kar2 (1, 0, 1, 4, 0)
nvs03 (2, 0, 1, 2, 0)
nvs10 (3, 0, 1, 2, 0)
pedigree_ex1058 (1, 1, 0, 28, 0)
pedigree_ex485_2 (1, 1, 0, 28, 0)
pedigree_ex485 (1, 1, 0, 28, 0)
pedigree_sp_top4_250 (1, 1, 0, 58, 0)
pedigree_sp_top4_300 (1, 1, 0, 74, 0)
pedigree_sp_top4_350tr (1, 1, 0, 17, 0)
pedigree_sp_top5_200 (1, 1, 0, 54, 0)
pedigree_sp_top5_250 (1, 1, 0, 58, 0)
portfol_classical050_1 (1, 1, 0, 50, 0)
portfol_classical200_2 (1, 1, 0, 200, 0)
risk2bpb (1, 0, 1, 3, 0)
slay04h (1, 0, 1, 8, 0)
slay04m (1, 0, 1, 8, 0)
slay05h (1, 0, 1, 10, 0)
slay05m (1, 0, 1, 10, 0)

Instance (nc, sp, os, us, rs)
slay06h (1, 0, 1, 12, 0)
slay06m (1, 0, 1, 12, 0)
slay07h (1, 0, 1, 14, 0)
slay07m (1, 0, 1, 14, 0)
slay08h (1, 0, 1, 16, 0)
slay08m (1, 0, 1, 16, 0)
slay09h (1, 0, 1, 18, 0)
slay09m (1, 0, 1, 18, 0)
slay10h (1, 0, 1, 20, 0)
slay10m (1, 0, 1, 20, 0)
squfl010-025 (1, 0, 1, 250, 0)
squfl010-040 (1, 0, 1, 400, 0)
squfl010-080 (1, 0, 1, 800, 0)
squfl015-060 (1, 0, 1, 900, 0)
squfl015-080 (1, 0, 1, 1200, 0)
squfl020-040 (1, 0, 1, 800, 0)
squfl020-050 (1, 0, 1, 1000, 0)
squfl020-150 (1, 0, 1, 3000, 0)
squfl025-025 (1, 0, 1, 625, 0)
squfl025-030 (1, 0, 1, 750, 0)
squfl025-040 (1, 0, 1, 1000, 0)
squfl030-100 (1, 0, 1, 3000, 0)
squfl030-150 (1, 0, 1, 4500, 0)
squfl040-080 (1, 0, 1, 3200, 0)
st_e14 (5, 5, 0, 12, 5)
st_miqp1 (1, 0, 1, 5, 0)
st_miqp2 (1, 0, 1, 2, 0)
st_miqp4 (1, 0, 1, 3, 0)
st_miqp5 (1, 0, 1, 2, 0)
stockcycle (1, 0, 1, 48, 0)
st_test1 (1, 0, 1, 4, 0)
st_test2 (1, 0, 1, 5, 0)
st_test3 (1, 0, 1, 5, 0)
st_test4 (1, 0, 1, 2, 0)
st_test5 (1, 0, 1, 7, 0)
st_test6 (1, 0, 1, 10, 0)
st_test8 (1, 0, 1, 24, 0)
st_testgr1 (1, 0, 1, 10, 0)
st_testgr3 (1, 0, 1, 20, 0)
st_testph4 (1, 0, 1, 3, 0)
synthes2 (4, 0, 1, 3, 0)
synthes3 (5, 2, 0, 6, 1)
tls12 (12, 12, 0, 144, 0)
tls2 (2, 2, 0, 4, 0)
tls4 (4, 4, 0, 16, 0)
tls5 (5, 5, 0, 25, 0)
tls6 (6, 6, 0, 36, 0)
tls7 (7, 7, 0, 49, 0)
unitcommit1 (1, 0, 1, 240, 0)
unitcommit_200_100_1_mod_8 (1, 0, 1, 4662, 0)
unitcommit_200_100_2_mod_8 (1, 0, 1, 4639, 0)
unitcommit_50_20_2_mod_8 (1, 0, 1, 1152, 0)
watercontamination0202 (1, 0, 1, 4017, 0)
watercontamination0303 (1, 0, 1, 4521, 0)
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B Computational Results

Table 9 Summary of collections of type Ci, i = 1, 2, 3 in instances in test set T Sc. The second
column reports the number of instances containing at least one collection of the type mentioned in
the first column. In the last column, the first sub-column corresponds to the number of instances
(out of the number of instances mentioned under the second column) in which at least 50% of the
total number of variables are found to be semi-continuous. The second sub-column shows the number
of instances in which the total number of semi-continuous variables is less than 10%.

# inst. with semi-continuous variables
type # inst. ≥ 50% ≤ 10%
C1 194 151 9
C2 132 41 5
C1 and C2 220 203 0
C1 and C3 194 154 7
C2 and C3 132 43 5
C1 and C2 and C3 220 208 0
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Figure 3 Performance profiles comparing solution times of qg and qgsep (on left), and of qg,
qgsep, and qgprsep (on right).

Table 10 (Top) Comparison of qg and
methods (M) on 15 instances in T Sps that
are solved by both the techniques. (Bottom)
Performance on ten instances that are solved
by both, but at least one technique took more
than 10 seconds.

time nodes
Method (M) qg rel. qg rel.
qgsep 78.24 0.32 1213.03 0.42
qgprsep 78.24 0.12 1213.03 0.12

time nodes
Method (M) qg rel. qg rel.
qgsep 251.01 0.22 4418.17 0.31
qgprsep 251.01 0.07 4418.17 0.06

Table 11 (Top) Comparison of qg and
methods (M) on instances that are solved by
both, but at least one method took more than
100 seconds. (Bottom) Similar comparisons
for instances that are solved by both methods,
but at least one took more than 500 seconds.

# solved time nodes
by both qg rel. qg rel.

7 654.78 0.15 10605.48 0.27
5 1454.86 0.01 15711.76 0.02

# solved time nodes
by both qg rel. qg rel.

4 2389.38 0.04 27068.51 0.15
4 2389.38 0.01 27068.51 0.01


	1 Introduction
	2 Perspective Reformulation
	2.1 Structures Amenable to Perspective Reformulation
	2.2 Detecting Structures (PS_1) and (PS_2)
	2.3 Solving Perspective Reformulation
	2.3.1 Adding Perspective Cuts at Root Node
	2.3.2 Adding Perspective Cuts at Other Nodes


	3 Reformulation Based on Function Separability
	3.1 Detection of Function Separability
	3.2 Some Implementation Details

	4 Combined Effects of the Two Reformulations
	5 Conclusions
	A Description of Test Sets
	B Computational Results

